

Energy Efficiency Metrics

- Power consumption in *watts* (mW).
- Battery lifetime in *hours* (seconds, months).
- Energy consumption in *Joules* (mJ).
- Energy * Delay
- Watt per megabyte

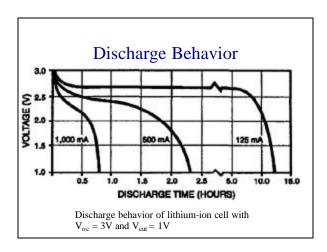
Physics Basics

- Voltage is amount of energy transferred from a power source (e.g., battery) by the charge flowing through the circuit.
- Power is the *rate* of energy transfer
- Current is the *rate* of flow of charge in circuit

Relationships

- Energy (Joules) = Power (watts) * Time (sec) E = P * t
- Power (watts) = Voltage (volts) * Current (amps) P = V * I
- Current (amps) = Voltage (volts) / Resistance (ohms) I = V / R

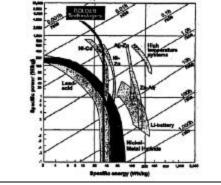
Battery Terminology


- Primary (non-reusable) and Secondary (rechargable)
- Voltages: V_{oc} (initial no-load) V (operating voltage under load) V_{cut} (cut-off when cell is considered discharged - 80% of V_{oc})
- Capacity expressed in amp-hours theoretical - based on amount of material in cell nominal - based on amp-hours obtained when discharged at constant current until V_{cut}

Battery Terminology

- Discharge time elapsed time until a fully charged cell reaches V_{cut}
- C rate discharge current expressed in amps relative to nominal capacity

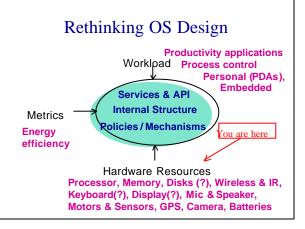
 example: for a lead acid battery with nominal capacity
 - example: for a lead acid battery with nominal capacity of 5Ah, a discharge rate of C/20 means 250mA of current.
- Specific energy Watt-hours per kilogram delivered at constant discharge
- Energy density of cell Watt-hours per liter

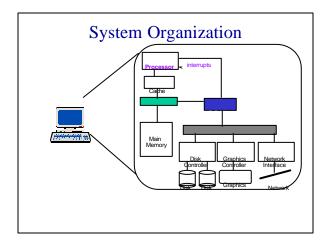

-							
Туре	Volt s	MAh	Rate	Wh/L	Wh/kg	cycles	loss
NiCd	1.2	1000	10C	150	60	1000	15%
NiMH	1.2	1200	2c	175	65	500	20%
PbAcid	2.0	400	С	80	40	200	2%
Li Ion	3.6	500	С	225	90	1200	8%
Li	2.5	450	C/2	200	110	200	1%

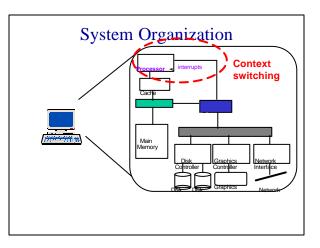
Battery Stuff

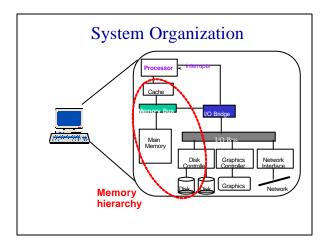
- Diffusion: At non-zero current, active material at electrode-electrolyte interface are consumed and replaced by new stuff moving in
- Polarization as current increases; At high enough current, diffusion is unable to compensate for depletion at electrode and cell voltage drops
- Recovery (due to diffusion) when current decreased

