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Scheduling: Policy and Mechanism

Scheduling policy answers the question:
Which process/thread, among all those ready to run, should be 
given the chance to run next? In what order do the 
processes/threads get to run?  For how long?

Mechanisms are the tools for supporting the process/thread 
abstractions and affect how the scheduling policy can be 
implemented. (this is review)

• How the process or thread is represented to the system - process 
or thread control blocks.

• What happens on a context switch.

• When do we get the chance to make these scheduling decisions 
(timer interrupts, thread operations that yield or block, user p rogram 
system calls)

Separation of 
Policy and Mechanism

“Why and What” vs. “How”

Objectives and strategies vs. data structures, 
hardware and software implementation 
issues.

Process abstraction vs. Process machinery

CPU Scheduling Policy

The CPU scheduler makes a sequence of “moves” that 
determines the interleaving of threads.
• Programs use synchronization to prevent “bad moves”.

• …but otherwise scheduling choices appear (to the 
program) to be nondeterministic.

Scheduler’s
ready pool

Wakeup or
ReadyToRun GetNextToRun()

CONTEXT SWITCH

More Specific Mechanisms for 
Scheduling

• Preemption

• Priorities

• Queuing strategies
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Preemption

Scheduling policies may be preemptive or non-
preemptive.

Preemptive: scheduler may unilaterally force a task to 
relinquish  the processor before the task blocks, yields, 
or completes.

• timeslicing prevents jobs from monopolizing the CPU
Scheduler chooses a job and runs it for a quantum of CPU 

time.

A job executing longer than its quantum is forced to yield 
by scheduler code running from the clock interrupt 
handler .

• use preemption to honor priorities
Preempt a job if a higher priority job enters the ready state.

Priority
Some goals can be met by incorporating a notion of priority into a 

“base” scheduling discipline.
Each job in the ready pool has an associated  priority value; the  

scheduler favors jobs with higher priority values.

External priority values:
• imposed on the system from outside
• reflect external preferences for particular users or tasks

“All jobs are equal, but some jobs are more equal than others.”

• Example: Unix nice system call to lower priority of a task.
• Example: Urgent tasks in a real -time process control system.

Internal priorities
• scheduler dynamically calculates and uses for queuing 

discipline. System adjusts priority values internally as as an 
implementation technique within the scheduler.

Internal Priority

• Drop priority of tasks consuming more than their share 

• Boost tasks that already hold resources that are in 
demand

• Boost tasks that have starved in the recent past

• Adaptive to observed behavior: typically a continuous, 
dynamic, readjustment in response to observed 
conditions and events

May be visible and controllable to other parts of the system

Priority reassigned if I/O bound (large unused portion of 
quantum) or if CPU bound (nothing left)

Keeping Your Priorities Straight

Priorities must be handled carefully when there are 
dependencies among tasks with different priorities.
• A task with priority P should never impede the progress 

of a task with priority Q > P.
This is called priority inversion, and it is to be avoided.

• The basic solution is some form of priority inheritance.
When a task with priority Q waits on some resource, the 

holder (with priority P) temporarily inherits priority Q if 
Q > P.

Inheritance may also be needed when tasks coordinate 
with IPC.

• Inheritance is useful to meet deadlines and preserve 
low-jitter execution, as well as to honor priorities.
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Multilevel Feedback Queue

Many systems (e.g., Unix variants) use a multilevel 
feedback queue .
• multilevel. Separate queue for each of N priority levels.

• feedback.  Factor previous behavior into new job 
priority.

high

low

I/O bound jobs waiting for CPU

CPU-bound jobs

jobs holding resouces
jobs with high external priority

ready queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue.

constant time, no sorting

Priority of CPU-bound
jobs decays with system
load and service received. 

CPU Scheduling Policy

The CPU scheduler makes a sequence of “moves” that determines 
the interleaving of threads.

• Programs use synchronization to prevent “bad moves”.

• …but otherwise scheduling choices appear (to the 
program) to be nondeterministic.

The scheduler’s moves are dictated by a scheduling policy .

Scheduler’s
ready pool

Wakeup or
ReadyToRun GetNextToRun()

CONTEXT SWITCH

Scheduler Policy Goals & Metrics of 
Success

• Response time or latency (to minimize the average 
time between arrival to completion of requests)

How long does it take to do what I asked? ( R) Arrival −> done.

