Rethinking OS Design
m\w(ﬂ IoaF’Iroductivity applications

d Process control
Personal (PDAs),
Embedded

Services & API

Metrics Internal Structure

Energy
efficiency

Policies / Mechanism

Hardware Resources
Processor, Memory, Disks (?), Wireless & IR,
Keyboard(?), Display(?), Mic & Speaker,
Motors & Sensors, GPS, Camera, Batteries

Workloads & Benchmarks

To discuss workload and measurement issues:
* representative benchmarks of workload
 appropriate metrics for target workload
« ability tomeasure

Traditional Benchmarks

¢ Microbenchmarks W

— what they do isn't useful by itself.
Example: null message roundtrip time
« Synthetic benchmarks

— artificial programs (possibly designed to match observed
behavior patterns). Often to get “controlled” experiments.

— correlate with user experience?
« Application suites lSPEeSS—SySTmrk-N+|
— Set of “real” programs. Selection?

— Inputs that drive them (scripted user interactions)?
— Source or no source? Instrumentation?

Itsy Results

i

Poarwar | Mot ey | Lo’
@ e | i dpnctied Ml al pesifnd M E
D T} w 4

[| w | [T i
i TESE AR ol [- | — - T
1 pomg | 0038 kN AN
5 | wasd e Coea | ——] - oo T3 |
i [R R i

5| | rerd | T | - I

© | Doy wali, LoD caakhn | moresl | G063 I WA
T rachcsd | BAIT e I e e

T | Al o I LA WA | B0 | BAW

¥ bl | B3R 5830 | dfT | Ll

e il mnd dirs cadke masled

Weawiry Toal ik Laatructlan
= - .

Ay e am |
|wina | adza eam |
a1 fame onim
JETTTRETTTREVE i
whlnd 2
3 | B1F | 3398 [RiBT
TRETH RERITREST]
LAES | 2830 | 2008 | RELT
L83 | 574 | | mEa7

| | o
nse 1At
wges | 1am

Application Suites

* Fixed demand - constant demand over time.
Multimedia. Example: DVD player
— sufficiency

» Variable demand - interactive.
Productivity applications with user input:
Word!™, Excel'™, Netscape!™, PhotoShop™
Entertainment: Tetris, Quake, MP3 player
— common to model infinitely fast user
—variability in load

OS Abstractions and API’'s

Abstract machine environment. The OS defines a set
of logical resources (objects) and operations on
those objects (an interface for the use of those
objects).

Hides the physical hardware.

Invoking Kernel Services-
Svstem Call Interface

UNIX
« fork, exec, exit, join
 open, close, read, seek

User Programs

Syscalls
oS
Kernd

PalmOS

* EvtGetEvent

* MemHandlelL ock

» SndPlaySystemSound

Machine instructions

HW

» For auser to do something
"privileged", it must

g

invoke an OS procedure ;_ Kemel mutk 4
providing that service. ::‘I’I‘;il'l"' Trcrmup
A System call. hendler

L]

Kernel

/'Trap j Special trap instruction

Davics
T that saves essential
ETT

context, causes a mode

change and transfers to
rRowines” @ handler.

Idleness?

Defining the Process Abstraction
Unit of scheduling
One (or more*) sequential threads of control
— program counter, register values, call stack
Unit of resource allocation
— address space (code and data), open files
— sometimes called tasks or jobs

Operations on Processes: fork (clone-style creation),
wait (parent on child), exit (self-termination), signal,
kill. Process-related System Calls.

Process State Transitions

Create process

Event generated
Grant resource request
A Make ReadyToRun

4
Yield or get
preempted

Running
in kernel

Process Mechanisms
Context Switching

« When a process is running, its program counter,
register values, stack pointer, etc. are contained in
the hardware registers of the CPU. The process
has direct control of the CPU hardware for now.

* When aprocess is not the one currently running,

its current register values are saved in a process
descriptor data structure (PCB - process control
block)

» Context switching involves moving state between

CPU and various processes’ PCBs by the OS.

Process M echanisms
PCBs on Queues

» PCB data structure in kernel memory

represents a process (allocated on process
creation, deall ocated on termination).