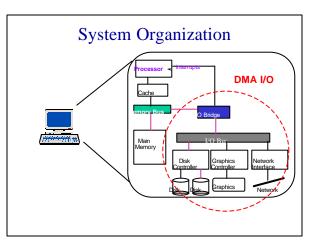
Ragone plot for different chemistries

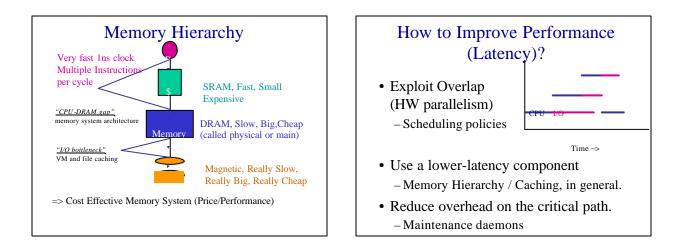

Pulsed Discharge

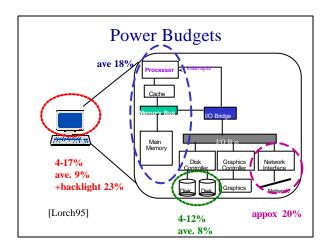

- Exploiting recovery ability to get more out of a battery
- Delivered specific energy can be increased by pulsed instead of constant discharge for a fixed power level.
- [Chiasserini and Rao 99] model & analysis
- Is bursty better for battery lifetimes?
 - Can durations of idle and busy states be optimized?

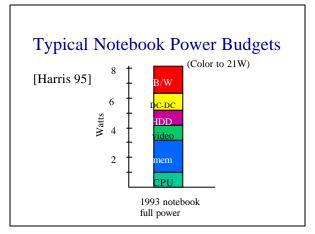

Pulsed Discharge Bipolar lead acid cell 13 Pulse = 3ms Rest = 22ms0. 125

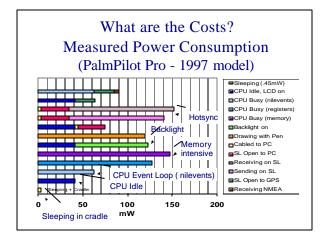


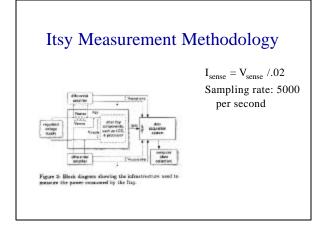

- Part of Intel Power Initiative
- Embedded battery controller that can be controlled by OS.
- Interface
 - Battery reports designed capacity, latest full charged capacity, remaining capacity.
 - Warning levels can be set. User notifications





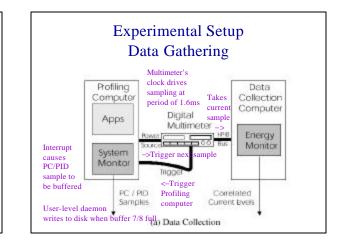






	CPU/M	cillor y	
[Tiwari94]			
486DX2 Instr	current	Memory op	current
	(mA)		(mA)
NOP	276	no access	5-77
Load	428	page hit	123
Store	522	page miss	248
Register add	314		
cache miss	216		

	rte Compactionis	
	Mirsi Natabook	Full State
learne anno 1	Average 3D Stiniterot* Poser (W)	Anesage 3D tVinilierch* Power (NI)
CPU & L2 Cathle	5	9,6
Memory Controller	1.4	1.6
System Memory	2	1.3
Chapman Subsystem	1.0	2.4
IO Subsystem	5	.6
Audio	S 7 -	1.8
Madam	<u> </u>	
Hard Drive	1.4	1.3
DVD Drive/CD	0	1.4
1394 Controllar	0	0
CardBus	2	2
LAN		
Peviar Supply	1.5	2.0
Charging	0	0
Cooling	0	0.0
Other		1.0
Base Total	13.9	24.8
LCD	2.8	4.3
SYSTEM TOTAL	167	29.1

