From Fiedler Cuts to Community Detection across Resolution Variation

Duke CS Nov 19, 2024

¹Electrical & Computer Engineering, Aristotle Univ., Thessaloniki, Greece ²Nicholas School of the Environment, Duke Univ., Durham, NC, USA ³Computer Science, Duke Univ., Durham, NC, USA

- ubiquitous in data analysis
- understanding
- o underlying, unifying

Introduction	Fiedler-Modularity	BlueRed	Empirical-results	Extensions
00000	0000000		00000000	00000
Outline				

mnist-handwritten-digit images (28×28-pixels)

- ▷ Feature points → graphs (discrete manifolds)
- ▷ Community detection a.k.a. graph clustering

From Fiedler cuts to Modularity

Resolution limit: with all previous models

- BlueRed: across the resolution variation
- ▷ Needs, opportunities for extensions and applications

□ Analytical, experimental results throughout the talk

2D embedding of 70000 mnist-digit images

Drosophila connectome[2024] (n, m) = (110K, 13.5M)

 $\mathsf{Graph}\ G(V,E)\qquad\mathsf{Matrix}\ A(V,V)$

 $\Box \ n = |V|$ vertices: entities

 $\hfill\square\hfill\hf$

 $\Box \ A(u,v) > 0 \iff (u,v) \in E$

□ directed, undirected, weighted, unweighted

 \Box Context-specific networks:

social, biological, ecological, technological, epidemiological

 \Box Types of graph data sources

- $\circ~$ obtained directly from observation
- derived from feature vectors/points
- \circ generated by graph/feature models

 $\mathcal{N}(x \mid r) = \{ x' \mid d(x, x') < r \}$

- \circ parameter r: real-valued, elusive (scale)
- high-dimension curse:
 overcrowded or vanishing
 highly sensitive to change of r

 $\mathcal{N}(x \mid k) = \{ x_i \mid d(x, x_i) \le d(x, x_{i+1}), i = 1 : k \}$

- \circ parameter k: integer, perceptive
- $\circ~$ non-empty, sparse, maintain density information
- $\circ~$ relative robust to change in D (dimension) and k

rNN

 \mathbf{G}_{T} : *r*NN matrix, symmetric rows/columns ordered by labeled classes

Compound in \mathbb{R}^2

399 feature points in 6 classes (color-coded)

vanishing volume of spherical balls

k**NN**

 \mathbf{G}_k : kNN matrix, non-symmetric rows/columns ordered by labeled classes

 \circ feasibility: cluster $C_i(V_i, E_i)$ is connected

two primal configurations: Ω_{\vee} (all in one), Ω_{\wedge} (all singletons)

• encoding: $E \mapsto \Omega$, C_i : community membership (label)

Introduction 000000	Fiedler-Modularity ●000000	BlueRed	Empirical-results	Extensions 00000
A real-world r	network: two parties			

Polblogs-2004

- $\circ~$ 2004 US election blogsite: V: 1,224 blog sites, E: 19,025 citation links
- $\circ~$ determine: # communities, individual community membership
- $\circ~$ our experimental results are consistent with the ground-truth labels $\{{}_{\rm DSC,\,ARI}\}=\{0.95,0.81\}$

Adjacency matrix by clusters

2D spatial embedding

Introduction	Fiedler-Modularity	BlueRed	Empirical-results	Extensions
000000	○●○○○○○		00000000	00000
Connection b	etween the Fiedl	er cut & Modulari	itv	

Basic case: $q \leq 2$ (cut or not), $A^{\mathrm{T}} = A$ (undirected graph)

The Fiedler cut: 1973, 1998

$$\begin{split} \lambda_{2}(L) &= \min_{\substack{v^{\mathrm{T}}v_{1}=0\\v^{\mathrm{T}}v=1}} v^{\mathrm{T}}Lv \quad \text{(Fielder value)} \\ v_{2}(L) &= \arg\min_{\substack{v^{\mathrm{T}}v_{1}=0\\v^{\mathrm{T}}v=1}} v^{\mathrm{T}}Lv \quad \text{(Fielder vector)} \end{split}$$

