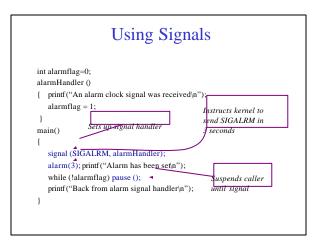


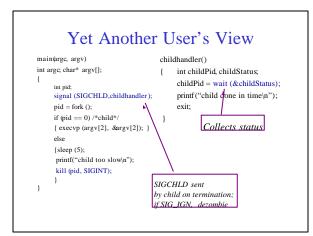
(Traditional) Unix Abstractions

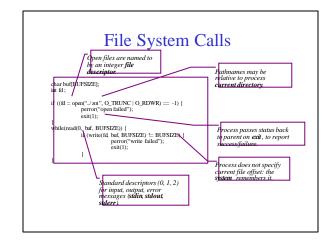
- · Processes thread of control with context
- Files a named linear stream of data bytes
- Sockets endpoints of communication between unrelated processes

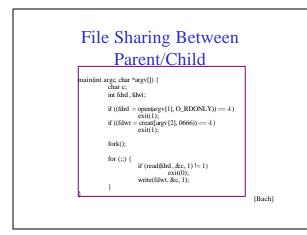
Join Scenarios

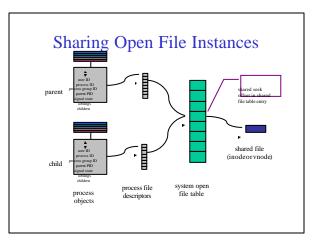
- Several cases must be considered for join (e.g., *exit/wait*).
 - What if the child exits before the parent joins?
 - "Zombie" process object holds child status and stats.
 What if the parent continues to run but never joins?
 How not to fill up memory with zombie processes?
 - How not to fill up memory with zomble proce
 What if the parent exits before the child?
 - Orphans become children of **init** (process 1).
 - What if the parent can't afford to get "stuck" on a join?
 Unix makes provisions for asynchronous notification.

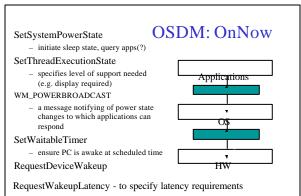

Signals


- Signals notify processes of internal or external events. – the Unix software equivalent of interrupts/exceptions
 - only way to do something to a process "from the outside"
 - Unix systems define a small set of signal types
- Examples of signal generation:
 - keyboard *ctrl-c* and *ctrl-z* signal the *foreground process*
 - synchronous fault notifications, syscall errors
 - asynchronous notifications from other processes via kill
 - IPC events (SIGPIPE, SIGCHLD)
 - alarm notifications


signal == "upcall"


Process Handling of Signals

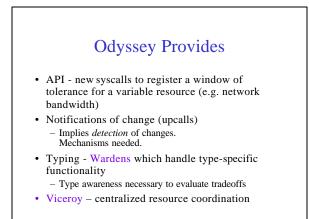

- 1. Each signal type has a system-defined default action. abort and dump core (SIGSEGV, SIGBUS, etc.) ignore, stop, exit, continue
- 2. A process may choose to *block* (inhibit) or *ignore* some signal types.
- 3. The process may choose to *catch* some signal types by specifying a (user mode) *handler* procedure. specify alternate signal stack for handler to run on system passes interrupted context to handler handler may munge and/or return to interrupted context

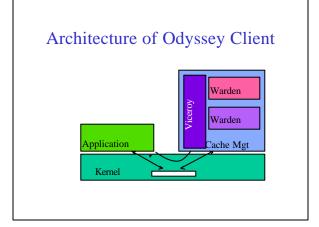

File Directories

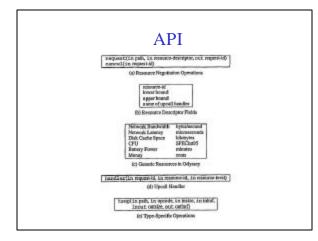
- Directories are (guess what?) a type of file.
- A hierarchy of directories a filesystem has a root (/)
- Pathnames are *absolute* or *relative* to working directory, ., ..
- root filesystem may have roots of other filesystems mounted into the hierarchy.
- Directories manipulated by link(), ulink(), mkdir(), rmdir().

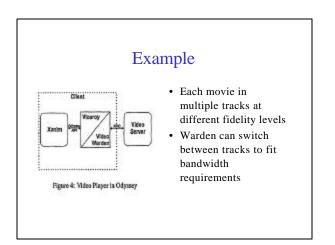
Devices

Various devices are abstracted as special files.

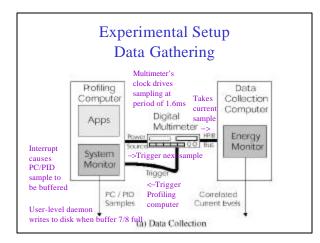

- Named by a filename.
- Accessed via open(), close(), read(), and write()
- Idiosynchratic operations of the device are access through ioctl() calls.



