
1

Rethinking OS Design

Metrics

Workload

Hardware Resources

Services & API
Internal Structure

Policies / MechanismsEnergy
efficiency

Processor, Memory, Disks (?), Wireless & IR,
Keyboard(?), Display(?), Mic & Speaker,
Motors & Sensors, GPS, Camera, Batteries

Productivity applications
Process control

Personal (PDAs),
Embedded

You are here

Workloads & Benchmarks

To discuss workload and measurement issues:
• representative benchmarks of workload
• appropriate metrics for target workload
• ability to measure

Traditional Benchmarks

• Microbenchmarks
– what they do isn’t useful by itself.

Example: null message roundtrip time

• Synthetic benchmarks
– artificial programs (possibly designed to match observed

behavior patterns). Often to get “controlled” experiments.
– correlate with user experience?

• Application suites
– Set of “real” programs. Selection?
– Inputs that drive them (scripted user interactions)?
– Source or no source? Instrumentation?

Winbench, lmbench

SPEC95, Sysmark NT

Itsy Results

2

Application Suites
• Fixed demand - constant demand over time.

Multimedia. Example: DVD player
– sufficiency

• Variable demand - interactive.
Productivity applications with user input:
Word tm, Exceltm, Netscapetm, PhotoShoptm

Entertainment: Tetris, Quake, MP3 player
– common to model infinitely fast user

– variability in load

OS Abstractions and API’s

Abstract machine environment. The OS defines a set
of logical resources (objects) and operations on
those objects (an interface for the use of those
objects).

Hides the physical hardware.

Invoking Kernel Services -
System Call Interface

User Programs

OS
Kernel

HW

Syscalls

Machine instructions

UNIX

• fork, exec, exit, join
• open, close, read, seek

PalmOS
• EvtGetEvent

• MemHandleLock
• SndPlaySystemSound

• For a user to do something
"privileged", it must
invoke an OS procedure
providing that service.
A System Call .

Trap
Handler
RETT

User Program

Service
Routines

Kernel

ld
add
st

TA 6
beq
ld

sub
bne

• Special trap instruction
that saves essential
context, causes a mode
change and transfers to
a handler.

3

Idleness?
Defining the Process Abstraction

• Unit of scheduling
• One (or more*) sequential threads of control

– program counter, register values, call stack

• Unit of resource allocation
– address space (code and data), open files
– sometimes called tasks or jobs

• Operations on Processes: fork (clone-style creation),
wait (parent on child), exit (self-termination), signal,
kill. Process-related System Calls.

Process State Transitions

Ready

Running
in kernel

Blocked

Grant resource request
Make ReadyToRun

Make Running
Schedule

Sleep
Request resource

Yield or get
preempted

Create process

Running
user mode

interrupt or
exception Finish

EvtGetEvent

Event generated

Busy Busy

Process Mechanisms
Context Switching

• When a process is running, its program counter,
register values, stack pointer, etc. are contained in
the hardware registers of the CPU. The process
has direct control of the CPU hardware for now.

• When a process is not the one currently running,
its current register values are saved in a process
descriptor data structure (PCB - process control
block)

• Context switching involves moving state between
CPU and various processes’ PCBs by the OS.

Process Mechanisms
PCBs on Queues

• PCB data structure in kernel memory
represents a process (allocated on process
creation, deallocated on termination).

• PCBs reside on various state queues (including
a different queue for each “cause” of waiting)
reflecting the process’s state.

• As a process executes, the OS moves its PCB
from queue to queue (e.g. from the “waiting on
I/O” queue to the “ready to run” queue).

4

process state
process identifier
PC
Stack Pointer (SP)
general purpose reg
owner userid
open files
scheduling parameters
memory mgt stuff
queue ptrs
...other stuff...

PCBs & Queues
process state
process identifier
PC
Stack Pointer (SP)
general purpose reg
owner userid
open files
scheduling parameters
memory mgt stuff
queue ptrs
...other stuff...

process state
process identifier
PC
Stack Pointer (SP)
general purpose reg
owner userid
open files
scheduling parameters
memory mgt stuff
queue ptrs
...other stuff...

head ptr
tail ptr

head ptr
tail ptr

Ready Queue Wait on Disk Read

Processor idle
when no
processes on
Ready Queue

(Traditional) Unix Abstractions

• Processes - thread of control with context

• Files - a named linear stream of data bytes

• Sockets - endpoints of communication
between unrelated processes

Unix Process Model
• Simple and powerful primitives for process creation and

initialization.
– fork syscall creates a child process as (initially) a clone of the parent
– parent program runs in child process to set it up for exec
– child can exit, parent can wait for child to do so.