♦ Laplacian: L = D - A, D = diag(d), $Lv_1 = 0$

or, $L = D^{-1/2}(D - A)D^{-1/2} \sim (I - AD^{-1})$ (normalized) AD^{-1} : the random-walk transition matrix

- \diamond λ_2 : known as the algebraic connectivity
- $\diamond~v_{\mathbf{2}}:$ gives the sign-parity cut & vertex ordering

Modularity for community detection, 2004 $\Omega_* = \arg\min_{\Omega} Q(\Omega) = \sum_{\substack{C \in \Omega \\ i, j \in C}} \frac{A(i, j)}{2m} - \frac{d(i)d(j)}{(2m)^2}$

where
$$d = A imes \mathbf{1}$$
, $2m = d^{\mathrm{T}} \mathbf{1}$

- ◊ probabilistic, combinatorial
- \diamond not limited to $q \leq 2$, nor to $A^{\mathrm{T}} = A$

when $q\leq 2{\rm ,}$ decide a cut or no cut

- $\diamond~$ first connection to the algebraic cut, 2013
- $\diamond~$ first rigorous analysis of the connection, 2023

- $\triangleright~$ The minimal cut: normalized by the harmonic mean of the intra-volumes of clusters C and \bar{C}
- ▷ Search: expensive combinatorially, efficient algebraically
- The Fiedler vector, sorted in as-/descending order, makes both a vertex ordering (1D encoding) and the cut
 - the vertex ordering: neighbors are closer
 - the cut: at the sign change
 - numerical location of the cut can be stabilized
- \triangleright Left plot: the first cut at 50 among 150 flowers in dataset ${\rm IRIS}$ with 4 feature attributes

Modularity Q (clustering function), simple, significant, widely used since 2004

$$\max Q(\Omega) = \sum_{C \in \Omega} \alpha(C, C) - \alpha(C, V) \alpha(V, C) = Q_{\text{attraction}} + Q_{\text{repulsion}}$$

where

$$\alpha(C,S) = \mathbf{1}^{\mathrm{T}} A(C,S) \mathbf{1}, \qquad C,S \subset V, \quad \alpha(V,V) = 1$$

Attraction term $Q_{\text{attraction}}$ the sum of intra-volumes increases with **merges**

Repulsion term $Q_{repulsion}$ the sum of inter-volume-products increases with **splits**

Introduction	Fiedler-Modularity	BlueRed	Empirical-results	Extensions
000000	0000●00		00000000	00000
Marial .	Lutan dha tala sfa			

Model evolution: the tale of modularity h = Q

- Modularity parameterized, 2006
 - $Q(\Omega | \boldsymbol{\gamma}) = \sum_{C \in \Omega} \alpha(C, C) \boldsymbol{\gamma} \alpha(C, V) \alpha(V, C)$
 - $\alpha(C, C') = \mathbf{1}^{\mathrm{T}} A(C, C') \mathbf{1}, \ C, C' \subset V, \ \alpha(V, V) = 1$
 - $\gamma \in [0,\infty)$: resolution parameter(external)
 - $Q(\Omega \mid \gamma \! = \! 1):$ the original modularity
- $\,\vartriangleright\, Q(\gamma,\Omega) \colon \, \gamma$ as an internal variable, 2021
 - no longer external, free of $\gamma\text{-tuning}$
- $\triangleright \ Q_{\mathrm{stoch}}(\gamma,\Omega)$: stochastic model, 2024

unsupervised attention to robust configurations

Progressive understanding of the $\pmb{\gamma}\text{-dynamics:}$

- $\triangleright~$ the resolution limit at $\gamma=$ 1, 2007
- $\triangleright\,$ the resolution limit at any particular $\gamma\text{-value, 2023}$
- * the critical value γ_c in cut $(q\leq 2)$ is $oldsymbol{\lambda}_2(L)$
- * the Fiedler value under stochastic fluctuations $\lambda_2 \Longrightarrow \Lambda_2$, the Fiedler pseudo-set (FPS)
- \triangleright **BlueRed** across the γ -spectrum, 2021-2023
 - $\ast~$ no single resolution $\gamma\text{-value}$ is universal
 - * universal: \exists a unique set of γ -bands by p critical values $\{\gamma_i < \gamma_{i+1}, i = 1 : p\}$
- BlueRed admitting stochastic fluctuations, 2024
 - \ast recognizing persistent and steady $\gamma\text{-bands}$