• Throughput (to maximize productivity)
How many operations complete per unit of time? (X )

• Utilization (to maximize use of some device) 
What percentage of time does the CPU (and each device) spend 

doing useful work? ( U) 
time-in-use / elapsed time

• Fairness
What does this mean?  Divide the pie evenly?  Guarantee low 

variance in response times?  Freedom from starvation?

Proportional sharing of resources

• Meet deadlines and guarantee jitter-free periodic tasks
real time systems (e.g. process control, continuous media)

Classic Scheduling Algorithms

SJF - Shortest Job First (provably optimal in minimizing 
average response time, assuming we know service times 
in advance)

FIFO, FCFS

Round Robin
Multilevel Feedback Queuing
Priority Scheduling
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A Simple Policy: FCFS

The most basic scheduling policy is first-come-first-
served, also called first-in-first-out (FIFO).
• FCFS is just like the checkout line at the QuickiMart.

Maintain a queue ordered by time of arrival.

GetNextToRun selects from the front of the queue.

• FCFS with preemptive timeslicing is called round robin.

Wakeup or
ReadyToRun GetNextToRun()

ready list

List::Append

RemoveFromHead

CPU

Evaluating FCFS

How well does FCFS achieve the goals of a scheduler?

• throughput . FCFS is as good as any non-preemptive 
policy.

….if the CPU is the only schedulable resource in the system.

• fairness.  FCFS is intuitively fair…sort of.
“The early bird gets the worm”…and everyone else is fed eventually.

• response time .  Long jobs keep everyone else waiting.

3 5 6
D=3 D=2 D=1

Time

R = (3 + 5 + 6)/3 = 4.67

Minimizing Response Time: SJF
Shortest Job First (SJF) is provably optimal if the goal is 

to minimize R.
Example: express lanes at the MegaMart

Idea: get short jobs out of the way quickly to minimize 
the number of jobs waiting while a long job runs.

Intuition: longest jobs do the least possible damage to the 
wait times of their competitors.

1 3 6
D=3D=2D=1

R = (1 + 3 + 6)/3 = 3.33

SJF in Practice
Pure SJF is impractical: scheduler cannot predict D values.
However, SJF has value in real systems:

• Many applications execute a sequence of short CPU 
bursts with I/O in between.

• E.g., interactive jobs block repeatedly to accept user 
input.

Goal: deliver the best response time to the user.

• E.g., jobs may go through periods of I/O-intensive 
activity.

Goal: request next I/O operation ASAP to keep devices busy and 
deliver the best overall throughput.

• Use adaptive internal priority to incorporate SJF into 
RR.

Weather report strategy: predict future D from the recent past.
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Preemptive FCFS: Round Robin

Preemptive timeslicing is one way to improve fairness of FCFS.
If job does not block or exit, force an involuntary context switch 

after each quantum Q of CPU time.

Preempted job goes back to the tail of the ready list.

With infinitesimal Q round robin is called processor sharing.

D=3 D=2 D=1

3+e 5 6

R = (3 + 5 + 6 + e)/3 = 4.67 + e

In this case, R is unchanged by timeslicing.
Is this always true?

quantum Q=1

preemption
overhead = e

FCFS

round robin

Evaluating Round Robin

• Response time .  RR reduces response time for 
short jobs.

For a given load, a job’s wait time is proportional to its D.

• Fairness.  RR reduces variance in wait times.
But: RR forces jobs to wait for other jobs that arrived later.

• Throughput .  RR imposes extra context switch 
overhead.

CPU is only Q/(Q+e) as fast as it was before.

Degrades to FCFS with large Q.

D=5 D=1
R = (5+6)/2 = 5.5

R = (2+6 + e)/2 = 4 + e

Q is typically
5-100 milliseconds

Considering I/O
In real systems, overall system performance is determined by the

interactions of multiple service centers.

CPU

I/O device

I/O requestI/O completion

start (arrival rate ?)

exit 
(throughput ? until some

center saturates)

Two Schedules for CPU/Disk

CPU busy 25/25: U = 100%
Disk busy 15/25: U = 60%

5 5 1 1

4
CPU busy 25/37: U = 67%
Disk busy 15/37: U = 40%

33% performance improvement

1. Naive Round Robin

2. Preemptive RR/SJF
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Multilevel Feedback Queue

Many systems (e.g., Unix variants) use a multilevel 
feedback queue .
• multilevel. Separate queue for each of N priority levels.

