D U-KE Areletiecire

Protection and the Kernel:
Mode, Space, and Context

What are the mechanisms that operating systems use to:

D U-KE Areletiecire

Challenges for a “Classical” Protected OS

safely allocate physical resources (memory, storage, CPU) to
multiple programs?

securely track and control resource usage?
isolate programs from the details of running on a shared machine?

~

protect one executing program'’s storage from another?

prevent rogue programs from taking over the machine or impairing
the functions of the operating system?

allow mutually distrusting programs to interact safely?
recover cleanly from user program failures

Processes and the Kernel

processes
in private
virtual
address _;— _;— _,—
spaces

...and upcalls (e.g.,
signals)

‘ system call traps ‘

shared kernel

code and data
in shared

address space

Syafenis & Archiiecinre

The kernel sets
up process
execution
contexts to

“virtualize” the
machine.

Threads or
processes
enter the
kernel for
services.

CPU and devices force entry to the kernel to handle exceptional events.

A First Look at Some Key Concepts

kernel
implements the core privileged OS functions.
from untrusted user code.

thread

virtual address space

space for addressing some or all of physical memory.

process

more threads, and some OS kernel state.

Syafenis & Archiiecinre

The software component that controls the hardware directly, and

Modern hardware has features that allow the OS kernel to protect itself

An executing stream of instructions and its CPU register context.

An execution context for thread(s) that provides an independent name

An execution of a program, consisting of a virtual address space, one or

The Kernel

» Today, all “real” operating systems have protected kernels.

The kernel resides in a well-known file: the “machine”
automatically loads it into memorypot9 on power-on/reset.

Our “kernel” is called theexecutivén some systems (e.g., NT).

» The kernel is (mostly) a library of service procedures shared
by all user programdyut the kernel iprotected

User code cannot access internal kernel data structures directly,
and it can invoke the the kernel only at well-defined entry
points Eystem calls

» Kernel code is like user code, but the kerngbivileged

The kernel has direct access to all hardware functions, and
defines the machine entry points faterruptsandexceptions

D U-KE Areletiecire

Threadsss. Processes

1. Theprocesds akernel abstractiorior an
independent executing program.

includes at least one “thread of control”

also includes a private address space (VAS)
- VAS requires OS kernel support

often the unit of resource ownership in kernel
- e.g., memory, open files, CPU usage
2. Threads may share an address space.
Threads have “context” just like vanilla processe
- thread context switckis. process context switch
Every thread must exist within some process V

Processes may be “multithreaded” with thread
primitives supported by a library or the kernel.

D U-KE Areletiecire

Introduction to Virtual Addressing

virtual physical
User processes memory memory The kernel controls
address memory (big) (small) the virtual-physical
throughvirtual translations in effect
addresses

The kernel and the
machine collude to

for each space.

The machine does not

translate virtual — allow a user process
addresses to to allccesE mkemorly
physical addresses. u“n esslt, e e,r,ne
says it's OK”.

virtual-to-physical

translations The specific mechanisms for

implementing virtual address translation
aremachine-dependentve will cover

D u‘KE‘aln'ﬁm-mm) them later.

21

kernel text
and
kernel datg

The Virtual Address Space

0x0

A typical process VAS space includes:
o user regions in the lower half
jsr V->P mappings specific to each process
accessible to user or kernel code
» kernel regions in upper half
shared by all processes
accessible only to kernel code

» Nachos:process virtual address space
includes only user portions.

mappings change on each process switch

Oxffffff

A VAS for a private address space system (e.g.,
Unix) executing on a typical 32-bit architecture.

D U-KE Areletiecire

\°24

Example: Process and Kernel Address Spacej
0 0x0
n-bit virtual 32-bit virtual
address address
space == - — space
21 ‘ ‘ OX7FFFFFFF
1 ‘ 0x80000000
21 OXFFFFFFFF

| Syafimi & Architecture

Kernel Mode

0

OS code

CPU

CPUmode(a field
in some status
register) indicates
whether the CPU is
running in auser
program or in the mode———
protecteckernel

physical
address
space

RO,

Some instructions or an
data accesses are
only legal when the
CPU is executing in
kernel mode.
P -
main memory

X

PC

registers

| Syafimi & Architecture

Protecting Entry to the Kernel

Protected eventandkernel modeare the architectural
foundations of kernel-based OS (Unix, NT, etc).

» Themachinedefines a small set of exceptional event types.

» Themachinedefines what conditions raise each event.

» The kernel installs handlers for each event at boot time.
e.g., a table in kernel memory read by the machine

The machine transitions to kernel modg
only on an exceptional event.
interrupt or

The kernel defines the event handlers. trap/return exception

Therefore thékernelchooses what code|
will execute in kernel mode, and when

Syafenis & Archiiecinre

Thread/ProcesStates and ransitions

interrupt, trap/return

Syafenis & Archiiecinre

CPU Events: Interruptand Exceptions

* an “unnatural” change in control flow
* aninterruptis caused by an external event
device requests attention, timer expires, etc.

» anexceptioris caused by an executing instruction
CPU requires software intervention to handiialt or trap.

 the kernel defines a handler routine for each event type

control flow event handler

(e.g., ISR)
unplanned| deliberate
sync |fault syscall trap </
async |interrupt |AST '

exception.cc

D U-KE Areletiecire

Handling Events, Part |: The Biqg Picture

1. To deliver the event, the machine saves relevant state in
temporary storage, then transfers control to the kernel.

Set kernel mode and set PChandler.

2. Kernel handler examines registers and saved machine state.

What happened? What was the machine doing when it happened?
How should the kernel respond?

3. Kernel responds to the condition.

Execute kernel service, device control code, fault handlers, etc.,
modify machine state as needed.

4. Kernel restores saved context (registers) and resumes activity.

5. Specific events and mechanisms for saving, examining, or
restoring context armachine-dependent

D U-KE Areletiecire

Mode, Space, and Context

At any time, the state of each processor is defined by:
1. mode given by the mode bit

Is the CPU executing in the protected kernel or a user program?

2. spacedefined by V->P translations currently in effect

What address space is the CPU running in? Once the systemis
booted, it always runs in some virtual address space.

3. context given by register state and execution stream
Is the CPU executing a thread/process, or an interrupt handler?
Where is the stack?

These are important because the mode/space/context
determines the meaning and validity of key operations.

D U-KE Areletiecire

Common Mode/Space/Context Combinations

1. User codeexecutes in a process/thread context in a process
address space, in user mode.

Can address only user code/data defined for the process, with no
access to privileged instructions.

2. System servicesxecute in a process/thread context in a
process address space, in kernel mode.

Can address kernel memory or user process code/data, with
access to protected operations: may sleep in the kernel.

3. Interruptsexecute in a system interrupt context in the
address space of the interrupted process, in kernel mode.
Can access kernel memory and use protected operations.
no sleeping!

D U-KE Areletiecire

Summary: Mode, Space, and Context
0 ox0 Process contejt System contgxt
User mode | Application N/A
Kernel modg Syscall or Interrupt or
exception System task
on-
kernel text
and
kernel data
201 Oxffffff

Syafenis & Archiiecinre