Split transition analysis: the Fiedler connection to modularity Q

RoK5.6, [2007] Ring-5 of K6-cliques

Buckyball, C60

Cylindrical mesh 10×10

Cube₁₆, 4D hypercube

Splits by Fiedler Cuts

- Two-cluster configuration $\Omega_{\pm 1} = \{C_1, C_{\pm 1}\}$ 0
- $\circ Q_{\gamma}$: at a fixed γ -value
- Connection to the (plain) Laplacian

$$Q_{\gamma}(\Omega_{\pm 1}) = \frac{s^{\mathrm{T}} \left(A - \frac{\gamma}{2} dd^{\mathrm{T}}\right) s}{2s^{\mathrm{T}} s}, \qquad s \in \{1, -1\}^n,$$

Connection to the normalized Laplacian

$$Q_{\gamma}(\Omega_{\pm 1}) = \frac{y(s)^{\mathrm{T}} \left(\hat{A} - \frac{\gamma}{2} \hat{d} \hat{d}^{\mathrm{T}}\right) y(s)}{y(s)^{\mathrm{T}} y(s)},$$

 $\hat{d} = d^{1/2}, \quad y(s) = \hat{d} \odot s, \quad \hat{A} = \hat{D}A\hat{D}, \quad \hat{D} = \text{diag}\left(1./\hat{d}\right)$

- ▶ Our findings [2023]:
 - reveal the critical value γ_c between cut and no-cut
 - show the resolution limit at any particular value γ_{α}
 - explain the erroneous split or merge when $\gamma_c \neq \gamma_o$

Analysis of the critical transition

Theorem

- G: undirected, connected graph
- $\gamma>0:$ resolution parameter value
- Q_{γ} : parametrized modularity
- λ_2 : the Fiedler value of $L = I \hat{A}$ Then,
- $\diamond \ \gamma < \lambda_2$: no split in $Q_{*,\gamma}$
- $\diamond \ \gamma > \lambda_2 \text{: split in } Q_{*,\gamma}$
- $\diamond \gamma \!=\! \lambda_2 \!: Q_{*,\gamma}$ nonunique

Implications:

- $\triangleright \ \pmb{\lambda_2(G)} \ \text{marks the critical transition point } \boldsymbol{\gamma_c} \\ \text{between cut and no-cut by } Q_{\gamma}$
- $\triangleright \ \ \Omega_{\gamma} \ \text{at any} \ \gamma \neq 1 \ \text{is as resolution-limited as} \ \Omega_{1}$

i.e., no single magic $\gamma\text{-value}$ serves for all graphs

while γ is fixed in Q, λ_2 varies with G

f.g. $\lambda_2({\tt RoK}_{17,6})=0.003$, $\lambda_2({\tt Cube}_8)=0.25$

▶ It is **necessary** to free Q from γ -fixing/tuning

Additional issues with the Fiedler pair (λ_2, v_2) :

- \circ λ_2 : overfitting to data graph G
- $\circ~ \boldsymbol{v_2}:$ non-unique when λ_2 is not simple
 - f.g. isomorphic split patterns in cubes, torus

BlueRed: across resolution variation

APS-2020 citation: matrix in DOI order

FBS-2023 network: 132 American college football teams (nodes) of Football Bowl Subdivision (FBS) play 738 games (edges) in the regular season of 2023

