
1

Things Change

• Myth that placement is irrelevant
• View that OS is concerned only with the

main-secondary levels of memory hierarchy
• New architectures / new views of the

memory “hierarchy”
• Scale - larger address spaces
• Workload assumptions

– New things to do with memory management

You are
here

Non-Traditional Memory
Hierarchies

• Rambus Memory - a power-aware hierarchy
• Compression Cache - Douglis
• Somebody-else’s memory (remote memory)

– NUMA (non-uniform memory access)
– DSM (distributed shared memory)

– GMS (global memory systems)

Broad Definition of Memory
Hierarchy

P

$

Memory

Secondary Memory

Faster, Smaller
More Expensive

Slower, Bigger,
Cheaper

Within
“Main”
Memory

Compression Cache (Douglis)

• Compressed pages in
memory form an
intermediate level in
the storage hierarchy
between uncompressed
pages and backing store

• Dynamically vary
amount for each
purpose.

uncompressed compressed

2

Compression Cache (Douglis)

• Compressed pages in
memory form an
intermediate level in
the storage hierarchy
between uncompressed
pages and backing store

• Dynamically vary
amount for each
purpose. Based on
Sprite.

uncompressed compressed

One-to-one Mapping of Pages to
Blocks in Swap File

Disk
frame

Physical Memory

...

Compression Cache

Disk

...LZRW1

Implementation Issues

• How to balance need for physical memory
between uncompressed pages (VM),
compression cache (CC), and file system
buffer cache (FB)?

• Variable size pages lose the simple mapping
to file blocks in swap file.

• Bookkeeping to find compressed pages and
maintain structure of CC.

3

Structure of CC

• Variable size circular buffer.
“Oldest” physical page in CC

• Pages are compressed onto tail of CC
• CC has it’s own “replacement” policy to reclaim

CC page frames - oldest clean page
• Grow or shrink CC: compare the age of the oldest

(LRU) page in each category of memory use with
bias of CC pages over VM over FB.
– Strength of bias determines growth rate. Application dependent

Interface to Backing Store

Disk

...LZRW1

Merge
Pad to fragment size
Write 32 Kbytes chunks

Bookkeeping & Overhead

• Hash table for
compression algorithm

• Page table changes
• Header (24 bytes) in

each physical page
frame used for CC

• Header (36 bytes) for
each virtual page
compressed into CC

PTE
8 bytes added

Performance

App Time
std

Time
CC

Speed
up

Comp
ratio

% Un

compare 16.14 6.04 2.68 31 .1

Sort
Random

26.17 28.51 .9 37 98

Gold
cold

45.3 56.4 .8 60 10

Bad
compression

Write I/O
intensive

4

Mach Microkernel

microkernel

User
task

File
server

External
pager

Fault Handler*

• Kernel does lookup of v.a. in task’s address
map −> object/offset

• Kernel tries to find if it’s resident in
object/offset hash table −> page, if
successful; otherwise request from pager.

• Kernel informs pmap of v.a. −> p.a.
mapping to install

*ignoring copy_on_write issues

Kernel - Pager Interactions
• Kernel to Pager

– pager_init,

– pager_data_request
– pager_data_write

write back

– pager_data_unlock,
– pager_create

accept new
responsibility

• Pager to Kernel
– pager_data_provided,

– pager_data_lock
requests cache access

– pager_flush_request
invalidate cache

– pager_clean_request
force cache writeback

– pager_cache allow caching

– pager_data_unavailable

Potential problems
• What if user-level pager doesn’t return data?

– timeout

• What if user-level pager doesn’t free memory?
– Timeout and page it out to a default pager

• What if user-level pager takes a page fault
itself?
– Reserve a memory pool for pager allocations.