• feedback.  Factor previous behavior into new job 
priority.

high

low

I/O bound jobs waiting for CPU

CPU-bound jobs

jobs holding resouces
jobs with high external priority

ready queues
indexed by priority

GetNextToRun selects job
at the head of the highest
priority queue.

constant time, no sorting

Priority of CPU-bound
jobs decays with system
load and service received. 

Concrete Implementation

4.4BSD example:
multilevel feedback queues based on 
calculated priority, round-robin within level.

• Use quantum - reenter queue you came off of.
• Changing priority (every 4 ticks)

priority = user_base_priority + [p_estcpu/4] +
2 * p_nice

p_estcpu is incremented each tick during which the process 
is found running and adjusted each second via decay filter 
(for runnable)

p_estcpu = (2*load)/(2*load +1) p_estcpu + p_nice.

Load over previous minute interval - sampled ave. of 
sum of lengths of run queue and short term sleep queue

90% of CPU utilization in any 1-sec interval is forgotten 
after 5 seconds.

Upon waking from sleep, first
p_estcpu = [(2*load)/(2*load + 1)]p_slptime + p_estcpu
and then recomputes priority

Real Time Schedulers
Real-time schedulers must support regular, periodic 

execution of tasks (e.g., continuous media).

• CPU Reservations
“I need to execute for X out of every Y units.”

Scheduler exercises admission control at reservation time: 
application must handle failure of a reservation request.

• Proportional Share
“I need 1/n of resources”

• Time Constraints
“Run this before my deadline at time T.”
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VTRR – Virtual Time Round Robin
Nieh, Vaill, and Zhong

USENIX 2001

Goal: to provide good proportional sharing accuracy

with O(1) scheduling overhead

• Proportional fairness – given a set of tasks with 
associated weights, each task should receive 
resource allocations proportional it its weight

WA(t1,t2) = (t2-t1) SA/SiSi

A’s ShareAmount of
service received

Minimize Service Ratio Error

• Measure to quantify how close an algorithm gets to 
perfect proportional fairness

• Difference between amount of resource allocated by 
specific algorithm and the amount of time that would 
have been allocated under ideal scheme that 
maintains perfect fairness over all intervals of time.

EA(t1, t2) = WA(t1,t2) – t * SA/SiSi

Common Proportional Share 
Competitors

• Weighted Round Robin – RR with quantum times 
equal to share

RR:

WRR:

• Fair Share –adjustments to priorities to reflect share 
allocation (compatible with multilevel feedback 
algorithms)

Linux

10203020

Common Proportional Share 
Competitors

• Weighted Round Robin – RR with quantum times 
equal to share

RR:

WRR:

• Fair Share –adjustments to priorities to reflect share 
allocation (compatible with multilevel feedback 
algorithms)

Linux

1020 1010
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Common Proportional Share 
Competitors

• Weighted Round Robin – RR with quantum times 
equal to share

RR:

WRR:

• Fair Share –adjustments to priorities to reflect share 
allocation (compatible with multilevel feedback 
algorithms)

Linux

010 10

• Fair Queuing
• Weighted Fair Queuing

• Stride scheduling

• VT – Virtual Time advances at a rate proportional to 
share 

• VFT – Virtual Finishing Time: VT a client would have 
after executing its next time quantum

• WFQ schedules by smallest VFT
• EA never below -1

Common Proportional Share 
Competitors

VTA(t) = WA(t) / SA

2/3 2/2 1/1

t

VFT = 3/3
VFT = 3/2
VFT = 2/1

VTRR State Information

Client state

shareVFTtime ctr pid Run 
state

Scheduler state

Time 
quantum

Run queue #shares QVT

QVT (t+Q) = QVT(t) + Q/SiSi

VTRR Scheduling Cycle

• Scheduling cycle – a sequence of allocations whose 
length is equal to the sum of all client shares

• Time counter of each client is reset at the beginning 
of each scheduling cycle to its share

• Time counter is decremented at receipt of quantum
• Run queue is ordered by share values
• Time counter invariant must be maintained

• For any two consecutive clients in the run queue, A 
and B, the counter value for B must always be no 
greater than the counter value for A
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VTRR Algorithm