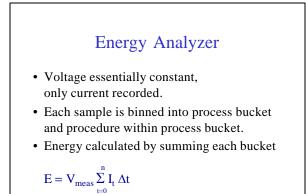

GetSystemPowerStatus and GetDevicePowerState


Framework for Adaptation

- Odyssey project Satya (CMU)
 Odyssey is an attempt to incorporate *application-aware adaptation*
- Noble et al, *Agile application-aware adaptation* for mobility, SOSP 97 (network bandwidth examples)
- Flinn and Satya, Energy-aware adaptation for mobile applications, SOSP 99 (energy usage examples)

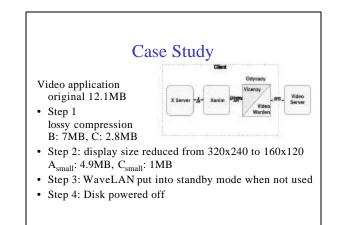


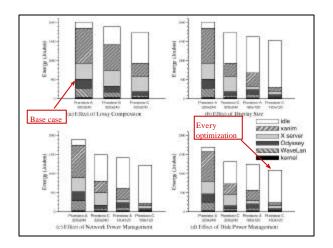
- Monitoring to detect resource availability Powerscope
- Using Odyssey for adaptation in this domain.

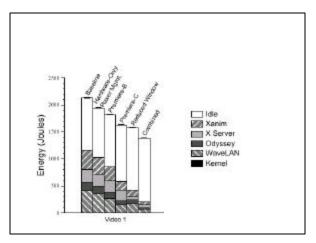

PowerScope [Flinn] as a Tool

- Statistical sampling approach
- Program counter/process (PC/PID) + correlated current readings.
- Off-line analysis to generate profile
- Causality
 - Goal is to assign energy costs to specific application events / program structure
 - Mapped down to procedure level
 - System-wide. Includes all processes, including kernel

System Monitor Kernel Mods

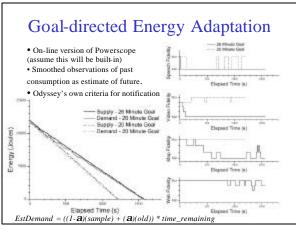

- recording of PC and PID
- fork(), exec(), exit() instrumented to record pathname associated with process
- new system calls to control profiling
- pscope_init(), pscope_start(), pscope_stop(), pscope_read() (user-level daemon, to disk)




Process	Time (a)	Total Energy (J)	
/usr/odyssey/bin/xanim /usr/X11R6/bin/X	66.57	643.17	9.66
/usr/Allk6/Din/A /pethed (kernel)	55,72	331,50	5.41
Interrupts-MayeLAN	18,62	145.88	R.91
/usr/odyssey/bin/odyssey	12.19	123.40	10.12
Totel	183.99	1592.75	8.68
1	l		
Rnergy Usage Detail for proce	es Interrupts-We	aveLAN	
	es Interrupts-We	iveLAN	
Rnergy Usage Detail for proce Kernel-level procedures:	es Interrupts-We Elapsed	aveLAN Total	Average
			Average Power (W)
Kernel-level procedures: Procedure	Elapsed Time (a)	Total Energy (J)	Power (W)
Kernel-level procedures: Procedure _xterCMAbuffer	Elapsed Time (a)	Total Energy (J)	Power (N) 8.85
Kernel-level procedures: Procedure xterEMAbuffer pwireed	Elapsed Time (a) 56.66 0.30	Total Esergy (J) 147.38 2.90	Power (W) 8.85 9.65
Kernel-level procedures: Procedure _xferDMAbuffer	Elapsed Time (a)	Total Energy (J)	Power (W) 0.05

Fidelity for Energy?

- Before investing in incorporating energy into Odyssey for adaptation, first determine whether Odyssey's model of fidelity as the way to adapt has potential for energy savings.
- Experiments showing that potential, handtuned based on Powerscope information.



Conclusions about Fidelity as Energy Saving Adaptation

- Significant variation in effectiveness of fidelity reduction among objects
- And among applications
- Combining hardware power management with fidelity reductions is good.

Can Odyssey Automate This?

- User specifies target battery lifetime.
- Odyssey is to monitor energy supply and demand
- Notify applications to change fidelity if estimate future demand and supply don't match to achieve desired lifetime.

					R	les	ult	S						
	• Go	als:												
	_	Meet	sneci	fied ł	natter	rv lif	etim	e						
		111000	speer	ncu i	Juiter	. y 111	cum	C						
		TT: also		. 1:4			-							
		Highe		-			at co	nstr	aint					
	-	Infreq	luent	adapt	atior	ıs								
	-	0	luent	adapt	atior	ıs				of pe	riod.			
	-	Infreq	luent	adapt	ation	ıs			end o		riod.	iaus		
3	-	Infreq Small	luent	adapt ver b Resid	ation	ns y cap		7 at e	end o	er of /		_	W	ch
3	Specified Duration (a) 1200	Infreq Small God Ma	lefto Enen 145.2	adapt ver b Resin	atter atter Tan	ns y cap	Spc	at e	Num Num Va	er of / eu (44)	ulapter	10.9)	W 0.0	10.0
3	Specified Duration (s)	Infreq Small God Met	uent lefto	adapt ver b Resid	tation atter	ns y cap	oacity	z at e	end o	er of /	ulapter	ap	0.0 0.0	