• Rich facilities for controlling processes by
asynchronous signals.
– notification of internal and/or external events to processes or groups
– the look, feel, and power of interrupts and exceptions
– default actions: stop process, kill process, dump core, no effect
– user-level handlers

Files (& everything else)
• Descriptors are small unsigned integers used as handles to

manipulate objects in the system, all of which resemble files.
• open with the name of a file returns a descriptor
• read and write, applied to a descriptor, operate at the current

position of the file offset. lseek repositions it.
• Pipes are unnamed, unidirectional I/O stream created by pipe.
• Devices are special files, created by mknod, with ioctl used for

parameters of specific device.
• Sockets introduce 3 forms of sendmsg and 3 forms ofrecvmsg

syscalls.

5

Unix Process Control

int pid;
int status = 0;

if (pid = fork()) {
/* parent */
…..
pid = wait(&status);

} else {
/* child */
…..
exit(status);

}

Parent uses wait to sleep
until the child exits; wait
returns child pid and
status.

Wait variants allow wait
on a specific child, or
notification of stops and
other signals.

Child process passes
status back to parent on
exit, to report
success/failure.

The fork syscall returns a
zero to the child and the
child process ID to the
parent.

Fork creates an exact
copy of the parent
process.

Child Discipline

• After a fork, the parent program has complete
control over the behavior of its child.

• The child inherits its execution environment from
the parent...but the parent program can change it.
– sets bindings of file descriptors with open, close, dup
– pipe sets up data channels between processes

• Parent program may cause the child to execute a
different program, by calling exec* in the child
context.

Exec, Execve, etc.
• Children should have lives of their own.
• Exec* “boots” the child with a different executable

image.
– parent program makes exec* syscall (in forked child context)

to run a program in a new child process
– exec* overlays child process with a new executable image
– restarts in user mode at predetermined entry point (e.g., crt0)
– no return to parent program (it’s gone)
– arguments and environment variables passed in memory
– file descriptors etc. are unchanged

Fork/Exit/Wait Example

OS resources

forkparent fork child

wait exit

Child process starts as
clone of parent: increment
refcounts on shared
resources.

Parent and child execute
independently: memory
states and resources may
diverge.

On exit , release
memory and
decrement refcounts
on shared resources.

Child enters zombie state:
process is dead and most
resources are released, but
process descriptor remains until
parent reaps exit status via wait.

Parent sleeps in wait
until child stops or
exits.

“join”

6

Join Scenarios
• Several cases must be considered for join

(e.g., exit/wait).
– What if the child exits before the parent joins?

• “Zombie” process object holds child status and stats.

– What if the parent continues to run but never joins?
• How not to fill up memory with zombie processes?

– What if the parent exits before the child?
• Orphans become children of init (process 1).

– What if the parent can’t afford to get “stuck” on a join?
• Unix makes provisions for asynchronous notification.

Signals
• Signals notify processes of internal or external events.

– the Unix software equivalent of interrupts/exceptions
– only way to do something to a process “from the

outside”
– Unix systems define a small set of signal types

• Examples of signal generation:
– keyboard ctrl-c and ctrl-z signal the foreground process
– synchronous fault notifications, syscall errors
– asynchronous notifications from other processes via kill
– IPC events (SIGPIPE, SIGCHLD)
– alarm notifications signal == “upcall”

Process Handling of Signals

1. Each signal type has a system-defined default action.
abort and dump core (SIGSEGV, SIGBUS, etc.)
ignore, stop, exit, continue

2. A process may choose to block (inhibit) or ignore
some signal types.

3. The process may choose to catch some signal types
by specifying a (user mode) handler procedure.

specify alternate signal stack for handler to run on
system passes interrupted context to handler
handler may munge and/or return to interrupted context

Using Signals

int alarmflag=0;
alarmHandler ()
{ printf (“An alarm clock signal was received\n”);

alarmflag = 1;
}
main()
{

signal (SIGALRM, alarmHandler);
alarm(3); printf (“Alarm has been set\n”);
while (!alarmflag) pause ();
printf (“Back from alarm signal handler\n”);

}

Suspends caller
until signal

Instructs kernel to
send SIGALRM in
3 secondsSets up signal handler

7

Yet Another User’s View
main(argc, argv)

int argc; char* argv[];
{

int pid;
signal (SIGCHLD,childhandler);

pid = fork ();

if (pid == 0) /*child*/
{ execvp (argv[2], &argv[2]); }

else

{sleep (5);
printf(“child too slow\n”);

kill (pid, SIGINT);
}

}

childhandler()
{ int childPid, childStatus;

childPid = wait (&childStatus);
printf (“child done in time\n”);
exit;

}

SIGCHLD sent
by child on termination;
if SIG_IGN, dezombie

Collects status

File System Calls

char buf[BUFSIZE];
int fd ;

if ((fd = open(“../ zot”, O_TRUNC | O_RDWR) == -1) {
perror(“open failed”);
exit(1);

}
while(read(0, buf, BUFSIZE)) {

if (write(fd, buf, BUFSIZE) != BUFSIZE) {
perror(“write failed”);
exit(1);

}
}

Pathnames may be
relative to process
current directory.

