Voltage Scheduling

Pering, Burd, & Brodersen
ISLPED 2000

Simulation study — IpARM
1.1V to 3.3V - 10 MHz to 100 MHz

Core and cache together consume
between 1.8 mW and 220 mwW

Voltage scheduler separate from
“temporal” scheduler
Use “deadlines”

IPARM System

Ipahs CFL

SRAK

i;::-:;_

L
It

Bz

nlage
Reaaliin

H
bariable @ Fixed

I =

Voltage = laltape
e 1 1

Flgure 20 [pARM Sysneam Block DMegimmm

* Speed-
control
register

» Processor
cycle ctrs

» System sleep
control

Based on
Earliest Deadline First

Dynamic algorithm

Priorities are assigned to tasks according to the

deadlines of their current request

With EDF there is no idle time prior to an

overflow

For a given set of m tasks, EDF is feasible iff
CfT{+CyTy,+...+C /T <1

If a set of tasks can be scheduled by any

algorithm, it can be scheduled by EDF

Intuition

T2

time

Intuition

1

o -—

-t
ot

Workload

« High priority tasks — ignored by voltage
scheduler

< Rate-based tasks — turn into deadlines
internally

e True deadline-based tasks

— Allowing missed deadlines enables voltage
scheduler to accommodate ave-case
workload instead of worst-case.

Scheduling Algori

hm
speed = '\iﬂjnx deadling-currenttime

* Sort in EDF order

¢ Invoked when thread added or removed or
deadline reached

¢ Includes non-runnable in scheduling decision

e | Iwdbng | Werkbamd | £ Werkbusd | £ /Testlin

Tk & 1 H 4 [EL] i

_] ' 5] Ak

APy

Dzallie A
T T

Hreadinct®
- i

B

P i

T
P i
‘m
i’

i
TR T T R |

Fesbiia of Speid

t
i
H v 4

1 A T K %04

ETmk o Tek AkH Tk AR

Fagwre % Fxample Yolage Scheduie

Results

com:

Audio MIPEG Ll

Figwre 4: Hasic Voltage Scheduling Resulis

Lowering voltage until
benchmark doesn’t
lete

Tramm t wupaein

Frame by frame histograms

Sadas brawr Bislmiing S Fra e D edatine
i T
g |
Womiral | I e Spel |
| E— | i s Sgarieal
= d f okl 1 I
-
H
= om
"
TS = 1P s 1N DB 18R
Tearrpgluzd Cveplrizs Tiew Waremlicnd { smpiciim lime

GUI example: affected by hard idle times — waiting for
external events not related to clock speed.

Normalized Energy

Mixed Workload

1: [EMarnina |

g : nDh‘S | |

- ﬂ.ﬂﬂﬂﬂ, |
g 3

o @

S 0pery
oy
Oy

==

2034

Conclusions

¢ In all cases, less than 2% of energy
going to scheduling thread execution

« Up to 80% reduction in energy
« Application information required

Multiprocessor
ATTinity Scheduling

¢ Question: Where (on which node) to run a
particular thread during the next time slice?

* Processor’'s POV: favor processes which have
some residual state locally (e.g. cache)

* What is a useful measure of affinity for deciding
this?
— Least intervening time or intervening activity

(number of processes here since “my” last time) *

— Same place as last time “|” ran.
— Possible negative effect on load-balance.

Affinity Analogies?