« PCBsreside on variousstate queues (including
adifferent queue for each “cause” of waiting)
reflecting the process' s state.

» Asaprocess executes, the OS moves its PCB

from queue to queue (e.g. from the “waiting on
1/0” queue to the “ready to run” queue).

PCBs & Queues

Stk

Stk

process.identifior

B
s

BC

Stk
P P
proce: identifior

BC

B
PC

Stack-Pointer (SP).

Stack-Pointer (SP).

Stack-Pointer (SP).

general nurnose reg.

general nurnose reg.

general nurnose req.

owner userid

owner userid

owner userid

open fileg

open fileg

open files

scheduling { scheduling { scheduling parameter:
memory mgt stuff memory mgt stuff memory mgt stuff
queue pir queue pir queue pir
other stuff other stuff other stuff
’,Aocr e /
h(.aad pir wi 0 head pir
tail ptr — tail ptr —
processes on
Ready Queue [Ready Queue | Wait on Disk Read

(Traditional) Unix Abstractions
» Processes - thread of control with context
 Files-anamed linear stream of data bytes

 Sockets - endpoints of communication
between unrelated processes

Unix Process Model

» Simple and powerful primitives for process creation and

initialization.

— fork syscall creates a child process as (initially) a clone of the parent
— parent program runsin child process to set it up for exec

— child can exit, parent can wait for child to do so.

¢ Rich facilities for controlling processes by
asynchronous signals.
— notification of internal and/or external events to processes or groups
— thelook, feel, and power of interrupts and exceptions
— default actions: stop process, kill process, dump core, no effect

— user-level handlers

Files (& everything else)
Descriptors are small unsigned integers used as handles to
manipulate objects in the system, al of which resemble files.
open with the name of afile returns a descriptor

read and write, applied to a descriptor, operate a the current
position of the file offset. Iseek repositions it.

Pipes are unnamed, unidirectional /O stream created by pipe.

Devices are specid files, created by mknod, withioctl used for
parameters of specific device.

Sockets introduce 3 forms of sendmsg and 3 forms of recvmsg
syscalls.

Unix Process Control

The fork syscall returnsa

zero to the child and the

child ;tJroos ID tothe
enl

Fork creates an exact
copy of the parent

int pid; process,
int atusfF 0;

if (pid # fork() { — Parent useswait tod
I* parent */ until the child exits; we;‘l’?

— . -
.....) returns child pid and
id = wait(& status);
b e pi (). status.
1% child */ \Wait Vari_af;mscﬁ_llglvwait
,,,,, _ on a specific child, or
\ exit(status); notification of stops and
lother signals.

IChild process
status back to % on
lexit, to report
s iccess/failure.

Child Discipline

» After afork, the parent program has complete
control over the behavior of its child.
e The child inherits its execution environment from
the parent...but the parent program can change it.
— sets bindings of file descriptors with open, close dup
— pipe sets up data channels between processes
» Parent program may cause the child to execute a
different program, by calling exec* in the child

context.

Exec, Execve, etc.

Children should have lives of their own.
Exec* “boots’ the child with a different executable
image.
— parent program makes exec* syscall (in forked child context)
to run a program in a new child process

— exec* overlays child process with a new executable image

— restarts in user mode at predetermined entry point (e.g., crt0)
— no return to parent program (it's gone)

— arguments and environment variables passed in memory

— file descriptors etc. are unchanged

Fork/Exi

forkparent

OSresources

ait Example

Child process sarts as

Rk child cfone of parent: increment
refcountson shared
resources.

Harent and child execute
idependently: memory

ates and resources may

verge.

it dn exit, release
femory and

borement refcount:

on shared resources.

hild enters zombie state:
ocessis dead and most
Tpsources are released, but
ocess descriptor remains until
parent reaps exit status via wait

Join Scenarios

» Several cases must be considered for join
(e.g., exit/wait).

— What if the child exits before the parent joins?
« “Zombie” process object holds child status and stats.

— What if the parent continues to run but never joins?
* How not to fill up memory with zombie processes?

— What if the parent exits before the child?
* Orphans become children of init (process 1).

— What if the parent can't afford to get “stuck” on ajoin?
* Unix makes provisions for asynchronous notification.

