
1

Coda

• Single location-transparent UNIX FS.

• Scalability - coarse granularity
(whole-file caching, volume management)

• First class (server) replication and
client caching (second class replication)

• Optimistic replication & consistency maintenance.

→ Designed for disconnected operation for mobile
computing clients

2

Disconnected and Weakly
Connected Coda

Satya, Kistler, Mummert , Ebling, Kumar, and Lu,
“Experience with Disconnected Operation in a
Mobile Computing Environment”,
USENIX Symp. On Mobile and Location-
Independent Computing, 1993.

Mummert , Ebling, and Satya,
“Exploiting Weak Connectivitiy for Mobile File
Access”, SOSP95.

Distributed File Systems

• Naming
– Location transparency/

independence

• Caching
– Consistency

• Replication
– Availability and

updates

server

network

server

client

client

client

Cache Consistency
• Location of cache on client -

disk or memory
• Update policy

– write through
– delayed writeback
– write -on-close

• Consistency
– Client does validity check,

contacting server
– Server call-backs

server

network

server

client

client

client

5

File Cache Consistency

• Caching is a key technique in distributed systems.
• The cache consistency problem: cached data may become stale

if cached data is updated elsewhere in the network.

• Solutions:
– Timestamp invalidation (NFS).

• Timestamp each cache entry, and periodically query the server:
“has this file changed since time t?”; invalidate cache if stale.

– Callback invalidation (AFS).
• Request notification (callback) from the server if the file

changes; invalidate cache on callback.

– Leases (NQ-NFS) [Gray&Cheriton89]

6

Sun NFS Cache Consistency
• Server is stateless
• Requests are self-contained.
• Blocks are transferred and

cached in memory.
• Timestamp of last known

mod kept with cached file,
compared with “true”
timestamp at server on
Open .
(Good for an interval)

• Updates delayed but
flushed before Close ends.

server

network

server

client

client

client

ti
tj

open
ti== tj ?

write/
close

7

AFS Cache Consistency
• Server keeps state of all

clients holding copies (copy
set)

• Callbacks when cached data
are about to become stale

• Large units (whole files or
64K portions)

• Updates propagated upon
close

• Cache on local disk −>
memory

server

network

server

c0

c1

c2

{c0, c1}

close

callback

8

NQ-NFS Leases
• In NQ-NFS, a client obtains a lease on the file that

permits the client’s desired read/write activity.
– “A lease is a ticket permitting an activity; the lease is valid

until some expiration time.” - temporary statefulness
– A read-caching lease allows the client to cache clean data.

• Guarantee: no other client is modifying the file.

– A write-caching lease allows the client to buffer modified
data for the file. Must push data before expiration

• Guarantee: no other client has the file cached.

• Leases may be revoked by the server if another client
requests a conflicting operation (server sends eviction
notice). Push in write_slack period.

Explicit First-class Replication

• File name maps to set of replicas, one of
which will be used to satisfy request
– Goal: availability

• Update strategy
– Atomic updates - all or none
– Primary copy approach
– Voting schemes
– Optimistic, then detection of conflicts

10

Optimistic vs. Pessimistic

• High availability
Conflicting updates
are the potential
problem - requiring
detection and
resolution.

• Avoids conflicts by
holding of shared or
exclusive locks.

• How to arrange when
disconnection is
involuntary?

• Leases [Gray, SOSP89]
puts a time-bound on
locks but what about
expiration?

11

Client-cache State Transitions

emulation reintegration

hoarding

physical
reconnection

logical
reconnection

disconnection

12

Prefetching

• To avoid the access latency of moving the
data in for that first cache miss.

• Prediction! “Guessing” what data will be
needed in the future.
– It’s not for free:

Consequences of guessing wrong
Overhead

13

Hoarding - Prefetching for
Disconnected Information Access
• Caching for availability (not just latency)

• Cache misses, when operating disconnected, have
no redeeming value.
(Unlike in connected mode, they can’t be used as
the triggering mechanism for filling the cache.)

• How to preload the cache for subsequent
disconnection? Planned or unplanned.

• What does it mean for replacement?

14

Hoard Database

• Per-workstation, per-user set of pathnames
with priority

• User can explicitly tailor HDB using scripts
called hoard profiles

• Delimited observations of reference
behavior (snapshot spying with bookends)

15

Coda Hoarding State

• Balancing act - caching for 2 purposes at once:

– performance of current accesses,
– availability of future disconnected access.

