
• Multiprocessors
• Waiting for slow devices
• Human users
• Shared network servers multiplexing

among client (each client served by its own
thread)

• Maintenance tasks

“Programming with Threads”
Birrell

Hardware Assistance for
Synchronization

• Most modern architectures provide some
support for building synchronization: atomic
read-modify-write instructions.

• Example: test-and-set (loc, reg)
[sets bit to 1 in the new value of loc;
returns old value of loc in reg]

• Other examples:
compare-and-swap, fetch-and-op

[] notation means
atomic

Busywaiting with
Test-and-Set

• Declare a shared memory location to represent a
busyflag on the critical section we are trying to
protect.

• enter_region (or acquiring the “lock”):
waitloop: tsl busyflag, R0 // R0 = busyflag ; busyflag = 1

bnz R0, waitloop // was it already set?

• exit region (or releasing the “lock”):
busyflag = 0

?

Pros and Cons of Busywaiting
• Key characteristic - the “waiting” process is

actively executing instructions in the CPU and
using memory cycles.

• Appropriate when:
– High likelihood of finding the critical section

unoccupied (don’t take context switch just to find that out) or
estimated wait time is very short

• Disadvantages:
– Wastes resources (CPU, memory, bus bandwidth)

• Cache-miss heavy

– Looks busy if system is observing behavior

Better Implementations
from Multiprocessor Domain

• Dealing with contention of Test&Set spinlocks:
– Don’t execute test&set so much
– Spin without generating bus traffic

• Test&Set with Backoff
– Insert delay between test&set operations (not too long)
– Exponential seems good (k* ci)
– Not fair

• Test-and-Test&Set
– Spin (test) on local cached copy until it gets invalidated, then issue

test&set
– Intuition: No point in trying to set the location until we know that it’s not

set, which we can detect when it get invalidated...
– Still contention after invalidate
– Still not fair

• Analogies for Energy?

Blocking Synchronization
• OS implementation involving changing the state

of the “waiting” process from running to
blocked.

• Need some synchronization abstraction known
to OS - provided by system calls.
– mutex locks with operations acquire and release
– semaphores with operations P and V (down, up)
– condition variables with wait and signal

Template for Implementing
Blocking Synchronization

• Associated with the lock is a memory location
(busy) and a queue for waiting
threads/processes.

• Acquire syscall:
while (busy) {enqueue caller on lock’s queue}
/*upon waking to nonbusy lock*/ busy = true;

• Release syscall:
busy = false;
/* wakup */ move any waiting threads to Ready
queue

Pros and Cons of Blocking
• Waiting processes/threads don’t consume

resources
• Appropriate: when the cost of a system call

is justified by expected waiting time
– High likelihood of contention for lock
– Long critical sections

• Disadvantage: OS involvement
−> overhead

Semaphores
• Well-known synchronization abstraction
• Defined as a non-negative integer with two

atomic operations
P(s) - [wait until s > 0; s--]

V(s) - [s++]

• The atomicity and the waiting can be
implemented by either busywaiting or
blocking solutions.

Semaphore Usage
• Binary semaphores can provide mutual

exclusion (solution of critical section problem)

• Counting semaphores can represent a
resource with multiple instances (e.g. solving
producer/consumer problem)

• Signalling events (persistant events that stay
relevant even if nobody listening right now)

The Critical Section Problem
while (1)

{ ...other stuff...

critical section

}

P(mutex)

V(mutex)

Semaphore:
mutex initially 1

Knowing
shared from
private…

SRC Thread Primitives
• SRC thread primitives

– Thread = Fork (procedure, args)
– result = Join (thread)
– LOCK mutex DO critical section END
– Wait (mutex , condition)
– Signal (condition)
– Broadcast (condition)
– Acquire (mutex), Release (mutex) //more

dangerous

Monitor Abstraction
• Encapsulates shared

data and operations
with mutual exclusive
use of the object (an
associated lock).

• Associated Condition
Variables with
operations of Wait and
Signal.

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

Condition Variables
• We build the monitor abstraction out of a lock

(for the mutual exclusion) and a set of
associated condition variables.

• Wait on condition: releases lock held by
caller, caller goes to sleep on condition’s
queue. When awakened, it must
reacquire lock.

• Signal condition: wakes up one waiting
thread.

• Broadcast: wakes up all threads waiting on
this condition.

