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Simulation study — IpARM
1.1V to 3.3V - 10 MHz to 100 MHz

Core and cache together consume
between 1.8 mW and 220 mwW

Voltage scheduler separate from
“temporal” scheduler
Use “deadlines”

IPARM System
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Dynamic algorithm

Priorities are assigned to tasks according to the

deadlines of their current request

With EDF there is no idle time prior to an

overflow

For a given set of m tasks, EDF is feasible iff
CfT{+CyTy,+...+C /T <1

If a set of tasks can be scheduled by any

algorithm, it can be scheduled by EDF
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Workload

« High priority tasks — ignored by voltage
scheduler

< Rate-based tasks — turn into deadlines
internally

e True deadline-based tasks

— Allowing missed deadlines enables voltage
scheduler to accommodate ave-case
workload instead of worst-case.

Scheduling Algori

hm
speed = '\iﬂjnx deadling-currenttime

* Sort in EDF order

¢ Invoked when thread added or removed or
deadline reached

¢ Includes non-runnable in scheduling decision
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Results
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Lowering voltage until
benchmark doesn’t
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Frame by frame histograms
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GUI example: affected by hard idle times — waiting for
external events not related to clock speed.

Normalized Energy

Mixed Workload
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Conclusions

¢ In all cases, less than 2% of energy
going to scheduling thread execution

« Up to 80% reduction in energy
« Application information required




Multiprocessor
ATTinity Scheduling

¢ Question: Where (on which node) to run a
particular thread during the next time slice?

* Processor’'s POV: favor processes which have
some residual state locally (e.g. cache)

* What is a useful measure of affinity for deciding
this?
— Least intervening time or intervening activity

(number of processes here since “my” last time) *

— Same place as last time “|” ran.
— Possible negative effect on load-balance.

Affinity Analogies?