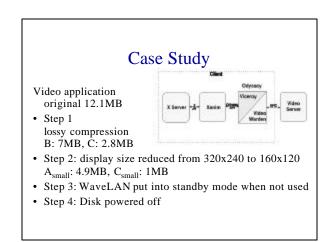


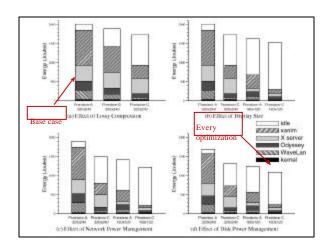
			/		ults	-			
					hay	11.922			ThinkPad
÷	Miers-Beschmark	Processor		eer (Wa peetheel		at Sy	ngy (Jan		Pener
1)	(2)	Valtage (3)	59.0 (4)	132.7	108.4	0.66	122.7 (8)	208.4	(Watta) (19)
1.	Sloop made	normal	0.010	0.010	0.311				0.312
2	felle mode	normal	0.094	0.158	0.162				3.30
5	Ids mode, LCD enabled	normal	0.154	9.164	0.195				8.15-7.74
6	Bury woit	normal	0.226	0.612	0.595	-4-40			8.30
5	117	roduced	0.177	0.314	0.452				
6	Boay walt, LCD easilied	normal.	0.263	2,447	0.632				10.4-13.3
T.	SC/48224421	reduced.	0.217	0.363	1000				
5	Addition loop	DOCTOR.	0.314	1.612	0.889	6.385	3,324	8.225	7.48
6		reduced	0.247	0.490	0.739	5.833	4.437	4.181	
_	Memory Test with h	astruction or	alis, MI	U. write	te buffer	and da	ta cache	-mabled	
0	In-cache read test	normal	0.385	0.765	1.178	0.228	0.201	0.191	7.81
1	Out of cashe read test	oormal	0.458	0.719	0.777	8.423	6.419	6.990	8.74
2	In-cache write test	oormal	0.363	0.762	1.139	0.227	0.200	0.189	7.43
3	Out-of-cashe write test	normal	0.731	1.290	L.ST2	3.854	3.555	3.877	1.30
-	Mer	ory Test with	h only h	astructi	in eachs	a dan bio	-	No. A CONTRACTOR	
4	In-cache reachtest	- marrial	0.594	D.800	1.003	3.717	3.591	3.187	_
ŝ	Out-of-male read-best	(aurroa)	0.523	0.840	1.063	3.853	3.415	3.320	
i.	lo-cache write test	marmal	0.995	1.075	1.183	3.838	3.018	3.817	
2	Out-of-males write tost	marrial	0.596	1.075	1.183	3.574	0.013	3.617	

- Statistical sampling approach

 Program counter/process (PC/PID) + correlated current readings.
 - Off-line analysis to generate profile
- Causality
 - Goal is to assign energy costs to specific application events / program structure
 - Mapped down to procedure level
 - System-wide. Includes all processes, including kernel

System Monitor Kernel Mods


- NetBSD
- recording of PC and PID
- fork(), exec(), exit() instrumented to record pathname associated with process
- new system calls to control profiling
- pscope_init(), pscope_start(), pscope_stop(), pscope_read() (user-level daemon, to disk)


Energy Analyzer

- Voltage essentially constant, only current recorded.
- Each sample is binned into process bucket and procedure within process bucket.
- Energy calculated by summing each bucket

$\mathbf{E} = \mathbf{V}_{\text{meas}} \sum_{t=0}^{n} \mathbf{I}_{t} \Delta t$

Process	Elapsed Time (#)		
/usr/odyssey/bin/xanim /usr/X11R6/bin/X	66.57 35.72	643.17 331.58	9.66 9.28
rnethed (kernel) Interrupts-MayeLAN	50.89	165.88	R.91
/usr/odyssey/bin/odyssey	12.19	123.40	10.12
		and the second residue of the second second	
Total Rnergy Usage Detail for procee	183,99	1592.75	8.68
Total Rhergy Usage Detail for proces	183,99	1592.75	8.68
Total Rhergy Usage Detail for procee Kernel-level procedures:	183.99 18 Interrupts-We Elapsed	1592.75 aveLAN Total	Average
Total Rhergy Usage Detail for proces	183.99 18 Interrupts-We	1592.75 sveLAN	
Total Rhergy Usage Detail for procee Kernel-level procedures:	183.99 18 Interrupts-We Elapsed Time (a)	1592.75 eveLAN Total Energy (J)	Avezage Power (W)
Total Rheryy Usage Detail for proces Kernel-level procedures: Procedure 	183.99 18 Interrupts-We Elapsed Time (a)	1592.75 sveLAN Total Energy (J)	Average Power (N)
Total Energy Usage Detail for procee Kernel-level procedures: Procedure	183.99 Is Interrupts-We Elapsed Time (a) 16.66	1592.75 aveLAS Trocal Zhergy (J) 147.38 3.90	Average Power (N) 8.85

