Compsci 101
More Recursion and Modules

dis:
0 -> haiku.txt
1 -> |labtemplate.txt

2 -> lecturetemplate.txt

12/2/25

A

Compsci 101, Fall 2025

Susan Rodger
Alex Steiger

December 2, 2025

1



difference
« XML
« eXtensible Markup Language
« Xerox Parc
* From Mice to Windows

12/2/25 Compsci 101, Fall 2025 2



The Power of Collaboration:
Ge Wang, Duke alum - Prof. at Stanford

* Duke 2000: Music and Computer Science

 https://www.stanforddaily.com/2016/03/09/ga-with-ge-wang-
father-of-stanford-laptop-orchestra/

* http://www.youtube.com/watch?v=ADEHmMkL 3HBg
 About Design in Compsci 308 *

Our investment into a huge and
meticulous design process was a huge
factor in making later progress. 35000+
lines of code / design / documentation
gave us a project we were all very
happy and proud to be a part of.

12/2/25 Compsci 101, Fall 2025


https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
https://www.stanforddaily.com/2016/03/09/qa-with-ge-wang-father-of-stanford-laptop-orchestra/
http://www.youtube.com/watch?v=ADEHmkL3HBg
http://www.youtube.com/watch?v=ADEHmkL3HBg

Announcements

Assign 7 Recommender due TODAY!
APT-7, due Thursday, Dec 4
Assign 8 due December 5

e Can be turned in by December 9 with NO
PENALTY

Lab 10 Friday — do prelab before going

Final Exam — Thursday, December 11, 7pm

* In French Science 2231<- NOTE different room
than where our lecture is — [Block exam time]



Interested in being a UTA?

Enjoy Compsci101?
Would like to help others learn it?

Consider applying to join the team!
https://www.cs.duke.edu/undergrad/uta

Apply soon - ignore the deadline, they still need
UTAs for 101


https://www.cs.duke.edu/undergrad/uta
https://www.cs.duke.edu/undergrad/uta

Assignment 3:
More samples from previous
semesters




PFT

* Review Recursion
« Modules and exceptions
 An APT




Review: Recursion Summary

« Make simpler or smaller calls
 Call itself with different input

 Must have a base case when no recursive call
can be made

« Example - The last folder in the folder hierarchy will
not have any subfolders. It can only have files. That
forms the base case

 This is the way out of recursion!



Problem: I1s a number in a list?

 Isb5in[7,5,6,8]?

* Is8in [5,[[7,4],9, I[3,41],[4,15,(2,18,1],4,1],5]1] ?

12/2/25 Compsci 101, Fall 2025 13



Revisit the APT Bagels
Recursively

filename: Bagels.py

def bagelCount (orders)

LU L

return number of bagels needed to fulfill
the orders in integer list parameter orders

LI L

1. orders = [1,3,5,7]

Returns: 16
No order 1s for more than a dozen, return the total of all orders.

orders = [11,22,33,44,55]

Returns: 175 since 11 + (22+1) +(33+2) + (44+3) + (55+4) = 175



Why use modules?

Module — Python file (.py file)
Can have several modules work together

Easier to organize code
Easier to reuse code
Easier to change code

* As long as the “what” is the same, the “how”
can change

« Ex: sorted(...), one function many sorting algorithms



Modules for Creating

“MadLibs” — Tag-a-Story
« User chooses template RGeS

« Computer fills everything in MAD&LIBS

Woarlds Sacatest Word Same

In lecture I saw a <color> <noun>
For lunch I had a <adjective> <food>
The day ended with seeing a <animal>
<verb> in <place>

r silly way to fillin the

12/2/25 Compsci 101, Fall 2025 28



From <noun> to story

In lecture I saw a
<color> <noun>

For lunch I had a
<adjective> <food>

The day ended with
seeing a <animal>
<verb> in <place>

This Photo by Unknown
Author is licensed under CC
BY-NC-ND

12/2/25

Compsci 101, Fall 2025

In lecture I saw a
magenta house

For lunch I had a
luminous hummus

The day ended with
seeing a cow sleep
in Mombasa

This Photo by Unknown Author is

license d under CC BY-NC-ND This Photo by Unknown Author is

license d under CC BY-SA

29


https://www.wired.it/lifestyle/design/2019/01/18/casa-mobile-vivere-ovunque/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.alimentazioneinequilibrio.com/le-scelte-alimentari-per-il-fabbisogno-di-ferro/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://en.wikivoyage.org/wiki/Qolora
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Demo

