
Practice: Klingon Problem
The Klingons are attacking. The Federation vessels can escape
through the wormhole, but sensors indicate that the wormhole is
unstable. The ships’ captains plan to create a subspace distorti on to
prevent the wormhole from closing on them while they are in it. To
do this, they will enter the wormhole three at a time while emitting a
tachyon pulse through their main deflector dishes. Each ship must
lower its shields before initiating its tachyon pulse, and once a ship
starts emitting tachyons it can have no contact with the other ships.

Implement a synchronization scheme to allow the Federation to
retreat through the wormhole in an orderly fashion. Your scheme
should have the property that no ship lowers its shields until j ust
before it enters the wormhole, no ship enters the wormhole until two
others are ready to go in with it, and all ships in each group o f three
enter the wormhole before any of the ships in the next group.

long num = 0; next=3; int going_in = 0; // solution assumes no overflow
void EnterWormhole ()
{ int mynum;

wormholeMutex.acquire ();
num = num + 1;
mynum = num;
while (mynum > next) nextGroup .wait(&wormholeMutex);

while (num < next){ three.wait (&wormholeMutex);}
else {three.broadcast();}

going_in = going_in +1;
if (going_in == 3) {next = next + 3; going_in = 0;

nextGroup.broadcast();}
wormholeMutex.release ();

}

long num = 0; next=3; // solution assumes no overflow
int going_in = 0;
Boolean deferred0 = false; deferred1 = false;

void EnterWormhole ()
{ int mynum;

wormholeMutex.acquire ();
num = num + 1;
mynum = num;
while (mynum > next) nextGroup .wait(&wormholeMutex);
while (num < next){ three.wait (&wormholeMutex);}
else deferred0 = true;
going_in = going_in +1;
if (going_in == 3) {next = next + 3; going_in = 0; deferred1 = true;}
wormholeMutex.release ();

if (deferred0) {deferred0 = false; three.broadcast();}
if (deferred1) { deferred1 = false; nextGroup .broadcast();}

}

Practice: Fine grain locking
Multiple threads inserting and deleting in a

linked list

2 4 6 8

103

head tail

A B

Solution Trick: Lock-Coupling
void InsertList (int key)
{

firstlock.Acquire();

if (key <= first−>data) {//insert as first, special case
firstlock.Release(); return;}

else{ ptr = first;

ptr−>lock.Acquire(); firstlock.Release(); next=ptr −>next;
while (next != null & key > next ->data) // Next isn’t locked - why OK??

{next−>lock.Acquire(); ptr−>lock.Release(); ptr=next;

next=ptr−>next;}
if (next == null) {//append after ptr; unlock ptr; }

else if (key <= next −>data)

{//insert between ptr and next; unlock ptr;}
}

Practice: Bridge Problem
Synchronize traffic over a narrow light-duty bridge on a public
highway. Traffic may only cross the bridge in one direction at a
time, and if there are ever more than 3 vehicles on the bridge at
one time, it will collapse under their weight. Each car is to be
represented by one thread, which executes the procedure
OneVehicle in order to cross the bridge:

OneVehicle(int direc) //direc is either 0 or 1;
//giving the direction in which the car is to cross

{
ArriveBridge (direc);
CrossBridge (direc);
ExitBridge (direc) ;
}

Ultimate Problem
Simulate an ultimate frisbee game where
each player is a thread. Start simple (e.g.
where both the disc and the players move
randomly around the field) and elaborate.

Eraser
Savage et al.

• Dynamic data race detection tool
• Checks that each shared memory access

follows a consistent locking discipline
• Data race – when 2 concurrent threads

access a shared variable and at least one
is a write and the threads use no explicit
synchronization to prevent simultaneous
access.

Lamport’s Happened-before
Previous work
• If 2 threads access

a shared variable
and the accesses
are not ordered by
happens-before
then potential race.

• Depends on
scheduler

lock(mutex)

v = v+1;

unlock(mutex)
lock(mutex)

v = v+1;

unlock(mutex)

Previous work
• If 2 threads access

a shared variable
and the accesses
are not ordered by
happens-before
then potential race.

• Depends on
scheduler

y=y+1;
lock(mutex)

v = v+1;

unlock(mutex)
lock(mutex)

v = v+1;

unlock(mutex)

y=y+1;

Previous work
• If 2 threads access

a shared variable
and the accesses
are not ordered by
happens-before
then potential race.

• Depends on
scheduler

y=y+1;

lock(mutex)

v = v+1;

unlock(mutex)

lock(mutex)

v = v+1;

unlock(mutex)

y=y+1;

Lockset Algorithm
• C(v) – candidate locks

for v
• locks-held(t) – set of

locks held by thread t

• Lock refinement

for each v, init C(v) to
set of all locks

On each access to v by
thread t:
C(v) = C(v) 3 locks-

held(t)
If C(v) = {} issue warning

Example

lock(mu1)

v=v+1
unlock(mu1)

lock(mu2)

v=v+1

unlock(mu2)

locks-held C(v)
{} {mu1, mu2}
{mu1}

{mu1}

{}

{mu2}
{}

{}

More Sophistication
• Initialization without

locks
• Read-shared data

• Read-write locking

• Don’t start until see a
second thread

• Report only after it
becomes write shared

• Change algorithm to
reflect lock types
On read of v by t:

C(v) = C(v) 3 locks- held(t)

On write of v by t:
C(v) = C(v) 3

write-locks- held(t)• False Alarms still
possible

Implementation
• Binary rewriting used

– Add instrumentation to call Eraser runtime
– Each load and store updates C(v)
– Each Acquire and Release call updates

locks-held(t)
– Calls to storage allocator initializes C(v)

• Storage explosion handled by table lookup
and use of indexes to represent sets
– Shadow word holds index number

Common False Alarms -
Annotations

• Memory reuse

• Private locks
• Benign races

if (some_condition) {

LOCK m DO
if (some_condition)
{stuff}

END
}

• EraseReuse – resets
shadow word to virgin
state

• Lock annotations

• EraserIgnoreOn()
EraserIgnoreOff()

Core Loop of Lock-Coupling

// ptr−>lock.Acquire(); has been done before loop

while (next != null & key > next->data)
{next −>lock.Acquire();
ptr−>lock.Release();
ptr=next;
next=ptr−>next;

}

2 4 6 8 null

ptr next