• Prioritized algorithm -
Priority of object for retention in cache is

f(hoard priority, recent usage).

• Hoard walking (periodically or on request)
maintains equilibrium - no uncached object has
higher priority than any of cached objects

16

The Hoard Walk

• Hoard walk - phase 1 - reevaluate name
bindings (e.g., any new children created by
other clients?)

• Hoard walk - phase 2 - recalculate priorities
in cache and in HDB, evict and fetch to
restore equilibrium

17

Hierarchical Cache Mgt

• Ancestors of a cached
object must be cached
in order to resolve
pathname.

• Directories with
cached children are
assigned infinite
priority

18

Callbacks During Hoarding

• Traditional callbacks - invalidate object and
refetch on demand

• With threat of disconnection
– Purge files and refetch on demand or hoard

walk

– Directories - mark as stale and fix on reference
or hoard walk, available until then just in case.

19

Emulation State

• Pseudo-server, subject to validation upon
reconnection

• Cache management by priority
– modified objects assigned infinite priority
– freeing up disk space - compression, replacement to

floppy, backout updates
• Replay log also occupies non-volatile storage

(RVM - recoverable virtual memory)

20

Client-cache State Transitions
with Weak Connectivity

emulation
write

disconnected

hoarding

physical
reconnection

strong
connection

disconnection
weak

connection

disconnection

21

Cache Misses with Weak
Connectivity

• At least now it’s possible to service misses but
$$$ and it’s a foreground activity
(noticable impact). Maybe not

• User patience threshold - estimated service time
compared with what is acceptable

• Defer misses by adding to HDB and letting hoard
walk deal with it

• User interaction during hoard walk.

22

Other Hoarding Strategies

• Detection of “file working sets”
Tait , Acharya, Lei, and Chang, “Intelligent File
Hoarding for Mobile Computers”, MOBICOM95.

• Capture semantic relationships among files
in “semantic distance” measure - SEER
Kuenning and Popek, “Automated Hoarding for
Mobile Computers”, SOSP97.

30

Energy Implications?

• Avoiding continuous wireless connectivity,
on purpose, to save energy

• Using remote storage as primary repository
or backup

31

MEMS-based Storage
Griffin, Schlosser, Ganger, Nagle

• Paper in OSDI 2000 on OS Management
• Comparing MEMS-based storage with disks

– Request scheduling
– Data layout

– Fault tolerance
– Power management

32

• Settling time after X seek
• Spring factor - non-uniform

over sled positions
• Turnaround time

33

Data on Media Sled

34

Disk Analogy

• 16 tips
• MxN = 3 x 280
• Cylinder – same x

offset
• 4 tracks of 1080 bits, 4

tips
• Each track – 12 sectors

of 80 bits (8 encoded
bytes)

• Logical blocks striped
across 2 sectors

35

Logical Blocks and LBN

• Sectors are smaller
than disk

• Multiple sectors can
be accessed
concurrently

• Bidirectional access

36

Comparison
MEMS
• Positioning – X and Y

seek (0.2-0.8 ms)
• Settling time 0.2ms
• Seeks near edges take

longer due to springs,
turnarounds depend on
direction – it isn’t just
distance to be moved.

• More parts to break
• Access parallelism

Disk
• Seek (1-15 ms) and

rotational delay
• Settling time 0.5ms
• Seek times are

relatively constant
functions of distance

• Constant velocity
rotation occurring
regardless of accesses

37

Specific Parameters for
Simulation Study

38

Request Scheduling

Quantum Atlas 10K Disk MEMS

Random Workload
39

Impact of Settling Time

X dominatesY matters – only
captured by SPTF

40

Data Placement

• Offset from center matters to seek time – small
data are placed in centermost subregions

• Positioning is relatively insignificant for large
transfers – sequential streaming data placed in
outer subregions

• Compared to organpipe policy– most frequently
accessed data in middle disk tracks

• All better than nothing at all

41

Failure and Power

• Error Correcting Code computed horizontally
across tips (missing sector, bad tip) and vertically
within sector (bad sector)

• Remap sector under spare tip allocated in each
track

• Idle mode stops sled and powers down electronics
• Restart is fast 0.5ms and no power spike to “spin

up.” Immediate-idle (no timeout policy).

42

Conclusions
(according to Ganger)

B-o-r-r-r-i-n-g from OS p.o.v.
– MEMS are simpler to manage

