
1

Reactive Synchronization
Lim and Agarwal

• Protocols
– Test and Set
– Queuing

• Waiting
– Spinning*
– Blocking
– Competitive

Ski Rental Analogy

• Dynamically choose between two policies 
such that the performance will be within a 
constant factor of the optimal off-line choice

• Rent or buy skis?
– Rent until you spend enough on rentals that you 

could have bought a pair, then buy

• Spin until you spin long enough to “pay for” 
cost of context switch to block, then block

Test and Set Variations
• Dealing with contention of Test&Set spinlocks: 

– Don’t execute test&set so much 
– Spin without generating bus traffic 

• Test&Set with Backoff 
– Insert delay between test&set operations (not too long)
– Exponential seems good (k* ci) 
– Not fair

• Test-and-Test&Set 
– Spin (test) on local cached copy until it gets invalidated, then issue 

test&set 
– Intuition: No point in trying to set the location until we know that it’s 

not set, which we can detect when it get invalidated... 
– Still contention after invalidate 
– Still not fair

Queue Lock Implementations

tail

Lock holder

Private
spinlock

Private
spinlock

Mellor-Crummey and 
Scott (MCS locks)



2

Contention Baseline Performance

Reactive Lock Algorithm
• Only one of TTSL or 

MCSL will be free
• Mode variable is hint
• To acquire:

– If mode appears to be 
TTS, spin with recheck of 
mode in the loop

– If mode appears to be 
Queue, recheck if get a 
retry signal

• To release: 
– Change mode if approp
– Queue to TTS, send retry 

signals
– release whichever

• Change policy
– TTS to Queue if # failed TS 

attempts > threshold
– Queue to TTS if empty queue 

for some # of acquires

• Generalize as consensus 
object

Performance of Reactive 
Lock



3

Switching Overheads


