Distributed Memory and Cache Consistency

(some dlides courtesy of Alvin Lebeck)

DU'KEAH'FI:MTMM

Software DSM 101

Software-based distributed shared memory (DSM) provides
an illusion of shared memory on a cluster.

» remote-fork the same program on each node

» data resides in common virtual address space
library/kernel collude to make the shared VAS appear consistent

e The Great War: shared memory vs. message passing
for the full story, take Alvin Lebeck’s parallel architecture class

Page Based DSM (Shared Virtual Memory)

Virtual address space is shared

Virtual Address Space

Physical Physical
Address Address

DU'KEAH'FI:MTMM

Inside Page-Based DSM (SVM)

The page-based approach uses a write-ownership token
protocol on virtual memory pages.

» Kai Li [lvy, 1986], Paul Leach [Apollo, 1982]

» System maintains per-node per-page access mode.
{'shared, exclusive, no-access}
determines local accesses allowed
modes enforced with VM page protection

mode load store
shared yes no
exclusive yes yes
no-access no no

DU'KEAH'FI:MTMM

The SVM Protocol

» Any node with access has ttatest copy of the page.

On any transition from no-access, fetch copy of page from a
current holder.

* A node withexclusive access holds thanly copy.
At most one node may hold a page in exclusive mode.

On transition into exclusive, invalidate all remote copies and set
their mode to no-access.

» Multiple nodes may hold a pageshared mode.
Permits concurrent reads: every holder has the same data.

On transition into shar ed mode, invalidate the exclusive remote
copy (if any), and set its mode to shared as well.

DU'KEAH'FI:MTMM

Paged DSM/SVM Example

P1 read virtual address x
» Page fault
Allocate physical frame for page(x)

* Request page(x) from home(x)
» Set readable page(x)
* Resume
P1 write virtual address x
» Protection fault
* Request exclusive ownership of page(x)
» Set writeable page(x)
* Resume

DU'KEAH'FI:MTMM

The Sequential Consistency Memory Model

sequential
processors
issue
memory ops
in program
order

switch randomly set

after each memory op
Easily implemented with shared bus. ensures some serial

order among all operations

Memory

DU'KEAH'FI:MTMM

Motivation for Weaker Orderings

1. Sequential consistency allows shared-memory parallel
computations to execute correctly.
2. Sequential consistency is slow for paged DSM systems.
Processors cannot observe memory bus traffic in other nodes.
Even if they could, no shared bus to serialize accesses.
Protection granularity (pages) istoo coarse.
3. Basic problem: the need for exclusive access to cache lines
(pages) leads to false sharing.

Causes a “ping-pong effect” if multiple writers to the same pagé.

4. Solution: allow multiple writersto a page if their writes are
“nonconflicting”.

DU'KEAH'FI:MTMM

Weak Ordering

Classify memory operations as data or synchronization

Can reorder data operations between synchronization
operations

Forces consistent view at all synchronization points

Visible synchronization operation, can flush write buffer and
obtain ACK S for all previous memory operations

Cannot let synch operation complete until previous operations
complete (e.g., ACK all invalidations)

DU'KEAH'FI:MTMM

Weak Ordering Example
Read / Write
. A B
Read/Write x=y=0)
if (y>x) loop {
| Synch | panic(“ouch”); X=X+ 1
y=y+1
}
A B
acquire(); loop() {
| Synch | if (y > x) acquire();
l panic(“ouch™); X=X+1;
Read / Write release(); y=y+1
release();
Read/Write }

DU'KEAH'FI:MTMM

Multiple Writer Protocol

X & y on same page P1 writes x, P2 writesy

Don’t want delays associated with constraint of exclusive
access

Allow each processor to modify its local copy of a page
between synchronization points

Make things consistent at synchronization point

DU'KEAH'FI:MTMM

Treadmarks 101

Goal: implement the “laziest” software DSM system.

» Eliminate false sharing bywultiple-writer protocol.
Capture page updates at a fine grain by “diffing”.

Propagate just the modified bytes (deltas).
Allows merging of concurrent nonconflicting updates.

» Propagate updates only when needed, i.e., when program
uses shared locks to force consistency.

Assume program is fully synchronized.

 lazy release consistency (LRC)

A need not be aware of B's updates except when needed to
preserve potential causality...

...with respect to shared synchronization accesses.

DU'KEAH'FI:MTMM

Lazy Release Consistency

Piggyback write notices with acquire operations.
e guarantee updates are visible on acquire, not release
lazier than Munin

* implementation propagates invalidations rather than updat

PO acq w(x) rel
lock
grant updates to x
+ Inv.
P1 ry) acq w(X rel
lock
X & Y on same page grant updates to x
+inv.
P2 v acq) rel

DU'KEAH'FI:MTMM

Ordering of Eventsin Treadmarks

Acquire(x) Release(x)

A Py o
\ Release(x)
B Py Py

Release(x) Acquire(x)

v

v

LRC isnot linearizable: thereis no fixed globa ordering
of events.

Thereisa serializable partial order on synchronization C
events and the intervals they define. Acquire(x)

DU'KEAH'FI:MTMM

Vector Timestamps in Treadmarks

To maintain the partial order on intervals, each node
maintains a current vector timestamp (CVT).

* Intervals on each node are numbered 0, 1, 2...

» CVT is a vector of lengtlN, the number of nodes.

» CVTIi] is number of the lagireceding interval on node.
Vector timestamps are updated on lock acquire.

» CVTis passed with lock acquire request...

» compared with the holderGVT...

* pairwise maximunCVT is returned with the lock.

