
Tricks (mixed syntax)

if (some_condition) // as a hint
{

LOCK m DO
if (some_condition) //the truth
{stuff}

END
}

Cheap to get info but must check for
correctness; always a slow way

More Tricks
General pattern:

while (! required_conditions) wait (m, c);
Broadcast works because waking up too many is

OK (correctness-wise) although a performance
impact.

LOCK m DO
…
deferred_signal = true;

END
if (deferred_signal) signal (c);

Spurious lock conflicts
caused by signals inside
critical section and
threads waking up to test
mutex before it gets
released.

Alerts
Thread state contains flag,

alert-pending

Exception alerted
Alert (thread)

alert-pending to true, wakeup a
waiting thread

AlertWait (mutex, condition)
if alert-pending set to false and

raise exception
else wait as usual

Boolean b = TestAlert()
tests and clear alert-pending

TRY
while (empty)
AlertWait (m,

nonempty); return
(nextchar());

EXCEPT
Thread.Alerted:

return (eof);

Using Alerts
sibling = Fork (proc, arg);
while (!done)
{ done = longComp();

if (done) Alert (sibling);
else done = TestAlert();

}

Wisdom
Do s
• Reserve using alerts for

when you don’t know what
is going on

• Only use if you forked the
thread

• Impose an ordering on
lock acquisition

• Write down invariants that
should be true when locks
aren’t being held

• Worry about correctness
first before performance

Don’t s
• Call into a different

abstraction level while
holding a lock

• Move the “last” signal
beyond scope of Lock

• Acquire lock, fork, and let
child release lock

• Expect priority inheritance
since few implementations

• Pack data and expect fine
grain locking to work

Practice: Producer/Consumer Pipelines
In the fall of 1996, Hurricane Fran hit Durham, which is why you still see so
many trees down in the woods. For the sake of local history, here is a
Hurricane Fran updating of the traditional cigarette smoker’s problem.

Three men are in a neighborhood with hundreds of fallen trees. To cut up a
fallen tree, each man needs all three of the following items: a chainsaw
with a sharp chain, gasoline mix, and chain lubricating oil. There is a loggers’
supplier on the web with new chains, gas, and oil in ample quantity making
deliveries to the area. Each neighbor has his own chainsaw but only one of
them has a sharpener to keep his chain sharp. Another neighbor has a
large tank of the gasoline mixture. The third neighbor has lots of lubricating
oil.

The action begins when a delivery of two of these items arrives in the
neighborhood which would allow one of the neighbors to cut up a tree until
the delivered items become exhausted (e.g. for the third neighbor this
would mean that his chain gets dull and his gas is gone, but he still has
enough oil). When the lucky neighbor who got the benefit of the last shipment
is done, he places another order to the supplier, which sends two more items
(at random), thus enabling another of the neighbors to obtain al l three items
and cut up a tree.

Practice: Klingon Problem
The Klingons are attacking. The Federation vessels can escape
through the wormhole, but sensors indicate that the wormhole is
unstable. The ships’ captains plan to create a subspace distortion to
prevent the wormhole from closing on them while they are in it. To
do this, they will enter the wormhole three at a time while emitting a
tachyon pulse through their main deflector dishes. Each ship must
lower its shields before initiating its tachyon pulse, and once a ship
starts emitting tachyons it can have no contact with the other ships.

Implement a synchronization scheme to allow the Federation to
retreat through the wormhole in an orderly fashion. Your scheme
should have the property that no ship lowers its shields until just
before it enters the wormhole, no ship enters the wormhole until two
others are ready to go in with it, and all ships in each group of three
enter the wormhole before any of the ships in the next group.

Practice: Fine grain locking
Multiple threads inserting and deleting in a

linked list

Practice: Bridge Problem
Synchronize traffic over a narrow light-duty bridge on a public
highway. Traffic may only cross the bridge in one direction at a
time, and if there are ever more than 3 vehicles on the bridge at
one time, it will collapse under their weight. Each car is to be
represented by one thread, which executes the procedure
OneVehicle in order to cross the bridge:

OneVehicle(int direc) //direc is either 0 or 1;
//giving the direction in which the car is to cross

{
ArriveBridge(direc);
CrossBridge(direc);
ExitBridge(direc);
}