Signals

« Signals notify processes of internal or externa events.
— the Unix software equivaent of interrupts/exceptions

— only way to do something to a process “from the
outside”

— Unix systems define a small set of signd types

* Examples of signa generation:
— keyboard ctrl-c and ctrl-z signal the foreground process
— synchronous fault notifications, syscall errors
— asynchronous notifications from other processes via kill
— IPC events (SIGPIPE, SIGCHLD)

— aarm notifications

Process Handling of Signals

1. Each signal type has a system-defined default action.

abort and dump core (SIGSEGV, SIGBUS, etc.)
ignore, stop, exit, continue
2. A process may choose to block (inhibit) or ignore
some signal types.

3. The process may choose to catch some signal types

by specifying a (user mode) handler procedure.
specify alternate signal stack for handler to run on
system passes interrupted context to handler
handler may munge and/or return to interrupted context

Using Signals

int alarmflag=0;

alarmHandler ()

{ printf(“Anaarm clock signal was received\n”);
alarmflag = 1;

}

main()

{

signal (§I GALRM, alarmHandrer);

al arm(3‘); printf (“ Alarm has bee%‘
while (lalarmflag) pause (); = buspends caller
printf (“ Back from alarm signal handler\n”); untsigna—

Y et Another User’'s View

main@rge argv) childhandler()

int argg char* argv[]; { int childPid, childStatus

{ i childPid = wait (&childStatus);
signal (SIGCHLD,childhandler); printf (“child done in time\n”);
pid = fork (); » exit;

if (pid == 0) /*child*/
{ execvp (argv[2], &argv[2]); }
else
{sleep (5);
printf(* child too slowAn”);
kill (pid, SIGINT);
- SIGCHLD sent
by child on termination;

lif SG_IGN, dezombie |

File System Calls

Open files are named to
by an integer file

if ((fd = open(*./z0t”, O_TRUNC | O_RDWR) == -1) {
perror(“openfailed”);
exit(1);

While(read(0, bif, BUFSIZE)) {

descriptor. Hathnames may be
relative to process

C :afzbufquSZEj; rrentdirectory.

1 i

Hrocess passes status back

Handard descriptors (0, 1, 2)

f@r input, output, error
npessages (stdin, stdout,
derr)

i\ (write(fd buf, BUFSIZE) = BUFSIZI i
(write(perrcur(“writeE%a'le\:l"); t parmtgnlzlt,torepon
exit(1);
}
M \ —

Hrocessdoesnot specify
cprrent file offset: the
lem remembers it,

File Sharing Between
Parent/Child

ainfnt argg char *arg(]) {
char c;
int fdrd, fwt;
if ((fdrd = openfargv[1], O_RDONLY)) == 1)
it(1);
if ((Fdwt = i)::ﬂ([aw[Z], 0666)) == 1)
exit(1);

fork();
for () {
if (readfdrd, &c, 1) 1= 1)
exit(0);
} write(fdwt, &c, 1);

[Bach]

Sharing Open File Instances

== _/-
ool 4
prdoess group
parent ™ penpip
bignal state
T
children

—

Iy

v
D _/'
process 1D »

-
ol e

bignal sizte
T
chilcren
processfile
process descriptors
objects

d
filetableentry

g .
>
shared file
(inodeorvnodg

system open
file table

File Directories

« Directories are (guess what?) a type of file.

¢ A hierarchy of directories - afilesystem - has aroot (/)

» Pathnames are absolute or relative to working
directory, ., ..

« root filesystem may have roots of other filesystems
mounted into the hierarchy.

« Directories manipulated by link(), ulink(), mkdir(),
rmdir ().

Devices

Various devices are abstracted asspecial files.

» Named by afilename.

« Accessed viaopen(), close(), read(),and
write()

« ldiosynchratic operations of the device are
accessthrough ioctl() calls.

Popular Embedded / RT OS's

Microsoft WinCE - WIN32 “lite” API
WindRiver VxWorks

» pSOS (recently bought out by WindRiver)
Green HillsINTEGRITY RTOS
Embedded Linux - e.g., Hard Hat Linux
(Montevista software)

» embedded Java platforms with Jini (for
accessto distr. services)

ACPI
Advanced Computer Power Initiative
Brought to you by Intel, Microsoft, and Toshiba

and designed to enable OS Directed Power
Management (OSPM).