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
while (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

Pitfalls
üRace conditions, failure to implement mutual

exclusion within critical sections of code.
ØDeadlock

Ø Starvation
Ø Priority inversion

ü Performance Issues (including energy implications)
– Difficulty of detecting idleness with busywaiting synchronization
– Lock granularity issues

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
eat;
put down forks;
think awhile;

}

Template for Philosopher
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

Naive Solution
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);

Philosophy 101
(or why 5DP is interesting)

• How to eat with your Fellows without
causing Deadlock.
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no

preemption)
– Infinite patience with Half -baked schemes

(hold some & wait for more)

• Why Starvation exists and what we can
do about it.

while (food available)

{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

else {(P(fork[right(me)]); P(fork[left(me)]); }

eat;

V(fork[left(me)]); V(fork[right(me)]);

think awhile;

}

Circular Wait Condition

Ordered resources

Hold and Wait Condition
while (food available)
{ P(mutex);

while (forks [me] != 2)
{blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}

forks [leftneighbor(me)] --; forks [rightneighbor(me)]--;
V(mutex):
eat;
P(mutex); forks [leftneighbor(me)] ++; forks [rightneighbor(me)]++;
if (blocking[leftneighbor(me)]) V(sleepy[leftneighbor(me)]);
if (blocking[rightneighbor(me)]) V(sleepy[rightneighbor(me)]);
V(mutex);
think awhile;

}

Starvation
The difference between deadlock and

starvation is subtle:
– Once a set of processes are deadlocked, there is

no future execution sequence that can get them
out of it.

– In starvation, there does exist some execution
sequence that is favorable to the starving process
although there is no guarantee it will ever occur.

– Rollback and Retry solutions are prone to
starvation.

– Continuous arrival of higher priority processes is
another common starvation situation.

Issues
• Locking overhead (granularity)
• Broadcast vs. Signal and other causes of

spurious wakeups
• Nested lock/condition variable problem

LOCK a DO
LOCK b DO

while (not_ready) wait (b, c) //releases b not a
END

END
• Priority inversions

Unseen
in
call

Lock Granularity

2 4 6 8

103

head tail

A B

Lock Granularity

2 4 6 8

103

head tail

A B

Spurious Wakeups
while (! required_conditions) wait (m, c);

• Why we use “while” not “if” – invariant not
guaranteed

• Why use broadcast – using one condition
queue for many reasons. Waking threads
have to sort it out. Possibly better to
separate into multiple conditions (more
complexity to code)

Mars Pathfinder Example
• In July 1997 Pathfinder’s computer reset itself several

times during data collection and transmission from
Mars.
– One of its processes failed to complete by a deadline, triggering

the reset

• Priority Inversion Problem
– A low priority process held a mutual exclusion semaphore on a

shared data structure but was preempted to let higher priority
processes run

– The high priority process that failed to complete on time was
blocked on this semaphore and priority inheritance was not
enabled.

– Meanwhile a bunch of medium priority processes ran, until
finally the deadline ran out. The low priority semaphore-holding
process never got the chance to fun again in that time to the
point of releasing the mutex.

Tricks (mixed syntax)

if (some_condition) // as a hint
{

LOCK m DO
if (some_condition) //the truth
{stuff}

END
}

Cheap to get info but must check for
correctness; always a slow way

More Tricks
General pattern:

while (! required_conditions) wait (m, c);
Broadcast works because waking up too many is

OK (correctness-wise) although a performance
impact.

LOCK m DO
…
deferred_signal = true;

END
if (deferred_signal) signal (c);

Spurious lock conflicts
caused by signals inside
critical section and
threads waking up to test
mutex before it gets
released.

Alerts
Thread state contains flag,

alert- pending

Exception alerted
Alert (thread)

alert- pending to true, wakeup a
waiting thread

AlertWait (mutex, condition)
if alert-pending set to false and

raise exception
else wait as usual

Boolean b = TestAlert()
tests and clear alert-pending

TRY
while (empty)
AlertWait (m,

nonempty); return
(nextchar());

EXCEPT
Thread.Alerted:

return (eof);

Using Alerts
sibling = Fork (proc, arg);
while (!done)
{ done = longComp();

if (done) Alert (sibling);
else done = TestAlert();

}

Wisdom
Do s
• Reserve using alerts for

when you don’t know what
is going on

• Only use if you forked the
thread

• Impose an ordering on
lock acquisition

• Write down invariants that
should be true when locks
aren’t being held

Don’t s
• Call into a different

abstraction level while
holding a lock

• Move the “last” signal
beyond scope of Lock

• Acquire lock, fork, and let
child release lock

• Expect priority inheritance
since few implementations

• Pack data and expect fine
grain locking to work

