The Microsoft Software
Development Process

Scott Guthrie
Program; Vianager
Microseilt Corporation




“Natural” Phases of a
Software Project

Enthusiasm
Disillusionment
Panic

» Search for the Guilty

Punishment of the Inhocent

Praise and Honors for Non-Participants




Successful Projects

Not all software projects have to
progress this way!

» Those that are successful typically
share three outstanding characteristics:

People
Poise
Process




Today’s Agenda:

The Microsoft Development Process

» Origin of a MS Product

» The Product Team
Designing the Product

» Scheduling the Product

Implementing the Product
» Testing the Product
» Shipping the Product




Origin of a MS Product




How to Start a MS Product

Step 1: Identify market opportunity
» Customers, Competitors, Market Dynamics

Step 2: Determine viability of market entry
> Volume, price/cost margins, fixed costs, etc.

Step 3. Define vision statement
» Crisp enunciation of goals + issue ownership
> Explain strategic importance to company.

Step 4: Make a lot of noise!




The Product Team




The Product Team

Product Unit Manager

Dev Manager Group Program Manager @ Test Manager
Dev Lead

PM Lead Test Lead

PM Lead Test Lead




Designing the Product




Product Design

Thoroughly understand your customers
> How do they work? What do they really do?
> Visit, observe, listen & meticulously document

Thoroughly understand your competitors
> Evaluate their product strengths/weaknesses?

ldentify the strategic and tactical themes
and requirements that your features
should be thinking about

» Ensure that they are inline w/ vision statement




Feature Design

Drill down on feature specifics
> Focus on “what It does” vs. “how we build It

Questions to consider:

ow do we make a feature usable/simple?
ow do we make a feature visible?

ow do we Integrate other parts of a product?

Document scenarios, assumptions and
design proposal in a detailed spec

> Maintain tight feedback/evaluation loop




Implementation Issues

+ Developers own thinking through the
iImplementation iIssues of a feature

Questions to consider:

> How factorable is the feature?
Can the feature be delivered in stages?
What dependencies does it have?
What other features are dependent on it?
How many developer weeks are required?




Scheduling the Product




Scheduling/Planning

Schedules are done after the initial design
document Is ready for review

There is an inherit tension
schedule and the design c

> Each needs to be constant

between the
ocument

y re-evaluated and

re-calibrated against the ot

ner

Software scheduling in general Is
something of an Iimprecise science

> Concatenation of educated

guesses




Scheduling Questions

Is the ship date driven by features or a
hard schedule?

Can/should the product vision be staged
over multiple product releases?

IHow long has the product team worked
together? What size will it be?

» Big !'= Good. Keep in mind the N-1 rule...

> Will the team be working at a normal pace

or in “Death-March” mode?




Milestones

+ Milestones are used to logically segment
development into 9-12 week periods

> Early Milestones: Critical features & core code
> Later Milestones: Functionality that can be cut

% Milestones help maintain “ship-mode”
focus/atmosphere over long projects

+» Milestones encourage staging of products
> Enable review of progress (“Postmortems”)
» Facilitate corrections to master schedule




Rules for Picking Dates

Whatever date you publish will be the
earliest you possibly ship

» Date should be aggressive and realistic
Budget vacations and sick-leave

Plan for unexpected absences
> maternity/paternity leave

Pad schedule for stabilization and non-
deterministic progress delays




Implementing the Product




Establish Best Practices

Source code management
> Whatever happened to Microsoft Pascal?

Coding Standards
> What dialect of Hungarian do you use?

Code Reviews
» Every line of code should be peer reviewed

Localization Guidelines
> If you plan ahead it Is money In the bank...




First Implementation Steps

Define overall code-base structure:

> Specify directory hierarchy (headers, libs, etc.)
» Setup Makefile and build environment

> Come up with common Macros and Ifdefs

Define overall code-base architecture:
» Design core APIs, interfaces and structures




Builds

Products are compiled and released daily
> Forcing factor for code interoperation

> Provides steady progress measurement

> Enables daily test coverage of entire product

Builds can often take a long time...
> “Clean Build” of Windows NT takes 36 hours

It Is critical that delays are minimized
» Strict check-in procedures typically enforced




Check-In Procedures

» Step 1. Finish writing code
» Step 2. Code review with a team member
» Step 3: “Buddy build” on 2 clean systems

» Step 4. Send “check-in reguest” mail to the
Build Technician and daily “Build ~ Meister ”

» Step 5: If check-In Is approved, the build
technician will check-out appropriate files
Into the build tree




Build Problems

Build Breaks (compile/linking error)
> Basically means some bozo screwed up
> Punishment should fit the crime... :-)

Build Verification Test (BVT) Failures
> Automated test indicates functionality failure

Each build classified at release:
» “Self Host”

» “Self Test”

> “Self Toast”




Ensuring Product Quality




Software Testing

Testing Is critical to software development
> Must be analytical, methodical and thorough

est plan documents must be developed
before code Is even written

» Automation Is key to stabilizing a product
» Comprehensive code coverage
» Enables quick verification of product health
> Enables easy reproducibility of errors




Bug Triage

Discovered bugs are logged to a database

Senior team members meet at least once a
day to review/rank active bugs

Bugs assigned severity, priority, owner
> Must-fix bugs marked as “showstoppers”

“Scrubbing” the bug; list
> Process of upgrading bugs to future releases
> Done when a bug Is just too dangerous to fix




Getting It Out The Door




The End Game

- Alpha Release
Betal Release
Code Complete

Beta2 Release

Zero Bug-Bounce

Release Candidate (RC)
Release to Manufacturing (RTM)




End Game Responsibilities

\/
0‘0

Program Management: Ensure that all
scenarios documented in design spec
are fully operational.

Test: Ensure that all features
implemented are at O showstoppers.

Development: Resolve critical bugs as
they appear. Ensure that the build
remains stable




The End

» Once the build hits zero showstoppers, it

will be “escrowed” while the team spends
several days verifying that no new nasty
bugs are lurking.

If no new showstopper bugs are identified,
a “master” or “golden” CD will be burned
with the product bits.

» The CD will then be released to a

manufacturing factory where shrink-
wrapped products will be produced.




cAepo) ° 8 0} Juem noA op aiaym