» Goal isto be able to move power management
into software for more sophisticated policies

¢ Abstract OS-HW interface

Transmeta Crusoe
Power States
ACPI Power States
G: global states apply to [R —
entire system and are _AGPASpnm S | Fowersiie | SORAM | Genermsr
o GO (o kings ©0 Mormal Hoemal arming
visible to user 5 PR R Parsig
D: states of individual [t Otk Slart | Sl raliesh [arrsings
devices 1 DeepSleep | Selrefrmh | Clocks sapped
. - G5 (SleepEng [xrp Sheep Sl ey FLL i ghoun
S: sleeping states within 1752 [Sespndl 10 BLOKT) on Sl refresh | P11 slvar own
the G1 state GUSD Gepemd inRAME | OF | Selfreliesh | FLL shat down
C: CPU states Cisibeuindty | OF | or | o
CER5 [Sall alf) it T [
gi;ﬁz:.l“xxc?::jm x 0 [Mechardca) off} i 1 i)

SetSystemPowerState OSDM: OnNow
Transmeta Crusoe Power _ initate sieep state, query apps(?)
SetThreadExecutionState
— specifies level of support needed
(e.g. display required)
WM_POWERBROADCAST

Crusog Processor Typical Poswer Disspation - Model TS 00

S0 T PAHE P
Parmmedar LT K hirs — amessage notlfylng of power state
I } 1 changes to which applications can

DI apenting powes LEW 1.2 respond
NP3 operaing prewe 10w 1.3 SetWaitableTimer

Ao Hall poses a0 4 — ensure PC isawake at scheduled time

D k St s 03 1A REqUESDeVICBWd(eUp

P Sleey iy noxw 1 ReguestWakeupL atency - to specify latency requirements

T oW [| GetSystemPowerStatus and GetDevicePowerState

PowerScope [Flinn]

« Statistical sampling approach
— Program counter/process (PC/PID) + correlated
current readings.
— Off-line analysis to generate profile
o Causality
— Goal isto assign energy costs to specific
application events/ program structure
— Mapped down to procedure level
— System-wide.
Includes all processes, including kernel

Experimental Setup
Data Gathering

Multimeter's
W clock drives Data
o= | sampling at sl
Compuler| oo 1.6ms T3 | Collaction
i) current] oIt
ApQps L sample|
PR Kallirrearery - s
P [T —alnt| | Energy
Interrupt YT 251 Bu hanitce
causes SYSIEM | | - >Trigger nexfsample
PCIPID]
sampleto [/1 | i
be buffered < Trigger
FCJAD Profiling LILEN
LAk T Ehects
User-level daemon | = computer e

writes to disk when guffer 7/8 fli”ll Dala Colbection

System Monitor Kernel Mods

* NetBSD

* recording of PC and PID

fork(), exec(), exit() instrumented to record

pathname associated with process

* new system calls to control profiling

* pscope_init(), pscope_start(), pscope_stop(),
pscope_read() (user-level daemon, to disk)

Energy Anayzer

¢ Voltage essentially constant,
only current recorded.

» Each sampleis binned into process bucket
and procedure within process bucket.

« Energy calculated by summing each bucket

E=ViyesZ |y At
t=0

10

Enstgy isage Dstall for process Interrupte-WavalLAR

el proosdures:

P g

_xfsctéabutter] 1.
i Tend '] q,h
e lien o130 4,9
Pl laey 2.34 9,

Case Study

Video application {]
origina 12.1MB

e Stepl —
lossy compression
B: 7MB, C: 2.8MB

« Step 2: display size reduced from 320x240 to 160x120
Agnal: 49MB, Cyy: IMB

« Step 3: WaveL AN put into standby mode when not used

« Step 4: Disk powered off

o Barves P Enaw O [N AR

Enarpp ladami

i PRec o Theds ly Siee

Every FEFED i

=+ OptumrzZarormn T R v
\E

ey | dades|
i H ¥
Uy | Jrvskom |

11