- A broad family of clustering functions: *h* existing or novel \triangleright
- \triangleright Clustering analysis of min $h(\gamma)$ across $\gamma \in [0,\infty)$ (recall: necessary to be free of γ -setting or turning)
- \triangleright A universal γ -spectral structure with p transition points
 - $\{(\Omega_i, \Gamma_i), j = 1 : p\}$, each Ω_i on γ -band $\Gamma_i = (\gamma_{i-1}, \gamma_i)$ (\exists a unique set of $p \geq 1$ critical transition points $\{\gamma_i\}$)

A master optimization model

(parallel to the Courant-Fischer theorem with matrix spectral)

- \triangleright Theoretical γ -spectral analysis of KSC graphs (sketched)
- Descending triangulation (DT) algorithms (sketched) \triangleright
- \triangleright Computational γ -spectral analysis of graphs of diverse types

Introduction 000000	Fiedler-Modularity	BlueRed ○●○○○○○○○	Empirical-results 00000000	Extensions 00000
BlueRed:	clustering funct	tion family		
		-		
$h(\gamma,\Omega)$	$= h_{\textbf{attraction}}(\Omega)$	+ $\boldsymbol{\gamma} h_{\mathbf{repulsion}}(\Omega),$		
	$\Omega \in \mathcal{L}(G) \gamma \in (0,\infty)$	% lattice of feasible configuration $%$ internal resolution variable	s	

> attraction & repulsion terms: non-colinear and dialectical

 $\Omega_{\vee} = \arg\min_{\Omega \in \mathcal{L}(\mathcal{G})} h_{\text{attraction}}(\Omega), \qquad \Omega_{\wedge} = \arg\min_{\Omega \in \mathcal{L}(\mathcal{G})} h_{\text{repulsion}}(\Omega)$

 $\triangleright~$ including/unifying most existing models (w./w.o. modification) and open to novel models

- $\,\triangleright\,$ inspecting the community structure in graph G through the lenses of h
- \triangleright encoding, mapping (2D): $\Omega \mapsto (h_{\mathrm{a}}(\Omega), h_{\mathrm{r}}(\Omega))$, i.e., $\mathcal{L}(G) \mapsto \mathsf{har}(G)$ -plane

Introduction 000000	Fiedler-Modularity 0000000	BlueRed ○○●○○○○○○	Empirical-results	Extensions 00000
Clustering f	unctions in Blue	eRed expressio	n	
		E	BlueRed expression	-
	Existing clustering function	Attraction h _a	Repulsion h _r	
	$\begin{array}{l} \text{Altered } q\text{-state Potts model} \\ -J\sum\limits_{(i,j)\in E} \delta_{\sigma_i\sigma_j} + \gamma \sum\limits_{s=1}^q \frac{n_s(n_s-1)}{2} \end{array}$	$-J\sum_{C_i\in\Omega}\alpha(C_i,C_i)$	$\sum_{C_i \in \Omega} n_i \left(n_i - 1 \right)$	-
	Absolute Potts model $\sum_{s} (-w_s + \gamma u_s)$	$-\sum_{C_i\in\Omega}\alpha(C_i,C_i)$	$\sum_{C_i \in \Omega} n_i \left(n_i - 1 \right) - \alpha(C_i, C_i)$	
	$\begin{array}{l} \text{Constant Potts model} \\ -\sum_{ij} \left(A_{ij} w_{ij} - \gamma \right) \delta_{\sigma_i \sigma_j} \end{array}$	$-\sum_{C_i\in\Omega}\alpha(C_i,C_i)$	$\sum_{C_i\in\Omega}n_i(n_i\!-\!1)$	
	$\frac{1}{2m}\sum_{ij}^{} \left(A_{ij} - \gamma \frac{k_i k_j}{2m}\right) \delta_{\sigma_i \sigma_j}$	$-\sum_{C_i\in\Omega}\alpha(C_i,C_i)$	$\sum_{C_i \in \Omega} \alpha^2(C_i, V)$	
	$\frac{\operatorname{Normalized cuts}}{\alpha(C_1,C_2)} + \frac{\alpha(C_1,C_2)}{\alpha(C_2,V)}$	$-\sum_{C_i\in\Omega}rac{lpha(C_i)}{lpha(C_i,V)}$	$\sum_{C_i \in \Omega} \frac{\alpha(C_i, \overline{C}_i)}{\alpha(C_i, V)}$	
	$ \begin{array}{l} \text{Generalized modularity density} \\ \frac{1}{2m} \sum_{c} \left(2m_c - \frac{K_c^2}{2m} \right) \rho_c^{\chi} \end{array} \end{array} $	$-\sum_{C_i \in \Omega} \alpha(C_i) \cdot \frac{\rho^{\chi}(C_i)}{\sum_{c_j \in \Omega} \rho^{\chi}(C_j)}$	$\sum_{C_i \in \Omega} \alpha^2(C_i, V) \cdot \frac{\rho^{\chi}(C_i)}{\sum_{c_j \in \Omega} \rho^{\chi}(C_j)}$	
	Infomap $L(M) = q_{\frown} H(\mathcal{Q}) + \sum_{i=1}^m p_{\bigcirc}^i H(\mathcal{P}^i)$	$\sum_{C_i \in \Omega} f\left(\frac{\alpha(C_i, C_i) + 2\alpha(C_i, \overline{C}_i)}{2e}\right)$	$f\left(\frac{1}{e} - \sum_{C_i \in \Omega} \frac{\alpha(C_i, C_i)}{e}\right) - 2\sum_{C_i \in \Omega} f\left(\frac{\alpha(C_i, \overline{C}_i)}{e}\right)$	

