
1

Rethinking OS Design

Metrics

Workload

Hardware Resources

Services & API
Internal Structure

Policies / MechanismsEnergy
efficiency

Processor, Memory, Disks (?), Wireless & IR,
Keyboard(?), Display(?), Mic & Speaker,
Motors & Sensors, GPS, Camera, Batteries

Productivity applications
Process control

Personal (PDAs),
Embedded

You are here

(Traditional) Unix Abstractions

• Processes - thread of control with context

• Files - a named linear stream of data bytes

• Sockets - endpoints of communication
between unrelated processes

Unix Process Control

int pid;
int status = 0;

if (pid = fork()) {
/* parent */
…..
pid = wait(&status);

} else {
/* child */
…..
exit(status);

}

Parent uses wait to sleep
until the child exits; wait
returns child pid and
status.

Wait variants allow wait
on a specific child, or
notification of stops and
other signals.

Child process passes
status back to parent on
exit, to report
success/failure.

The fork syscall returns a
zero to the child and the
child process ID to the
parent.

Fork creates an exact
copy of the parent
process.

Fork/Exit/Wait Example

OS resources

forkparent fork child

wait exit

Child process starts as
clone of parent: increment
refcounts on shared
resources.

Parent and child execute
independently: memory
states and resources may
diverge.

On exit , release
memory and
decrement refcounts
on shared resources.

Child enters zombie state:
process is dead and most
resources are released, but
process descriptor remains until
parent reaps exit status via wait.

Parent sleeps in wait
until child stops or
exits.

“join”

2

Join Scenarios
• Several cases must be considered for join

(e.g., exit/wait).
– What if the child exits before the parent joins?

• “Zombie” process object holds child status and stats.

– What if the parent continues to run but never joins?
• How not to fill up memory with zombie processes?

– What if the parent exits before the child?
• Orphans become children of init (process 1).

– What if the parent can’t afford to get “stuck” on a join?
• Unix makes provisions for asynchronous notification.

Signals
• Signals notify processes of internal or external events.

– the Unix software equivalent of interrupts/exceptions
– only way to do something to a process “from the

outside”
– Unix systems define a small set of signal types

• Examples of signal generation:
– keyboard ctrl-c and ctrl-z signal the foreground process
– synchronous fault notifications, syscall errors
– asynchronous notifications from other processes via kill
– IPC events (SIGPIPE, SIGCHLD)
– alarm notifications signal == “upcall”

Process Handling of Signals

1. Each signal type has a system-defined default action.
abort and dump core (SIGSEGV, SIGBUS, etc.)
ignore, stop, exit, continue

2. A process may choose to block (inhibit) or ignore
some signal types.

3. The process may choose to catch some signal types
by specifying a (user mode) handler procedure.

specify alternate signal stack for handler to run on
system passes interrupted context to handler
handler may munge and/or return to interrupted context

Using Signals

int alarmflag=0;
alarmHandler ()
{ printf (“An alarm clock signal was received\n”);

alarmflag = 1;
}
main()
{

signal (SIGALRM, alarmHandler);
alarm(3); printf (“Alarm has been set\n”);
while (!alarmflag) pause ();
printf (“Back from alarm signal handler\n”);

}

Suspends caller
until signal

Instructs kernel to
send SIGALRM in
3 secondsSets up signal handler

3

Yet Another User’s View
main(argc, argv)

int argc; char* argv[];
{

int pid;
signal (SIGCHLD,childhandler);

pid = fork ();

if (pid == 0) /*child*/
{ execvp (argv[2], &argv[2]); }

else

{sleep (5);
printf(“child too slow\n”);

kill (pid, SIGINT);
}

}

childhandler()
{ int childPid, childStatus;

childPid = wait (&childStatus);
printf (“child done in time\n”);
exit;

}

SIGCHLD sent
by child on termination;
if SIG_IGN, dezombie

Collects status

File System Calls

char buf[BUFSIZE];
int fd ;

if ((fd = open(“../ zot”, O_TRUNC | O_RDWR) == -1) {
perror(“open failed”);
exit(1);

}
while(read(0, buf, BUFSIZE)) {

if (write(fd, buf, BUFSIZE) != BUFSIZE) {
perror(“write failed”);
exit(1);

}
}

Pathnames may be
relative to process
current directory.

Process does not specify
current file offset: the
system remembers it.

Process passes status back
to parent on exit , to report
success/failure.

Open files are named to
by an integer file
descriptor.

Standard descriptors (0, 1, 2)
for input, output, error
messages (stdin, stdout,
stderr).

