
• Multiprocessors
• Waiting for slow devices
• Human users
• Shared network servers multiplexing 

among client (each client served by its own 
thread)

• Maintenance tasks

“Programming with Threads”
Birrell

Hardware Assistance for 
Synchronization

• Most modern architectures provide some 
support for building synchronization: atomic 
read-modify-write instructions.

• Example: test-and-set (loc, reg)
[ sets bit to 1 in the new value of loc;
returns old value of loc in reg ]

• Other examples:
compare-and-swap,  fetch-and-op

[ ] notation means
atomic

Busywaiting with 
Test-and-Set

• Declare a shared memory location to represent a
busyflag on the critical section we are trying to 
protect.

• enter_region (or acquiring the “lock”):
waitloop: tsl busyflag, R0  // R0 = busyflag ; busyflag = 1

bnz R0, waitloop // was it already set?

• exit region (or releasing the “lock”):
busyflag = 0

?

Pros and Cons of Busywaiting
• Key characteristic - the “waiting” process is 

actively executing instructions in the CPU and 
using memory cycles.

• Appropriate when:
– High likelihood of finding the critical section 

unoccupied (don’t take context switch just to find that out) or 
estimated wait time is very short

• Disadvantages:
– Wastes resources (CPU, memory, bus bandwidth)

• Cache-miss heavy

– Looks busy if system is observing behavior



Better Implementations 
from Multiprocessor Domain

• Dealing with contention of Test&Set spinlocks: 
– Don’t execute test&set so much 
– Spin without generating bus traffic 

• Test&Set with Backoff 
– Insert delay between test&set operations (not too long)
– Exponential seems good (k* ci) 
– Not fair

• Test-and-Test&Set 
– Spin (test) on local cached copy until it gets invalidated, then issue 

test&set 
– Intuition: No point in trying to set the location until we know that it’s not 

set, which we can detect when it get invalidated... 
– Still contention after invalidate 
– Still not fair

• Analogies for Energy?

Blocking Synchronization
• OS implementation involving changing the state 

of the “waiting” process from running to 
blocked.

• Need some synchronization abstraction known 
to OS - provided by system calls.
– mutex locks with operations acquire and release
– semaphores with operations P and V (down, up)
– condition variables with wait and signal

Template for Implementing 
Blocking Synchronization

• Associated with the lock is a memory location 
(busy) and a queue for waiting 
threads/processes.

• Acquire syscall: 
while (busy) {enqueue caller on lock’s queue}
/*upon waking to nonbusy lock*/ busy = true;

• Release syscall:
busy = false;  
/* wakup */ move any waiting threads to Ready 
queue

Pros and Cons of Blocking
• Waiting processes/threads don’t consume 

resources
• Appropriate: when the cost of a system call 

is justified by expected waiting time
– High likelihood of contention for lock
– Long critical sections

• Disadvantage: OS involvement 
−> overhead



Semaphores
• Well-known synchronization abstraction
• Defined as a non-negative integer with two 

atomic operations
P(s) - [wait until s > 0; s--]

V(s) - [s++]

• The atomicity and the waiting can be 
implemented by either busywaiting or 
blocking solutions.

Semaphore Usage
• Binary semaphores can provide mutual 

exclusion (solution of critical section problem)

• Counting semaphores can represent a 
resource with multiple instances (e.g. solving 
producer/consumer problem)

• Signalling events  (persistant events that stay 
relevant even if nobody listening right now)

The Critical Section Problem
while (1)

{ ...other stuff...

critical section

}

P(mutex)

V(mutex)

Semaphore:
mutex initially 1

Knowing
shared from
private…

SRC Thread Primitives
• SRC thread primitives

– Thread = Fork (procedure, args)
– result = Join (thread)
– LOCK mutex DO critical section END
– Wait (mutex , condition)
– Signal (condition)
– Broadcast (condition)
– Acquire (mutex), Release (mutex) //more 

dangerous



Monitor Abstraction
• Encapsulates shared 

data and operations 
with mutual exclusive 
use of the object (an 
associated lock).

• Associated Condition 
Variables with 
operations of Wait and 
Signal.

monitor_lock

enQ deQ
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Condition Variables
• We build the monitor abstraction out of a lock 

(for the mutual exclusion) and a set of 
associated condition variables.

• Wait on condition: releases lock held by 
caller, caller goes to sleep on condition’s 
queue.  When awakened, it must 
reacquire lock.

• Signal condition: wakes up one waiting 
thread.

• Broadcast: wakes up all threads waiting on 
this condition.

