“Programming with Threads”

Birrell
Multiprocessors

Waiting for slow devices
Human users

Shared network servers multiplexing
among client (each client served by its own
thread)

Maintenance tasks

Hardware Assistance for

Synchronization

* Most modern architectures provide some
support for building synchronization: atomic
read-modify-write instructions.

« Example: test-and-set (loc, reg)

[ sets bit to 1 in the new value of loc;
returns old value of loc in reg ]~

R . [ ] notation means
Other examples: atomic
compare-and-swap, fetch-and-op

Busywaiting with
Test-and-Set

Declare a shared memory location to represent a
busyflag on the critical section we are trying to
protect.
enter_region (or acquiring the “lock”):
waitloop: tsl busyflag, RO // R0 = busyflag; busyflag = 1

bnz RO, waitloop // was it already set?
exit region (or releasing the “lock”):

busyflag =0

Pros and Cons of Busywaiting

» Key characteristic - the “waiting” process is
actively executing instructions in the CPU and
using memory cycles.

» Appropriate when:

— High likelihood of finding the critical section
unoccupied (don't take context switch just to find that out) Or
estimated wait time is very short

» Disadvantages:
— Wastes resources (CPU, memory, bus bandwidth)
« Cache-miss heavy
— Looks busy if system is observing behavior




Better Implementations
from Multiprocessor Domain

Dealing with contention of Test&Set spinlocks:
— Don't execute test&set so much
— Spin without generating bus traffic

Test&Set with Backoff
— Insert delay between test&set operations (not too long)
— Exponential seems good (k*ci)
— Not fair

Test-and-Test&Set

— Spin (test) on local cached copy until it gets invalidated, then issue
test&set

— Intuition: No point in trying to set the location until we know that it's not
set, which we can detect when it get invalidated...

— Still contention after invalidate

— Still not fair

Analogies for Energy?

Blocking Synchronization

* OS implementation involving changing the state
of the “waiting” process from running to
blocked.

* Need some synchronization abstraction known
to OS - provided by system calls.

— mutex locks with operations acquire and release
— semaphores with operations P and V (down, up)
— condition variables with wait and signal

Template for Implementing
Blocking Synchronization

« Associated with the lock is a memory location
(busy) and a queue for waiting
threads/processes.

¢ Acquire syscall:

while (busy) {fenqueue caller on lock’s queue}

/*upon waking to nonbusy lock*/ busy = true;
* Release syscall:

busy = false;

/* wakup */ move any waiting threads to Ready
queue

Pros and Cons of Blocking

» Waiting processes/threads don’t consume
resources

» Appropriate: when the cost of a system call
is justified by expected waiting time
— High likelihood of contention for lock
— Long critical sections

» Disadvantage: OS involvement
->overhead




Semaphores

* Well-known synchronization abstraction

« Defined as a non-negative integer with two
atomic operations
P(s) - [wait until s > 0; s--]
V(s) - [s++]

¢ The atomicity and the waiting can be
implemented by either busywaiting or
blocking solutions.

Semaphore Usage

» Binary semaphores can provide mutual
exclusion (solution of critical section problem)

» Counting semaphores can represent a
resource with multiple instances (e.g. solving
producer/consumer problem)

 Signalling events (persistant events that stay
relevant even if nobody listening right now)

The Critical Section Problem
while (1)

{ [otherstoff—

Semaphore:
mutex initialy 1

P(mutex)
. | .
critical section Knowing
shared from
private—

V(mutex)

SRC Thread Primitives

* SRC thread primitives
— Thread = Fork (procedure, args)
—result = Join (thread)
—LOCK mutex DO critical section END
— Wait (mutex, condition)
— Signal (condition)
— Broadcast (condition)

— Acquire (mutex), Release (mutex) //more
dangerous




Monitor Abstraction

* Encapsulates shared o
data and operations g
with mutual exclusive ;
use of the object (an
associated lock). E{

« Associated Condition
Variables with
operations of Wait and
Signal.

monitor lock

[nofEmpty

conditions

Condition Variables

We build the monitor abstraction out of a lock
(for the mutual exclusion) and a set of
associated condition variables.

Wait on condition: releases lock held by
caller, caller goes to sleep on condition’s
queue. When awakened, it must
reacquire lock.

Signal condition: wakes up one waiting
thread.

Broadcast: wakes up all threads waiting on
this condition.

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

fotEmpty

conditions

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty) ;
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

conditions




Monitor Abstraction

EnQ:{aquire (lock);

if (head == null) ® -~
{head = item; 3 g
signal (lock, notEmpty);} z ) UEJ
else tail->next = item; = monitor_lock 5
tail = item; IEl
release(lock);} /

deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

—_——

conditions

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty);A/
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

conditions

Monitor Abstraction

EnQ{aquire (lock); .
if (head == null) >
{head = item; g
signal (lock, notEmpty);} ||:|E:|'|
el§e t.a|I->next =item; v éj
tail = item;

release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty); ,
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

conditions

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
while (head == null) —
wait (lock, notEmpty); ,
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

conditions




Pitfalls

v'Race conditions, failure to implement mutual
exclusion within critical sections of code.