VFTC(t+Q) = VFTC(t) + Q/SC

• Move to next client on queue
• Check for violation of time counter invariant, if so, 

run next client and then update its state
• Otherwise, use virtual time to decide –

VFT inequality – if true, run next client and then 
update its state; otherwise return to beginning of 
queue

VFTC(t) – QVT (t+Q) < Q/SC

• Starting at beginning of run queue, execute first client 
for one quantum

• At end of its quantum, update counter and VFT

Example

A

B

C

3

2

1

Run

Run

Run

3

2

1

1/3

1/2

1/1

Q = 1 6 0

current
client

Example

A

B

C

2

2

1

Run

Run

Run

3

2

1

2/3

1/2

1

6 1/6

current
client

½ - 2/6 < 1/2

Q = 1

Example

A

B

C

2

1

1

Run

Run

Run

3

2

1

2/3

2/2

1

6 2/6

current
client

Q = 1

1 - 3/6 < 1/1
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Example

A

B

C

2

1

0

Run

Run

Run

3

2

1

2/3

2/2

2

6 3/6

current
client

Q = 1

Example

A

B

C

1

1

0

Run

Run

Run

3

2

1

3/3

2/2

2

6 4/6

current
client

Q = 1

Example

A

B

C

1

0

0

Run

Run

Run

3

2

1

3/3

3/2

2

6 5/6

current
client

Q = 1

2 - 6/6 < 1/1

Dynamics

• Creation and termination
• How to determine initial VFT?

• Returning from being unrunnable
• Re-enqueuing

• Updating state values

• Changes in share value
• Remove, recalculate everything, reinsert
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Implementation in Linux

• Sorting the doubly linked run queue
• Next client pointer instead of Linux scan
• Add 2 new fields to remember place in queue

• Last-previous pointer

• Last-next pointer

Error and Overhead 
Simulations

Experimental Results

5 MPEG encoders with 
shares 1 - 5

Liu and Layland
(classic TR Scheduling paper)

Hard real time - tasks executed in response to events 
(requests) and must be completed in some fixed time 
(deadline)

Soft real time - statistical distribution of response times
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Assumptions

Tasks are periodic with constant interval between 
requests, Ti (request rate 1/Ti)

Each task must be completed before the next request 
for it occurs

Tasks are independent
Run-time for each task is constant (max), Ci

Any non-periodic tasks are special

Task Model

time

t1

t2

Ti Ti

T2

C1 = 1

C2 = 1

Definitions
Deadline is time of next request
Overflow at time t if t is deadline of unfulfilled request
Feasible schedule - for a given set of tasks, a scheduling 

algorithm produces a schedule so no overflow ever 
occurs.

Critical instant for a task - time at which a request will have 
largest response time.
• Occurs when task is requested simultaneously with all tasks 

of higher priority

Rate Monotonic

Assign priorities to tasks according to their request 
rates, independent of run times

Optimal in the sense that no other fixed priority 
assignment rule can schedule a task set which can 
not be scheduled by rate monotonic.

If feasible (fixed) priority assignment exists for some 
task set, rate monotonic is feasible for that task set.
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Earliest Deadline First

Dynamic algorithm
Priorities are assigned to tasks according to the deadlines 

of their current request
With EDF there is no idle time prior to an overflow

For a given set of m tasks, EDF is feasible iff
C1/T1 + C2/T2 + … + Cm/Tm [ 1

If a set of tasks can be scheduled by any algorithm, it can 
be scheduled by EDF

Dynamic Voltage Scaling
(Weiser, Demers, Shenker)

Energy/time } Voltage2

Voltage scheduling - transition times of ~10µs 
(according to Weiser, Pering)

Intuitive goal - fill “soft idle” times with slow computation
MIPJ - metric MIPS/Watts

Interval Scheduling
(adjust clock based on past window,

no process reordering involved)

time

C
PU

 lo
ad

C
lo

ck
 s

pe
ed

Results and Further Work

Did trace simulations (traces of events taken from UNIX 
workload/workstation environ.)
• switch, process-related syscalls (exec, fork, exit), sleep 

(hard - device wait, soft - keystroke), idle on, idle off.

Good potential for energy savings: most cases save 25-
65%
• lowest speed isn’t always best, too sensitive

Breakdown into background, foreground, periodic tasks; 
consider re-ordering