File Sharing Between
Parent/Child

main(int argc, char *argv[]) {
char c;
int fdrd , fdwt;

if ((fdrd = open(argv[1], O_RDONLY)) == -1)
exit(1);

if ((fdwt = creat([argv[2], 0666)) == -1)
exit(1);

fork();

for (;;) {
if (read(fdrd , &c, 1) != 1)

exit(0);
write(fdwt, &c, 1);

}
}

[Bach]

Sharing Open File Instances

shared seek
offset in shared
file table entry

system open
file table

user ID
process ID

process group ID
parent PID

signal state
siblings
children

user ID
process ID

process group ID
parent PID

signal state
siblings
children

process file
descriptorsprocess

objects

shared file
(inodeorvnode)

child

parent

4

File Directories

• Directories are (guess what?) a type of file.
• A hierarchy of directories - a filesystem - has a root (/)

• Pathnames are absolute or relative to working
directory, ., ..

• root filesystem may have roots of other filesystems
mounted into the hierarchy.

• Directories manipulated by link(), ulink(), mkdir(),
rmdir().

Devices

Various devices are abstracted as special files.
• Named by a filename.
• Accessed via open(), close(), read(),and

write()
• Idiosynchratic operations of the device are

access through ioctl() calls.

OSDM: OnNow

Applications

OS

HW

OnNow WIN32 ext

ACPI Spec

SetSystemPowerState
– initiate sleep state, query apps(?)

SetThreadExecutionState
– specifies level of support needed

(e.g. display required)
WM_POWERBROADCAST

– a message notifying of power state
changes to which applications can
respond

SetWaitableTimer
– ensure PC is awake at scheduled time

RequestDeviceWakeup

RequestWakeupLatency - to specify latency requirements
GetSystemPowerStatus and GetDevicePowerState

Framework for Adaptation

• Odyssey project - Satya (CMU)
• Odyssey is an attempt to incorporate application-

aware adaptation
• Noble et al, Agile application-aware adaptation

for mobility, SOSP 97
(network bandwidth examples)

• Flinn and Satya, Energy-aware adaptation for
mobile applications, SOSP 99
(energy usage examples)

5

Odyssey Provides

• API - new syscalls to register a window of
tolerance for a variable resource (e.g. network
bandwidth)

• Notifications of change (upcalls)
– Implies detection of changes.

Mechanisms needed.

• Typing - Wardens which handle type-specific
functionality
– Type awareness necessary to evaluate tradeoffs

• Viceroy – centralized resource coordination

Architecture of Odyssey Client

Kernel

Warden

V
ic

er
oy

Application Cache Mgt

Warden

API Example

• Each movie in
multiple tracks at
different fidelity levels

• Warden can switch
between tracks to fit
bandwidth
requirements

6

Energy Resource

• Monitoring to detect resource availability
Powerscope

• Using Odyssey for adaptation in this
domain.

PowerScope [Flinn] as a Tool
• Statistical sampling approach

– Program counter/process (PC/PID) + correlated current
readings.

– Off-line analysis to generate profile
• Causality

– Goal is to assign energy costs to specific application
events / program structure

– Mapped down to procedure level
– System-wide.

Includes all processes, including kernel

Experimental Setup
Data Gathering

Multimeter’s
clock drives
sampling at
period of 1.6ms

<−Trigger
Profiling
computer

Takes
current
sample

−>

Interrupt
causes
PC/PID
sample to
be buffered

User-level daemon
writes to disk when buffer 7/8 full

−>Trigger next sample

System Monitor Kernel Mods

• recording of PC and PID
• fork(), exec(), exit() instrumented to record

pathname associated with process
• new system calls to control profiling
• pscope_init(), pscope_start(), pscope_stop(),

pscope_read() (user-level daemon, to disk)

7

• Voltage essentially constant,
only current recorded.

• Each sample is binned into process bucket
and procedure within process bucket.

• Energy calculated by summing each bucket

E = Vmeas S It Dt

Energy Analyzer

t=0

n

Fidelity for Energy?

• Before investing in incorporating energy
into Odyssey for adaptation, first determine
whether Odyssey’s model of fidelity as the
way to adapt has potential for energy
savings.

• Experiments showing that potential, hand-
tuned based on Powerscope information.

Case Study

Video application
original 12.1MB

• Step 1
lossy compression
B: 7MB, C: 2.8MB

• Step 2: display size reduced from 320x240 to 160x120
Asmall: 4.9MB, Csmall: 1MB

• Step 3: WaveLAN put into standby mode when not used
• Step 4: Disk powered off

8

Base case
Every
optimization

Conclusions about Fidelity as
Energy Saving Adaptation

• Significant variation in effectiveness of
fidelity reduction among objects

• And among applications
• Combining hardware power management

with fidelity reductions is good.

Can Odyssey Automate This?

• User specifies target battery lifetime.
• Odyssey is to monitor energy supply and

demand
• Notify applications to change fidelity if

estimate future demand and supply don’t
match to achieve desired lifetime.

9

Goal-directed Energy Adaptation
• On-line version of Powerscope
(assume this will be built-in)
• Smoothed observations of past
consumption as estimate of future.
• Odyssey’s own criteria for notification

EstDemand = ((1-α)(sample) + (α)(old)) * time_remaining

Results

• Goals:
– Meet specified battery lifetime
– Highest fidelity within that constraint
– Infrequent adaptations
– Small leftover battery capacity at end of period.

