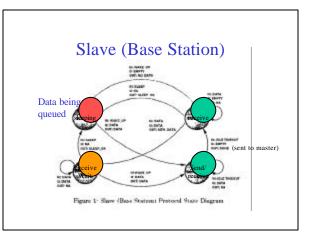
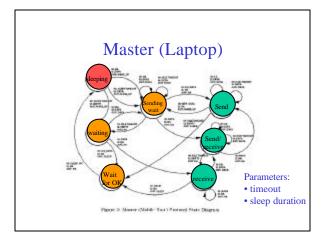
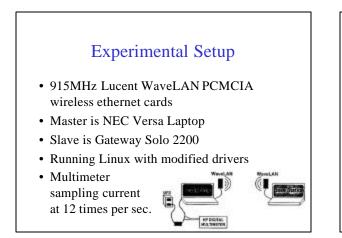
Power Mgt Techniques for Mobile Communication


Robin Kravets and P. Krishnan MOBICOM 98


The Problem (Listening)

- Wireless communication cards consume energy continuously while inserted in device
 - 10 to 50% of energy budget for mobile device
- A mobile device with a suspended communication card is unaware if some other host has data to send to it. External events should be the trigger to wake up.
 Buffer overflows, retransmission costs to sender
- The key to balancing power savings and delay lies in knowing when to suspend & wakeup communications
 - Role for application specific information for guidance.

Their Solution


- Set of mechanisms in the transport layer allowing communication to be suspended and resumed.
- Mobile client and Base station proxy where client is master and base station is slave.
- Goal: to reduce amount of time device sits idle drawing power waiting to receive something. Increases burstiness.
 - How to deal with disconnected communication partner
 - potential loss of data en-route

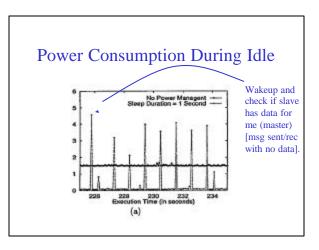
Opportunities for Application Knowledge

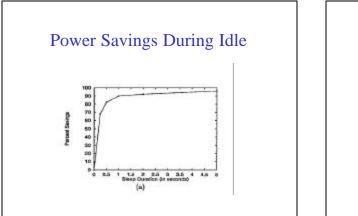
- Application can inform protocol of lack of data to send
- Expected time until response may be predictable as way to determine sleep duration
- Master could inform slave of sleep duration or slave could suggest.

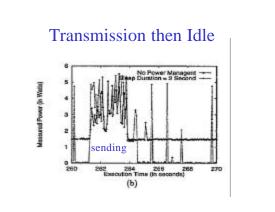
WaveLAN Power Requirements

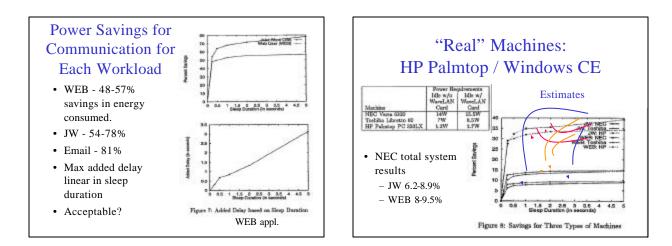
- WaveLAN suspended 0W
- WaveLAN receive 1.5W
- WaveLAN transmit 3W

Product	Lucent WaveLAN	Proxim RangeLAN2	Aironet 4800 500-1800' 100-350'	
Range open/office	400-600' / 1200' 130' / 300'	700' 400'		
Thruput	2 Mbps	1.6 Mbps	1-11 Mbps	
Price Access point/ PC card	\$1295/\$295	\$500/\$200	\$1695/\$595	
Power (mA) send/rec/doze	300/250/15 330/280/9	300/150/5/2	490/280/5	
Compatibility	Windows *	WinCE	Windows*	
Technology	DSSS	FHSS	DSSS/FHSS	


Simulated Workloads for Experiments to Evaluate Protocol


- WEB data transmitted from 5 to 30KB; data received from 300 to 1200 KB; 1 send to 10 receives; user sleep time 10-300 sec.
- JointWork data sent and received from 5 to 500 KB; user sleeps 10-300 sec.
- Email data sent and received from 5 to 300KB; from 10-600 sec user sleep time.


Pattern	User Sleep Time			Average Time			Average
		Max (eec)		Transmitting (sec)	Receiving (sec)	Sleeping (sec)	Percent
WED	10	300	155	0.116	50	104.9	67.7%
JW	10	300	155	3.52	1.50	151.96	98%
EMAIL	10	600	305	1.92	1.02	302.96	93%


Results (Summary)

Even with relatively short sleep durations, overhead or transition to/from sleep mode is still significantly less than energy consumed by WaveLAN card left in ready-to-receive mode.

Adaptive Algorithms

- For determining sleep time
 - respond to activity by reducing to 250ms
 - respond to idle periods by doubling up to 5min.
 - WEB: 58% savings over 5 sec static;2.7 sec delay vs. 3.1 sec delay
- Learning techniques?
- API for hints as in informed prefetching.

Other Work

- Stemm and Katz Application-level control over sleep modes. (email and web browsing)
 - Sleeping during user think time
 - Sleeping during predicted response time of server
- Transcoding studies (Brewer, Chandra)
- Rover Joseph et al, SOSP 1995.