Run storyline.py

S
S

now Lecture template
now Haiku's

\Y

ake modifications



Let's create/modify a story

» Choose a template or make a new one
« We'll choose lecturetemplate.txt first

« Add a new category/replacement
 We'll choose number and list some choices

* Run the program and test our modifications
« Randomized, hard to test, but doable



Main Parts (3 modules) for tag-a-
story

 Put everything together, the template and words
« Storyline.py

» Loading and handling user choosing templates
« TemplateChooser.py

 Loading and picking the word for a given tag
* Replacements.py



Main Parts (3 modules) for tag-a-
story

 Put everything together, the template and words
« Storyline.py




Creating a story

« Main steps in Storyline.py
« Get template — use module TemplateChooser

* (5o through template
» GGet words for a tag — use module Replacements
* Replace tag with word

* Using modules
* Assume they work
* Only care whatthey do, not Aow (abstraction!)



Modules in Action:
makeStory() Is in Storyline.py

* How can we access TemplateChooser functions?
* Import and access as shown

def makeStory():

lines = TemplateChooser.getTemplateLines("templates”)
st = linesToStory(lines)
print(st)



Modules in Action:
inesToStory() Is in Storyline.py

« We call doWord() — does replacements for words

def linesToStory(lines):

story = ""
for line in lines:
st = "
for word in line.split():
st += doWord(word) + " "
story += st.strip() + "\n"
return story



Understanding Code/Module
doWord is in Storyline.py
* What does getReplacement do?
« How does getReplacement do it?

def doWord(word):

start = word. find("<")

if start !'= -1:
end = word. find(">")
tag = word[start+1l:end]

rep = Replacements.getReplacement(tag)
return rep
return word



Main Parts for tag-a-story

» Loading and handling user choosing templates
« TemplateChooser.py



Another module TemplateChooser.py

+ Get template
 TemplateChooser.getTemplateLines(DIR)

e \What:

* From the templates in the directory DIR (type: str)

* Return a list of strings, where each element is a line
from one of the templates in DIR

« Word for a tag
« Replacements.getReplacement(TAG)

* What:
« Return a random word that matches TAG (type: str)



Where is It called from?

 In module Storyline.py, function makestory

lines = TemplateChooser.getTemplateLines("templates")

* Where templates is a folder with three templates:

templates

= haiku.txt

= labtemplatetxt

= lecturetemplate.txt

12/2/25 Compsci 101, Fall 2025 45



TemplateChooser.py Steps

List all templates in the folder
Get user input that chooses one
Load that template

Return as list of strings



hese Steps in Code
getTemplatelLines in TemplateChooser.py

« Read directory of templates, convert to dictionary
* Let user choose one, open and return it

def getTemplateLines(dirname):

d = dirToDictionary(dirname)
lines = chooseOne(d)
return lines



Creating User Menu
dirToDictionary in TemplateChooser.py

« What does this function return? What type?

def dirToDictionary(dirname):
d = {}
index = 0

for one in pathlib.Path(dirname).iterdir():
d[index] = one

index += 1
return d



Folder in Pycharm

b 210408 C:\Users\Susan'P

? tagreplacements
h templates ]
= haiku.txt OUtDUt

= labtermnplate.txt
= lecturetemplate. txt

> C:\Users\Susan\AppData\Lc
0] haiku.txt

1 labtemplate.txt

2 lecturetemplate. txt

= Replacements.py

m g 1E I

choose one> 0@
the slimy bathtub
reminded them of Africa

chartreuse squeaky brown
12/2/25 Compsci 101, Fall 2025 51



pathlib Library

 Path:
“rodger/Pycharm/cps101/l1labll/temp/haiku.txt”

* The pathlib library is more recent/Python3
« Simpler, easier to use than functions from os

« Handles domain specifics!
« Doesn’'t matter if on Windows, Mac, etc.

« We worry about the what, it handles the Aow



pathlib Library cont.

Path:
“rodger/Pycharm/cps101/l1labll/temp/haiku.txt”

pathlib.Path (DIR) .iterdir ()

» Returns iterable of Path objects representing each
“thing” in the directory DIR

Path object’s .parts — tuple of strings, each element is a

piece of a filename’s path

 (‘rodger’, ‘Pycharm’, ‘cpsl101’,’labll’,
‘“temp’, ‘haiku.txt’)



Understanding the Unknown

chooseOne in TemplateChooser.py

* We will return to this, but analyze parts now
e What's familiar? What's not familiar ...