(*) The functions in the bottom group are modified to introduce γ -variation while the specific encoding principle for each is maintained

Introduction 000000	Fiedler-Modularity 0000000	BlueRed ○○○○●○○○○○	Empirical-results	Extensions 00000
The mast	ter model & the Couran	t-Fischer theo	rem	
• critical v	values: $\gamma_{j-1} < \gamma_j$, $j \le p$	\circ eigenvalues: λ_{j-1}	$1 \leq \lambda_j$	
\circ configur \circ h : nonli	ations: $\Omega_j \in \mathcal{L}(G)$, a lattice inear on a nonnegative matrix	\circ eigenvectors: v_j \circ Rayleigh quotien	€ ℝ°, a vector field t on a Hermitian matrix	
 equivale 	nt expressions: sup-inf or inf-sup	 equivalent expres 	ssions: max-min or min-max	
 probabil 	istic, combinatorial	 algebraic, geome 	etric	
$\circ \ \#$ bands	unknown a priori	 #distinct eigenv 	alues unknown a priori	
	$\gamma_{1} = \sup_{\substack{\gamma'_{1} \in (0,\infty)}} \left\{ \Omega_{\vee} = \operatorname*{arginf}_{\substack{\Omega \in \mathcal{L}(G)\\\gamma \in [0,\gamma'_{1})}} h(\gamma_{j}) \right\}$ $\gamma_{j} = \sup_{\substack{\gamma'_{i} \in (\gamma_{j-1},\infty)\\\gamma'_{i} \in (\gamma_{j-1},\infty)}} \left\{ \Omega_{j} = \operatorname{arginf}_{\substack{\Omega \in \mathcal{L}(G)\\\Omega \in \mathcal{L}(G)}} \right\}$	$(\Omega) \Big\},$ $h(\gamma, \Omega) \Big\}, 2 \le j \le$	$\leq p$	
	$\Omega_{\wedge} = \operatorname{arginf}_{\Omega \cap \mathcal{O}} h(\Omega, \gamma).$	$_{j}^{\prime})$		
	$\gamma \in [\gamma_p, \infty)$			

- \triangleright Bottom: the lineage pyramid relates clusters in Ω_j across the γ -bands

