
1

Distributed Memory and Cache Consistency

(some slides courtesy of Alvin Lebeck)

Software DSM 101

Software-based distributed shared memory (DSM) provides
an illusion of shared memory on a cluster.

• remote-fork the same program on each node

• data resides in common virtual address space

library/kernel collude to make the shared VAS appear consistent

• The Great War: shared memory vs. message passing

for the full story, take Alvin Lebeck’s parallel architecture class

switched interconnect



2

Page Based DSM (Shared Virtual Memory)

Virtual address space is shared

DRAM DRAM

Virtual Address Space

Physical
Address

Physical
Address

Inside Page-Based DSM (SVM)

The page-based approach uses a write-ownership token
protocol on virtual memory pages.

• Kai Li [Ivy, 1986], Paul Leach [Apollo, 1982]

• System maintains per-node per-page access mode.

{shared, exclusive, no-access}

determines local accesses allowed

modes enforced with VM page protection

mode load store
shared yes no
exclusive yes yes
no-access no no



3

The SVM Protocol

• Any node with access has the latest copy of the page.

On any transition from no-access, fetch copy of page from a
current holder.

• A node with exclusive access holds the only copy.

At most one node may hold a page in exclusive mode.

On transition into exclusive, invalidate all remote copies and set
their mode to no-access.

• Multiple nodes may hold a page in shared mode.

Permits concurrent reads: every holder has the same data.

On transition into shared mode, invalidate the exclusive remote
copy (if any), and set its mode to shared as well.

Paged DSM/SVM Example

P1 read virtual address x

• Page fault

• Allocate physical frame for page(x)

• Request page(x) from home(x)

• Set readable page(x)

• Resume

P1 write virtual address x

• Protection fault

• Request exclusive ownership of page(x)

• Set writeable page(x)

• Resume



4

The Sequential Consistency Memory Model

P1 P2 P3

switch randomly set
after each memory op
ensures some serial
order among all operations

sequential
processors
issue
memory ops
in program
order

Memory

Easily implemented with shared bus.

Motivation for Weaker Orderings

1. Sequential consistency allows shared-memory parallel
computations to execute correctly.

2. Sequential consistency is slow for paged DSM systems.
Processors cannot observe memory bus traffic in other nodes.

Even if they could, no shared bus to serialize accesses.

Protection granularity (pages) is too coarse.

3. Basic problem: the need for exclusive access to cache lines
(pages) leads to false sharing.

Causes a “ping-pong effect” if multiple writers to the same page.

4. Solution: allow multiple writers to a page if their writes are
“nonconflicting”.



5

Weak Ordering

Classify memory operations as data or synchronization

Can reorder data operations between synchronization
operations

Forces consistent view at all synchronization points

Visible synchronization operation, can flush write buffer and
obtain ACKS for all previous memory operations

Cannot let synch operation complete until previous operations
complete (e.g., ACK all invalidations)

Weak Ordering Example
Read / Write

…
Read/Write

Read / Write
…

Read/Write

Read / Write
…

Read/Write

Synch

Synch

A B
(x = y = 0;)

if (y > x) loop {
    panic(“ouch”);     x = x + 1;

    y = y + 1;
}

A
acquire();
if (y > x)
    panic(“ouch”);
release();

B
loop() {
    acquire();
    x = x + 1;
    y = y + 1;
    release();
}



6

Multiple Writer Protocol

x & y on same page P1 writes x, P2 writes y

Don’t want delays associated with constraint of exclusive
access

Allow each processor to modify its local copy of a page
between synchronization points

Make things consistent at synchronization point

Treadmarks 101

Goal: implement the “laziest” software DSM system.

• Eliminate false sharing by multiple-writer protocol.

Capture page updates at a fine grain by “diffing”.

Propagate just the modified bytes (deltas).

Allows merging of concurrent nonconflicting updates.

• Propagate updates only when needed, i.e., when program
uses shared locks to force consistency.

Assume program is fully synchronized.

• lazy release consistency (LRC)

A need not be aware of B’s updates except when needed to
preserve potential causality...

...with respect to shared synchronization accesses.



7

Lazy Release Consistency

Piggyback write notices with acquire operations.

• guarantee updates are visible on acquire, not release

lazier than Munin

• implementation propagates invalidations rather than updates

P0

P1

P2

acq    w(x)    rel

r(y)

r(y)

acq

lock
grant
+ inv.

w(x) rel

acq

lock
grant
+ inv.

r(x) rel

updates to x

updates to xX & Y on same page

Ordering of Events in Treadmarks

A

B

C

LRC is not linearizable: there is no fixed global ordering
of events.

There is a serializable partial order on synchronization
events and the intervals they define.

Acquire(x) Release(x)

Release(x) Acquire(x)

Release(x)

Acquire(x)



8

Vector Timestamps in Treadmarks

To maintain the partial order on intervals, each node
maintains a current vector timestamp (CVT).

• Intervals on each node are numbered 0, 1, 2...

• CVT is a vector of length N, the number of nodes.

• CVT[i] is number of the last preceding interval on node i.

Vector timestamps are updated on lock acquire.

• CVT is passed with lock acquire request...

• compared with the holder’s CVT...

• pairwise maximum CVT is returned with the lock.