12/2/25

def chooseOne(d):

while True:

for key in sorted(d.keys()):

print("sd\t%s" % (key, d[keyl.parts[-1]))
print("————— ")
st = input(“choose one> ")
try:

val = int(st)

if @ <= val and val < len(d):

return reader(d[val])

except ValueError:

print("please enter a number")

Compsci 101, Fall 2025 54



Python exceptions

« What should you do if you prompt user for a
number and they enter "one"

 Jest to see if it has digits?

« Use exceptions with try: and except:
e See code In function chooseOne from

lemplateChooser.py

e X




Handling Exceptions

 What happens: x = int ("123abc")

46 st = input(“choose one> ")

47 try:

48 val = int(st)

49 1f @ <= val and val < len(d):
50 return reader(d[val])

51 except ValueError:

52 print("please enter a number™)

_——

12/2/25 Compsci 101, Fall 2025 56



APT WordPlay

APT: WordPlay

Problem Statement

Given a phrase of words, your task 1s to return a string of the unique
words from the phrase, with the words sorted using the following
rules.

1. First the unique words should be sorted in reverse order based
on their length (number of characters in the word)

2. For words the same length, they should be sorted in
alphabetical order based on only the first letter of each such
word

3. If there are ties after 1) and 2) criteria, then sort those words in
reverse alphabetical order based on the last letter of each such
word

4_If there are ties after 1), 2) and 3) criteria, then sort those words
in alphabetical order based on the sub-word between the first
and last letter of each such word.

12/2/25 Compsci 101, Fall 2025 59



APT WordPlay example

"mouse elephant moth zebra mole tiger moose moth mule”
Returns:

"elephant moose mouse tiger zebra moth mole mule”



Surprise



	Compsci 101�More Recursion and Modules
	X is for …
	The Power of Collaboration: �Ge Wang, Duke alum - Prof. at Stanford
	Announcements
	Interested in being a UTA?
	Assignment 8: �More samples from previous semesters
	APT Due
	A Story – One Eternity Later
	Haiku – From Previous Semester
	Haiku – From Previous Semester
	PFTD
	Review: Recursion Summary
	Problem: is a number in a list?
	WOTO 1 – Is it in the list?
	Possible solution
	Possible solution
	Possible solution
	Possible solution
	Possible Solution 2
	Possible Solution 2
	Possible Solution 2
	Possible Solution 2
	Possible Solution 2
	Possible Solution 2
	Revisit the APT Bagels�Recursively
	WOTO 2 - APT Bagels Recursively
	Why use modules?
	Modules for Creating
	From <noun> to story
	Demo
	Let's create/modify a story
	Main Parts (3 modules) for tag-a-story
	Main Parts (3 modules) for tag-a-story
	Creating a story
	Modules in Action: �makeStory() is in Storyline.py
	Modules in Action: �makeStory() is in Storyline.py
	Modules in Action: �makeStory() is in Storyline.py
	Modules in Action:�linesToStory() is in Storyline.py
	Modules in Action:�linesToStory() is in Storyline.py
	Understanding Code/Module�doWord is in Storyline.py
	Understanding Code/Module�doWord is in Storyline.py
	Understanding Code/Module�doWord is in Storyline.py
	Main Parts for tag-a-story
	Another module TemplateChooser.py
	Where is it called from?
	TemplateChooser.py Steps
	TemplateChooser.py Steps
	These Steps in Code�getTemplateLines in TemplateChooser.py
	Creating User Menu�dirToDictionary in TemplateChooser.py
	Creating User Menu�dirToDictionary in TemplateChooser.py
	Folder in Pycharm
	pathlib Library
	pathlib Library cont.
	Understanding the Unknown�chooseOne in TemplateChooser.py
	Python exceptions
	Handling Exceptions
	WOTO-3 Modules�
	WOTO-4 Modules�
	APT WordPlay
	APT WordPlay example
	APT WordPlay example
	APT WordPlay example
	APT WordPlay example
	APT WordPlay example
	APT WordPlay example
	APT WordPlay
	WOTO-5 APT WordPlay�
	WOTO-5 APT WordPlay�
	WordPlay
	WordPlay
	Enjoy a cookie!�You get one half of python logo�blue or yellow python
	Blank Page