- ▷ Graph G_{sbm3}: generated by a SBM model with 3 block modes
- \triangleright Four cluster configurations Ω_j are shown in the top with the adjacency matrices in corresponding orders, color-coded
- \triangleright The four supporting γ -bands Γ_j are shown in the bottom
- $\triangleright \ \Omega_{\rm blue}, \ \Omega_{\rm red} \ \text{and} \ \Omega_{\rm purple} \ \text{recover the three} \\ \text{generation modes}, \ \Omega_{\rm yellow} \ \text{is induced}$
- Ω_{blue} and Ω_{red} are anti-chain on lattice L(G_{sbm3}) Their coexistence on Γ_{blue} and Γ_{red} cannot be detected accurately at a single γ-value
- This also explains the fuzziness observed at the critical value between Γ_{blue} and Γ_{red}

20 / 36

 \ast autonomous termination in p steps

¹traag2019 ²floros2022

Introduction	Fiedler-Modularity	BlueRed	Empirical-results	Extensions	
000000	0000000		•0000000	00000	
Experiments: s	etup				

Clustering function & algorithms

- $\triangleright\;$ Function: stochastic modularity $Q_{\rm s}$, 2024
- Algorithm: Descending Triangulation (DT-II), 2021 internally deploys LEIDEN, traag2019 unsupervised attention to robust configurations, 2024 (robustness indices: persistence λ, steadiness μ)
- \triangleright Spatial embedding by SG-t-SNE, pitsianis2019

Diverse graph types

- real-world and synthetic
- $\circ~$ data networks by direct observation
- o knn graphs derived from feature point data
- topology-determinate graphs
- $\circ~$ graphs with different degree distributions
- $\circ~$ directed, undirected, weighted, unweighted

AGGREGATION	788	12	7	0.99	(0.03, 0.17)	1.0	0.8
SPIRALS	312	12	3	1.00	(0.0001, 0.08)	1.0	0.9

data for benchmarking point-clustering methods

- $\circ~$ different in topology, geometry, sample distribution
- $\triangleright\;$ knn graphs: richer tests for graph clustering
- BlueRed achieved high consistency scores

- Email network at Univ. Rovira i Virgili (URV), Tarragona, Spain, 2003
- 1133 users, 5451 email exchange links
- $\circ~$ big difference in community size, intra-link density

- ▷ Graph minor by cluster contraction
- weighted node: 2-tuple (% population, % links)
- weighted link: % links
- A small dense group is detected besides much larger communities

FBS-2023: multi-level league structure

FBS-2023: 132 college football teams (nodes) of Football Bowl Subdivision (FBS) play 738 games (edges) in the regular season of 2023

BlueRed detects the multi-resolution structure and uncovers all the EBS Conferences with ari = 0.98

League configurations of FBS-2023 on multiple γ -resolution bands shown in the lineage pyramid. There are 3 non-tree links.

Completion of semantic attribute \triangleright annotation by community detection combined with language processing

Three of the differentiated 54 classes (RGB-color-coded): signal processing in digital devices and formats Cluster in red: Cluster in green: telecommunication techniques Cluster in blue: chemical and biological techniques

Peptides

Preserving

Immunological Testing

Proteins Chemistry **Organic Compounds**

Resin Derivatives

Deodorizina

Introduction 000000	Fiedler-Modularity 0000000	BlueRed	Empirical-results 00000●00	Extensions 00000
Unsupervised	l recognition of h	andwritten digit i	mages	
6882 1	8 5 0 5 9 1 20 12 0 99.1%		X the t	

 $\triangleright~$ The confusion matrix against the truth labels total accuracy 98.2%

recall scores in the last row

precision scores in the last column

▷ ARI score 0.96

- ▷ 70.000 MNIST Digit-images in 11 clusters
- ▷ two distinct subclusters of digit-7 images (90% cyan, 10% purple \approx 1% total)
- $\,\triangleright\,$ with zero training, with higher differentiation

Two fibroblast cell clusters in Vasculature of the Tabula Sapiens, 2002

- 16 035 cells in the vasculature organ from the Tabula Sapiens, Science 2022
- $\circ~$ cell type annotation assisted by tissue experts
- $\circ~{\rm knn}~(k\approx 15)$ provided by a gene expression pipeline at the atlas data site