LRC Protocol

A

B

C

Acquire(x) Release(x)

Acquire(x)

Release(x)

Acquire(x)

receive write
notices

generate
write notices

CVTB

write notices
for CVTA - CVTB

one entry
for each interval:

{i, CVTi, page list}

reference to page with
pending write notice

delta
request

delta
list

write
notices

Cache write notices by {node, interval, page}; cache
local deltas with associated write notice.



9

Write Notices

LRC requires that each node be aware of any updates to a
shared page made during a preceding interval.

• Updates are tracked as sets of write notices.

A write notice is a record that a page was dirtied during an interval.

• Write notices propagate with locks.

When relinquishing a lock token, the holder returns all write
notices for intervals “added” to the caller’s CVT.

• Use page protections to collect and process write notices.

“First” store to each page is trapped...write notice created.

Pages for received write notices are invalidated on acquire.

Capturing Updates (Write Collection)

To permit multiple writers to a page, updates are captured as
deltas, made by “diffing” the page.

• Delta records include only the bytes modified during the
interval(s) in question.

• On “first” write, make a copy of the page (a twin).

Mark the page dirty and write-enable the page.

Send write notices for all dirty pages.

• To create deltas, diff the page with its twin.

Record deltas, mark page clean, and disable writes.

• Cache write notices by {node, interval, page}; cache local
deltas with associated write notice.



10

Lazy Interval/Diff Creation

1. Don’t create intervals on every acquire/release; do it only if
there’s communication with another node.

2. Delay generation of deltas (diff) until somebody asks.

• When passing a lock token, send write notices for modified
pages, but leave them write-enabled.

• Diff and mark clean if somebody asks for deltas.

Deltas may include updates from later intervals (e.g., under the
scope of other locks).

3. Must also generate deltas if a write notice arrives.
Must distinguish local updates from updates made by peers.

4. Periodic garbage collection is needed.

Treadmarks Page State Transitions

write notice
received load

 fetch deltas
store

 twin and
cache write notice

delta request received
diff and discard twin

store
 twin and cache write notice

write notice received
diff and discard twin

no-access

read-only
(clean)

write-enabled
(dirty)



11

Ordering Conflicting Updates

B

C

D

Write notices must include origin node and CVT.
Compare CVTs to order the updates.

A(x)

R(x)

A(x) R(x)

A(x)

A
A(y) R(y)

R(y)

A(y)

B2 (j = 0, i = 0)

C1 (i = 1) A1 (j = 1)

D2 (i == ?, j == ?)

0

2

1

0

B2: j=0, i=0

A1: j=1

0

3

2Variables i and j
are on the same
page, under control
of locks X and Y.

C1: i =1 

A(y) 4

1 2

(j == 0) (i == 0)

{B2, A1}

{C1}

B2 < A1, B2 < C1

Ordering Conflicting Updates (2)
D receives B’s write notice for the page from A.

D receives write notices for the same page from A and C, covering their
updates to the page.

If D then touches the page, it must fetch updates (deltas) from three
different nodes (A, B, C), since it has a write notice from each of them.

The deltas sent by A and B will both include values for j.

The deltas sent by B and C will both include values for i.

D must decide whose update to j happened first: B’s or A’s.

D must decide whose update to i happened first: B’s or C’s.

In other words, D must decide which order to apply the three deltas to its
copy of the page.

D must apply these updates in vector timestamp order.

Every write notice (and delta) must be tagged with a vector timestamp.



12

Page Based DSM: Pros and Cons

Good things

Low Cost, can use commodity parts

Flexible Protocol (Software)

Allocate/replicate in main memory

Bad Things

Access Control Granularity

• False sharing

Complex protocols to deal with false sharing

Page fault overhead

Another Peak at File Cache Consistency

Today’s software DSMs can efficiently keep a shared data
space consistent under certain assumptions.

• peer-peer: clients are mutually trusting

• data may become unavailable if client fails

• fine-grained synchronization visible to cache manager

Distributed file caches operate with different assumptions:

• clients trust only the server (unless they share files)

except cooperative caching (e.g., xFS or GMS)

• must be resilient to client failures

• no fine-grained synchronization



13

File Cache Example: NQ-NFS Leases

In NQ-NFS, a client obtains a lease on the file that permits
the client’s desired read/write activity.

“A lease is a ticket permitting an activity; the lease is valid until
some expiration time.”

• A read-caching lease allows the client to cache clean data.

Guarantee: no other client is modifying the file.

• A write-caching lease allows the client to buffer modified
data for the file.

Guarantee: no other client has the file cached.

Leases may be revoked by the server if another client requests
a conflicting operation (server sends eviction notice).

Using NQ-NFS Leases

1. When a client begins to read/write a file, the server issues
an appropriate lease to the client.

read leases may include multiple clients

write leases are issued exclusively to one client

2. Before the lease expires, the client must renew the lease.

3. If a client is evicted from a write lease, it must writeback.
server grants lease extensions as long as the client writes

client sends “vacated” notice when all writes complete

4. If a client fails, the server reclaims the lease.

5. If the server fails and recovers, it must wait for one lease
period before issuing new leases.



14

The Distributed Lock Lab

The lock implementation is similar to DSM systems, with
reliability features similar to distributed file caches.

• lock token caching with callbacks

lock tokens passed through server, not peer-peer as DSM

• synchronizes multiple threads on same client

• state bit for pending callback on client

• server must reissue callback each lease interval (or use RMI
timeouts to detect a failed client)

• client must renew token each lease interval