DU'KEAH'FI:MTMM

L RC Protocaol

Acquire(x) Release(x)

A —— .
generate write notices
write notices
receive write for CVT, - CVTg
notices one entry
CVTy for each interval:
i, CVT;, page list} Release(x)
B) ef ith
. reference to page witl
Acquire(x) pending write notice write
notices
Cache write notices by {node, interval, page}; cache
local deltas with associated write notice. C
Acquire(x)

DU'KEAH'FI:MTMM

Write Notices

LRC requires that each node be aware of any updatesto a
shared page made during a preceding interval.

» Updates are tracked as setsvoifte notices.
A write notice is arecord that a page was dirtied during an interval.
» Write notices propagate with locks.

When relinquishing alock token, the holder returns all write
notices for intervals “added” to the calle€¥/T.

» Use page protections to collect and process write notices.
“First” store to each page is trapped...write notice created.
Pages for received write notices are invalidated on acquire.

DU'KEAH'FI:MTMM

Capturing Updates (Write Collection)

To permit multiple writers to a page, updates are captured as
deltas, made by “diffing” the page.

 Delta records include only the bytes modified during the
interval(s) in question.

» On “first” write, make a copy of the pagetgen).
Mark the page dirty and write-enabl e the page.
Send write notices for al dirty pages.

» To create deltas, diff the page with its twin.
Record deltas, mark page clean, and disable writes.

» Cache write notices bjnode, interval, page}; cache local
deltas with associated write notice.

DU'KEAH'FI:MTMM

Lazy Interval/Diff Creation

1. Don’t create intervals on every acquire/release; do it only if
there’s communication with another node.
2. Delay generation of deltas (diff) until somebody asks.

» When passing a lock token, send write notices for modified
pages, but leave them write-enabled.

« Diff and mark clean if somebody asks for deltas.

Deltas may include updates from later intervals (e.g., under the
scope of other locks).

3. Must also generate deltas if awrite notice arrives.
Must distinguish local updates from updates made by peers.

4. Periodic garbage collection is needed.

DU'KEAH'FI:MTMM

Treadmarks Page State Transitions

Nno-access

write notice received

write notice
diff and discard twin

received

twin and
cache write notice

deltarequest received
diff and discard twin

read-only
(clean)

write-enabled
(dirty)

store
twin and cache write notice

DU'KEAH'FI:MTMM

Ordering Conflicting Updates
Write notices must include origin node and CVT.
Compare CVTsto order the updates.
0 ‘ Aly) 1 R(y) 2 R
A AL j=1 i
B A(X) B2:j=0,i=0 R(y) {BZ Al} R
Aly) 2 RO
A(x) R(x)
C o =
B2(j=0,i=0)

Variablesi and j) >
aeonthesame ©1 Q_zol) A_1_(j_=01) D
page, under control 1==0) (=0 Aly) AX)
of locksX and Y. D2(i==2]=="2) B2<Al B2<Cl

DU'KEAH'FI:MTMM

Ordering Conflicting Updates (2)

D receives B’s write notice for the page from A.

D receives write notices for the same page from A and C, covering thei
updates to the page.

If D then touches the page, it must fetch updates (deltas) from three
different nodes (A, B, C), since it has a write notice from each of the

The deltas sent by A and B will both include values for j.
The deltas sent by B and C will both include values for i.
D must decide whose update to j happened first: B's or A’s.
D must decide whose update to i happened first: B's or C's.

In other words, D must decide which order to apply the three deltas to i
copy of the page.

D must apply these updates in vector timestamp order.

Every write notice (and delta) must be tagged with a vector timestamp.

DU'KEAH'FI:MTMM

Page Based DSM: Pros and Cons

Good things
Low Cost, can use commodity parts

Flexible Protocol (Software)
Allocate/replicate in main memory
Bad Things

Access Control Granularity

» False sharing
Complex protocolsto deal with false sharing

Page fault overhead

DU'KEAH'FI:MTMM

Another Peak at File Cache Consistency

Today’s software DSMs can efficiently keep a shared data
space consistent under certain assumptions.

» peer-peer: clients are mutually trusting

» data may become unavailable if client fails

+ fine-grained synchronization visible to cache manager
Distributed file caches operate with different assumptions:

« clients trust only the server (unless they share files)

except cooperative caching (e.g., XxFS or GMS)
» must be resilient to client failures
* no fine-grained synchronization

DU'KEAH'FI:MTMM

File Cache Example: NO-NFS L eases

In NQ-NFS, aclient obtains alease on the file that permits
the client’s desired read/write activity.

“A lease is a ticket permitting an activity; the lease is valid until
some expiration time.”

» A read-caching lease allows the client to cache clean data.
Guar antee: no other client is modifying thefile.

» A write-caching lease allows the client to buffer modified
data for the file.
Guar antee: no other client has the file cached.

L eases may be revoked by the server if another client requests
a conflicting operation (server sends eviction notice).

D LS Hez sronirure

Using NO-NFS Leases

1. When aclient beginsto read/write afile, the server issues
an appropriate lease to the client.

read leases may include multiple clients
write leases are issued exclusively to one client
2. Before the lease expires, the client must renew the lease.
3. If aclient isevicted from awrite lease, it must writeback.
server grants lease extensions as long as the client writes
client sends “vacated” notice when all writes complete
4. 1f aclient fails, the server reclaims the lease.

5. If the server fails and recovers, it must wait for one lease
period before issuing new leases.

D LS Hez sronirure

The Distributed Lock Lab

The lock implementation is similar to DSM systems, with
reliability features similar to distributed file caches.

* lock token caching with callbacks

lock tokens passed through server, not peer-peer as DSM
» synchronizes multiple threads on same client
* state bit for pending callback on client

e server must reissue callback each lease interval (or use R
timeouts to detect a failed client)

« client must renew token each lease interval

u

DU'KEAH'FI:MTMM

14