- ▷ higher consistency score: 0.95 in ARI against the ground-truth cell labels; all 16 035 cells are labeled without learning or training
- higher differentiating capability:
 two distinctive subclusters in fibroblast cells
 reflecting two different sequencing techniques

Extension in theory and application

- More to invest in theory:
 - clustering function bank: interpretable, composible, evaluated, supporting diverse tasks
 - ▷ interplay between transformation of graph G and change of clustering function hf.g. Q(G) vs. h(G) = Q(f(G))
 - evolution: emergence, growth, decline, disappearance of sub-communities
 - b divide-and-conquer graph algorithms
 - ▷ random models for graph data augmentation

 $\triangleright \cdots$

Abundant opportunities in applications:

- $\triangleright \ \mathsf{data} \to \mathsf{information} \to \mathsf{insight}$
- ▷ identification of influential players, outliers, strong, weak links, pattern features
- context-specific transformation of data graphs
- $\,\triangleright\,$ recognition, prediction of propagation patterns
- $\triangleright~$ feature-guided graph partition or alignment
 - f.g. super-pixel segmentation
- $\triangleright~$ graph compression, decompression for query

\triangleright	٠	٠	٠	

			Top-52	digits	with th	ve larg	est in-	degree	value	8		
3	3	6	6	6	а	1	3	6	9	6	8	3
6	6	7	8	8	8	4	8	8	9	6	8	3
8	٥	8	8	8	6	٥	0	8	3	0	2	4
8	0	5	5	3	5	1	8	1	3	3	3	2

Introduction	Fiedler-Modularity	BlueRed	Empirical-results	Extensions				
000000	0000000		00000000	0●000				
Graph compression \rightleftharpoons Vertex ordering								

- To expedite responses to frequent, scattered queries
- accommodate large (portions) of knowledge networks in local memories
- use narrow (de)compression windows
- \circ be compatible with storage formats (e.g. HDF5)
- exploit & encode similarities in neighborhood subgraphs (block cols/rows of adjacency matrix)
- \Box π : order vertices to minimize the total variation in neighborhood subgraph patterns (NP-hard)

$$\mathsf{mLogGapA}(G, \pi) = \frac{|V|}{|E|} + \sum_{\substack{u_i \in \mathcal{N}[v]\\i=2:d(v)}} \log_2(1 + \pi(u_i) - \pi(u_{i-1}))$$

Introduction	Fiedler-Modularity	BlueRed	Empirical-results	Extensions
000000	0000000	000000000	00000000	00000
Algebraic graph	compression			

Connections & constraints

- $\circ \ \ \text{Vertex ordering} \rightleftharpoons \text{Graph compression}$
- $\circ~$ Fast query responses: large capacity & narrow (de)compression window
- > Theoretical analysis
- ▷ Highly efficient algorithm **viFPS**:

- $\circ~$ Higher compression ratios over diverse graphs
- $\circ~$ Faster sparse matrix-vector products

Citation graph APS2020: in 5 different vertex orderings (667 K articles & 8.850 M citation links)

cuthill1969reducingbandwidth; george1981computersolution; amestoy2004algorithm837; amestoy1996approximateminimum; lim2014slashburngraph

Introduct	ion Fiedler-Modularity 0000000	BlueRed	Empirical-results 00000000	Extensions 000●0
Sup	erpixel segmentation			
For	embedded vision systems			
	scene parsing image matching & registration motion tracking or estimation autonomous navigation saliency recognition feature and filter learning time-critical in many circumstances			
Superpixel ¹			- Junt Sh	for
	a set of pixels spatially connected and chromatically homogeneous	036		And
\$	regulation on size & number $({m k})$		my Lat 1 2 2	
♦ 3	a semantic element encoded by [size, shape, shade]		-	
		Airplane [10081] ²	Church of Saint Anna, Mykono	s [118035] ²

¹Ren and Malik 2003 ²BSDS-500 (martin2001)

F-L-P-S

References