Process does not specify
current file offset: the
system remembers it.

Process passes status back
to parent on exit , to report
success/failure.

Open files are named to
by an integer file
descriptor.

Standard descriptors (0, 1, 2)
for input, output, error
messages (stdin, stdout,
stderr).

File Sharing Between
Parent/Child

main(int argc, char *argv[]) {
char c;
int fdrd , fdwt;

if ((fdrd = open(argv[1], O_RDONLY)) == -1)
exit(1);

if ((fdwt = creat([argv[2], 0666)) == -1)
exit(1);

fork();

for (;;) {
if (read(fdrd , &c, 1) != 1)

exit(0);
write(fdwt, &c, 1);

}
}

[Bach]

Sharing Open File Instances

shared seek
offset in shared
file table entry

system open
file table

user ID
process ID

process group ID
parent PID

signal state
siblings
children

user ID
process ID

process group ID
parent PID

signal state
siblings
children

process file
descriptorsprocess

objects

shared file
(inodeorvnode)

child

parent

8

File Directories

• Directories are (guess what?) a type of file.
• A hierarchy of directories - a filesystem - has a root (/)

• Pathnames are absolute or relative to working
directory, ., ..

• root filesystem may have roots of other filesystems
mounted into the hierarchy.

• Directories manipulated by link(), ulink(), mkdir(),
rmdir().

Devices

Various devices are abstracted as special files.
• Named by a filename.
• Accessed via open(), close(), read(),and

write()
• Idiosynchratic operations of the device are

access through ioctl() calls.

Popular Embedded / RT OS’s
• Microsoft WinCE - WIN32 “lite” API
• WindRiver VxWorks
• pSOS (recently bought out by WindRiver)
• Green Hills INTEGRITY RTOS
• Embedded Linux - e.g., Hard Hat Linux

(Montevista software)
• embedded Java platforms with Jini (for

access to distr. services)

ACPI
Advanced Computer Power Initiative

Brought to you by Intel, Microsoft, and Toshiba
and designed to enable OS Directed Power
Management (OSPM).

• Goal is to be able to move power management
into software for more sophisticated policies

• Abstract OS-HW interface

9

Power States

G: global states apply to
entire system and are
visible to user

D: states of individual
devices

S: sleeping states within
the G1 state

C: CPU states G2-S5
Soft off

Legacy
G0-S0

working

G3
mech off

G1
Sleep

S1
S2 S3

S4

Dxmodem x DxHDD x
Dxcdrom x Cxcpu

wake
up

Transmeta Crusoe
ACPI Power States

Transmeta Crusoe Power
OSDM: OnNow

Applications

OS

HW

OnNow WIN32 ext

ACPI Spec

SetSystemPowerState
– initiate sleep state, query apps(?)

SetThreadExecutionState
– specifies level of support needed

(e.g. display required)
WM_POWERBROADCAST

– a message notifying of power state
changes to which applications can
respond

SetWaitableTimer
– ensure PC is awake at scheduled time

RequestDeviceWakeup

RequestWakeupLatency - to specify latency requirements
GetSystemPowerStatus and GetDevicePowerState

10

PowerScope [Flinn]

• Statistical sampling approach
– Program counter/process (PC/PID) + correlated

current readings.

– Off-line analysis to generate profile

• Causality
– Goal is to assign energy costs to specific

application events / program structure

– Mapped down to procedure level
– System-wide.

Includes all processes, including kernel

Experimental Setup
Data Gathering

Multimeter’s
clock drives
sampling at
period of 1.6ms

<−Trigger
Profiling
computer

Takes
current
sample

−>

Interrupt
causes
PC/PID
sample to
be buffered

User-level daemon
writes to disk when buffer 7/8 full

−>Trigger next sample

System Monitor Kernel Mods

• NetBSD
• recording of PC and PID
• fork(), exec(), exit() instrumented to record

pathname associated with process
• new system calls to control profiling
• pscope_init(), pscope_start(), pscope_stop(),

pscope_read() (user-level daemon, to disk)

• Voltage essentially constant,
only current recorded.

• Each sample is binned into process bucket
and procedure within process bucket.

• Energy calculated by summing each bucket

E = Vmeas S It Dt

Energy Analyzer

t=0

n

11

Case Study

Video application
original 12.1MB

• Step 1
lossy compression
B: 7MB, C: 2.8MB

• Step 2: display size reduced from 320x240 to 160x120
Asmall: 4.9MB, Csmall: 1MB

• Step 3: WaveLAN put into standby mode when not used

• Step 4: Disk powered off

Base case
Every
optimization

