
1

Protection and the Kernel:Protection and the Kernel:
Mode, Space, and ContextMode, Space, and Context

Challenges for a “Classical” Protected OSChallenges for a “Classical” Protected OS

What are the mechanisms that operating systems use to:

• safely allocate physical resources (memory, storage, CPU) to
multiple programs?

• securely track and control resource usage?

• isolate programs from the details of running on a shared machine?

• protect one executing program’s storage from another?

• prevent rogue programs from taking over the machine or impairing
the functions of the operating system?

• allow mutually distrusting programs to interact safely?

• recover cleanly from user program failures



2

Processes and the KernelProcesses and the Kernel

data data
processes
in private

virtual
address
spaces

system call traps
...and upcalls (e.g.,

signals)

shared kernel
code and data

in shared
address space

Threads or
processes
enter the
kernel for
services.

The kernel sets
up process
execution
contexts to

“virtualize” the
machine.

CPU and devices force entry to the kernel to handle exceptional events.

A First Look at Some Key ConceptsA First Look at Some Key Concepts

kernel
The software component that controls the hardware directly, and

implements the core privileged OS functions.

Modern hardware has features that allow the OS kernel to protect itself
from untrusted user code.

thread
An executing stream of instructions and its CPU register context.

virtual address space
An execution context for thread(s) that provides an independent name

space for addressing some or all of physical memory.

process
An execution of a program, consisting of a virtual address space, one or

more threads, and some OS kernel state.



3

The KernelThe Kernel

• Today, all “real” operating systems have protected kernels.

The kernel resides in a well-known file: the “machine”
automatically loads it into memory (boots) on power-on/reset.

Our “kernel” is called theexecutivein some systems (e.g., NT).

• The kernel is (mostly) a library of service procedures shared
by all user programs,but the kernel isprotected:

User code cannot access internal kernel data structures directly,
and it can invoke the the kernel only at well-defined entry
points (system calls).

• Kernel code is like user code, but the kernel isprivileged:

The kernel has direct access to all hardware functions, and
defines the machine entry points forinterruptsandexceptions.

ThreadsThreadsvsvs. Processes. Processes
1. Theprocessis akernel abstractionfor an

independent executing program.
includes at least one “thread of control”

also includes a private address space (VAS)
- VAS requires OS kernel support

often the unit of resource ownership in kernel
- e.g., memory, open files, CPU usage

2. Threads may share an address space.
Threads have “context” just like vanilla processes.

- thread context switchvs. process context switch

Every thread must exist within some process VAS.

Processes may be “multithreaded” with thread
primitives supported by a library or the kernel.

data

data



4

Introduction to Virtual AddressingIntroduction to Virtual Addressing

text

data

BSS

user stack

args/env
kernel

data

virtual
memory

(big)

physical
memory
(small)

virtual-to-physical
translations

User processes
address memory
throughvirtual

addresses.

The kernel and the
machine collude to

translate virtual
addresses to

physical addresses.

The kernel controls
the virtual-physical
translations in effect

for each space.

The machine does not
allow a user process
to access memory
unless the kernel
“says it’s OK”.

The specific mechanisms for
implementing virtual address translation
aremachine-dependent: we will cover

them later.

The Virtual Address SpaceThe Virtual Address Space

A typical process VAS space includes:

• user regions in the lower half

V->P mappings specific to each process

accessible to user or kernel code

• kernel regions in upper half

shared by all processes

accessible only to kernel code

• Nachos:process virtual address space
includes only user portions.

mappings change on each process switch

text

data

BSS

user stack

args/env

0

data

kernel text
and

kernel data

2n-1

2n-1

0x0

0xffffffff

A VAS for a private address space system (e.g.,
Unix) executing on a typical 32-bit architecture.

sbrk()

jsr



5

Example: Process and Kernel Address SpacesExample: Process and Kernel Address Spaces

data

0

2n-1-1

2n-1

2n-1

data

0x7FFFFFFF

0x80000000

0xFFFFFFFF

0x0

n-bit virtual
address
space

32-bit virtual
address
space

Kernel ModeKernel Mode
0

2n

code library

OS data

OS code

Program A

dataData

Program B

Data

registers

CPU

R0

Rn

PC

main memory

x

x

mode

CPUmode(a field
in some status

register) indicates
whether the CPU is

running in auser
program or in the
protectedkernel.

Some instructions or
data accesses are

only legal when the
CPU is executing in

kernel mode.

physical
address
space



6

Protecting Entry to the KernelProtecting Entry to the Kernel

Protected eventsandkernel modeare the architectural
foundations of kernel-based OS (Unix, NT, etc).

• Themachinedefines a small set of exceptional event types.

• Themachinedefines what conditions raise each event.

• The kernel installs handlers for each event at boot time.

e.g., a table in kernel memory read by the machine

The machine transitions to kernel mode
only on an exceptional event.

The kernel defines the event handlers.

Therefore thekernelchooses what code
will execute in kernel mode, and when.

user

kernel

interrupt or
exceptiontrap/return

Thread/ProcessThread/ProcessStates andStates andTransitionsTransitions

running
(user)

running
(kernel)

readyblocked

Run

Wakeup

interrupt,
exception

Sleep

Yield

trap/return



7

CPU Events: InterruptsCPU Events: Interruptsand Exceptionsand Exceptions

• an “unnatural” change in control flow

• an interrupt is caused by an external event

device requests attention, timer expires, etc.

• anexceptionis caused by an executing instruction

CPU requires software intervention to handle afault or trap.

• the kernel defines a handler routine for each event type

unplanned deliberate
sync fault syscall trap
async interrupt AST

control flow event handler
(e.g., ISR)

exception.cc

Handling Events, Part I: The Big PictureHandling Events, Part I: The Big Picture

1. To deliver the event, the machine saves relevant state in
temporary storage, then transfers control to the kernel.

Set kernel mode and set PC :=handler.

2. Kernel handler examines registers and saved machine state.
What happened? What was the machine doing when it happened?

How should the kernel respond?

3. Kernel responds to the condition.
Execute kernel service, device control code, fault handlers, etc.,

modify machine state as needed.

4. Kernel restores saved context (registers) and resumes activity.

5. Specific events and mechanisms for saving, examining, or
restoring context aremachine-dependent.



8

Mode, Space, and ContextMode, Space, and Context

At any time, the state of each processor is defined by:

1. mode: given by the mode bit
Is the CPU executing in the protected kernel or a user program?

2. space: defined by V->P translations currently in effect
What address space is the CPU running in? Once the system is

booted, it always runs in some virtual address space.

3. context: given by register state and execution stream
Is the CPU executing a thread/process, or an interrupt handler?

Where is the stack?

These are important because the mode/space/context
determines the meaning and validity of key operations.

Common Mode/Space/Context CombinationsCommon Mode/Space/Context Combinations

1. User codeexecutes in a process/thread context in a process
address space, in user mode.

Can address only user code/data defined for the process, with no
access to privileged instructions.

2. System servicesexecute in a process/thread context in a
process address space, in kernel mode.

Can address kernel memory or user process code/data, with
access to protected operations: may sleep in the kernel.

3. Interruptsexecute in a system interrupt context in the
address space of the interrupted process, in kernel mode.

Can access kernel memory and use protected operations.

no sleeping!



9

user
process

kernel
process

kernel
interrupt

text

data

BSS

user stack

args/env

0

data

kernel text
and

kernel data

2n-1

2n-1

0x0

0xffffffff

Summary: Mode, Space, and ContextSummary: Mode, Space, and Context

Process context System context

User mode Application N/A

Kernel mode Syscall or
exception

Interrupt or
System task