Monitor Abstraction
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EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}

Monitor Abstraction
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EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}



Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}
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EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
while (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}



Pitfalls
üRace conditions, failure to implement mutual 

exclusion within critical sections of code.
ØDeadlock

Ø Starvation
Ø Priority inversion

ü Performance Issues (including energy implications)
– Difficulty of detecting idleness with busywaiting synchronization
– Lock granularity issues

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
eat;
put down forks;
think awhile;

}

Template for Philosopher
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

Naive Solution
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);



Philosophy 101
(or why 5DP is interesting)

• How to eat with your Fellows without 
causing Deadlock.
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no 

preemption)
– Infinite patience with Half -baked schemes 

(hold some & wait for more)

• Why Starvation exists and what we can 
do about it.

while (food available)

{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

else {(P(fork[right(me)]); P(fork[left(me)]); }

eat;

V(fork[left(me)]); V(fork[right(me)]); 

think awhile;

}

Circular Wait Condition

Ordered resources

Hold and Wait Condition
while (food available)
{ P(mutex);

while (forks [me] != 2) 
{blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}

forks [leftneighbor(me)] --;  forks [rightneighbor(me)]--;
V(mutex):
eat;
P(mutex); forks [leftneighbor(me)] ++;  forks [rightneighbor(me)]++;
if (blocking[leftneighbor(me)]) V(sleepy[leftneighbor(me)]); 
if (blocking[rightneighbor(me)]) V(sleepy[rightneighbor(me)]); 
V(mutex);
think awhile;

}

Starvation
The difference between deadlock and 

starvation is subtle:
– Once a set of processes are deadlocked, there is 

no future execution sequence that can get them 
out of it.

– In starvation, there does exist some execution 
sequence that is favorable to the starving process 
although there is no guarantee it will ever occur.

– Rollback and Retry solutions are prone to 
starvation.

– Continuous arrival of higher priority processes is 
another common starvation situation.



Issues
• Locking overhead (granularity)
• Broadcast vs. Signal and other causes of 

spurious wakeups
• Nested lock/condition variable problem

LOCK a DO
LOCK b DO

while (not_ready) wait (b, c) //releases b not a
END

END
• Priority inversions

Unseen
in 
call

Lock Granularity

2 4 6 8

103

head tail

A B

Lock Granularity

2 4 6 8

103

head tail

A B

Spurious Wakeups
while (! required_conditions)  wait (m, c);

• Why we use “while” not “if” – invariant not 
guaranteed

• Why use broadcast – using one condition 
queue for many reasons.  Waking threads 
have to sort it out.  Possibly better to 
separate into multiple conditions (more 
complexity to code)



Mars Pathfinder Example
• In July 1997 Pathfinder’s computer reset itself several 

times during data collection and transmission from 
Mars.
– One of its processes failed to complete by a deadline, triggering 

the reset

• Priority Inversion Problem
– A low priority process held a mutual exclusion semaphore on a 

shared data structure but was preempted to let higher priority 
processes run

– The high priority process that failed to complete on time was 
blocked on this semaphore and priority inheritance was not 
enabled.

– Meanwhile a bunch of medium priority processes ran, until 
finally the deadline ran out.  The low priority semaphore-holding 
process never got the chance to fun again in that time to the 
point of releasing the mutex.

Tricks (mixed syntax)

if (some_condition) // as a hint
{

LOCK m DO
if (some_condition) //the truth
{stuff}

END
}

Cheap to get info but must check for 
correctness; always a slow way

More Tricks
General pattern:

while (! required_conditions)  wait (m, c);
Broadcast works because waking up too many is 

OK (correctness-wise) although a performance 
impact.

LOCK m DO
…
deferred_signal = true;

END
if (deferred_signal) signal (c);

Spurious lock conflicts
caused by signals inside
critical section and 
threads waking up to test
mutex before it gets
released.

Alerts
Thread state contains flag, 

alert- pending

Exception alerted
Alert (thread)

alert- pending to true, wakeup a 
waiting thread

AlertWait (mutex, condition)
if alert-pending set to false and 

raise exception
else wait as usual

Boolean b = TestAlert()
tests and clear alert-pending

TRY
while (empty)
AlertWait (m, 

nonempty); return 
(nextchar());

EXCEPT
Thread.Alerted:  

return (eof );



Using Alerts
sibling = Fork (proc, arg);
while (!done)
{ done = longComp();

if (done) Alert (sibling);
else done = TestAlert();

}

Wisdom
Do s
• Reserve using alerts for 

when you don’t know what 
is going on

• Only use if you forked the 
thread

• Impose an ordering on 
lock acquisition

• Write down invariants that 
should be true when locks 
aren’t being held

Don’t s
• Call into a different 

abstraction level while 
holding a lock

• Move the “last” signal 
beyond scope of Lock

• Acquire lock, fork, and let 
child release lock

• Expect priority inheritance 
since few implementations

• Pack data and expect fine 
grain locking to work