» Deadlock

» Starvation

» Priority inversion

v Performance Issues (including energy implications)

— Difficulty of detecting idleness with busywaiting synchronization
— Lock granularity issues

5 Dining Philosophers

Philosopher 0 hile(food available)

pick up 2 adj. forks;

Philosopher 4 }Q O eat;
O /a/ put down forks;

think awhile;

Philosopher 1

O
Philosopher 3 O /(/ Oé\

Philosopher 2

Template for Philosopher

while_(food availahle)

{ /*pick up forks*/

/*put down forks*/

think awhile;

Naive Solution

while_(food available)

{ *pick up forks*/
P(fork[left(me)]);
P(fark[right(me)]):
edl;
V(fork[left(me)]); Fput down forks*/

V(fark[right(me)]}:

think awhile;




Philosophy 101
(or why 5DP is interesting)

» How to eat with your Fellows without
causing Deadlock.
— Circular arguments (the circular wait condition)

— Not giving up on firmly held things (no
preemption)
— Infinite patience with Half-baked schemes

Circular ndition

while (food available)

{ |f (me = 0) {P(fork[left(me)]); P(fork[right(me)]);}
else {(P(fork[right(me)]); P(fork[left(me)]); }

eat;
V(fork[left(me)]); V(fork[right(me)]);

(hold some & wait for more) think awhile;
» Why Starvation exists and what we can }
do about it. Ordered resources
Hold and ondition Starvation
whiTETtooa avarrastey The difference between deadlock and
{ [Pmute; starvation is subtle:

while (forks[me] |=2)
{blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}
forks [leftneighbor (me)] --; forks[rightneighbor (me)]--;
(mutex):

[Ear;

if (blocking[leftneighbor (me)]) V(sleepy[leftneighbor (me)]);
if (blocking[rightneighbor (me)]) V(sleepy[rightneighbor (me)]);

P(mutex); forks[leftneighbor (me)] ++; forks[rightneighbor (me)]++;

V{mutex);
think awhile;

— Once a set of processes are deadlocked, there is
no future execution sequence that can get them
outofit.

— In starvation, there does exist some execution
sequence that is favorable to the starving process
although there is no guarantee it will ever occur.

— Rollback and Retry solutions are prone to
starvation.

— Continuous arrival of higher priority processes is
another common starvation situation.




Issues

* Locking overhead (granularity)

* Broadcast vs. Signal and other causes of
spurious wakeups

« Nested lock/condition variable problem

U OCK a DO
o LOCK b DO
cal while (not_ready) wait (b, c) //releases b not a

END
END

¢ Priority inversions

Lock Granularity

head tail

|
2 |_»4 |—>|6 |_»|8 |T

«

Lock Granularity

he tail

L H H e =
e I =

Spurious Wakeups

while (! required_conditions) wait (m, c);

* Why we use “while” not “if” — invariant not
guaranteed

* Why use broadcast — using one condition
queue for many reasons. Waking threads
have to sort it out. Possibly better to
separate into multiple conditions (more
complexity to code)




Mars Pathfinder Example

¢ In July 1997 Pathfinder's computer reset itself several
times during data collection and transmission from
Mars.

— One of its processes failed to complete by a deadline, triggering
the reset

e Priority Inversion Problem

— A low priority process held a mutual exclusion semaphore on a
shared data structure but was preempted to let higher priority
processes run

— The high priority process that failed to complete on time was
blocked on this semaphore and priority inheritance was not
enabled.

— Meanwhile a bunch of medium priority processes ran, until
finally the deadline ran out. The low priority semaphoreholding
process never got the chance to fun again in that time to the
point of releasing the mutex.

Tricks (mixed syntax)

if (some_condition) // as a hint
{
LOCK m DO
if (some_condition) //the truth

{stuff}

END .
Cheap to get info but must check for
} correctness; always a slow way

More Tricks

General pattern:
while (! required_conditions) wait (m, c);
Broadcast works because waking up too many is
OK (correctness-wise) although a performance
impact.
LOCK m DO Spurious lock conflicts
caused by signals inside
. _ . critical section and
deferred_signal = true; threads waking up to test
END mutex before it gets
if (deferred_signal) signal (C); released.

Alerts

Thread state contains flag,

alert pending
Exception alerted TRY )
Alert (thread) while (empty)

alert- pending to true, wakeup a Alertwait (m'

waiting thread nonempty); return

AlertWait(mutex, condition) (nextchar());

if alert-pending set to false and

raise exception EXCEPT
Thread.Alerted:

return (eof);

else wait as usual
Boolean b = TestAlert()

tests and clear alert-pending




Using Alerts

sibling = Fork (proc, arg);
while (Idone)
{ done = longComp();
if (done) Alert (sibling);
else done = TestAlert();

Dos

Wisdom

Don't s

+ Reserve using alerts for + Call into a different

when you don't know what

is going on

* Only use if you forked the

thread

abstraction level while
holding a lock

* Move the “last” signal
beyond scope of Lock

« Acquire lock, fork, and let

* Impose an ordering on child release lock

lock acquisition

« Expect priority inheritance

* Write down invariants that since few implementations
should be true when locks « pPack data and expect fine

aren’t being held

grain locking to work




