Concurrent Programming
A Review?

Why use processes/threads?

« To capture naturally concurrent activities within
the structure of the programmed system.
— Asynchronous events

« To gain speedup by overlapping activities or
exploiting parallel hardware.

Power/energy implications?

Threads and Processes

« Decouple the resource allocation aspect from the
control aspect

* Thread abstraction - defines a single sequential
instruction stream (PC, stack, register values)

» Process - the resource context serving as a
“container” for one or more threads (shared
address space)

» Kernel threads - unit of scheduling
(kernel-supported thread operations - > still slow)

Threads and Processes

O G G

Thread Thread Thread

Address Space Address Space

User-Level Threads

« To avoid the performance penalty of kernel-
supported threads, implement at user level and
manage by a run-time system
— Contained “within” a single kernel entity (process)

— Invisible to OS (OS schedules their container, not

being aware of the threads themselves or their states).
Poor scheduling decisions possible.

« User-level thread operations can be 100x faster
than kernel thread operations, but need better
integration / cooperation with OS.

The Trouble with Threads...

DatexxIZl
ilo | o]

while(i<1 hile(<10)
{x=x+1; {x=x+1;
i++} j++}

Thread0 Threadl

Nondeterminism

* What unit of work can be
performed without
interruption? Indivisible or
atomic operations.

 Interleavings - possible

while (i<10) 3";&1; i++}

load value of x into reg
yield

execution sequences of add 1 to reg

operations drawn from all yield

threads. N _ store reg value at x
* Race condition - final yield

results depend on ordering
and may not be “correct”.

Reasoning about
Interleavings

* On a uniprocessor, the possible execution
sequences depend on when context switches can
occur
— Voluntary context switch -the process or thread

explicitly yields the CPU (blocking on a system call it
makes, invoking a Yield operation).

— Interrupts or exceptions occurring - an asynchronous
handler activated that disrupts the execution flow.
— Preemptive scheduling - a timer interrupt may cause an
involuntary context switch at any point in the code.
« On multiprocessors, the ordering of operations on
shared memory locations is the important factor.

Unprotected Shared Data

Thread
for (i=0; i<20; i++){
key = rand;

Sortedinsert (key);}

for (i=0; i<20; i++){
SortedRemove (*key);
print (key); }

Critical Sections

» If a sequence of non-atomic operations must be
executed as if it were atomic in order to be correct,
then we need to provide a way to constrain the
possible interleavings in this critical section of our
code.

— Critical sections are code sequences that
contribute to “bad” race conditions.

— Synchronization needed around such critical
sections.

* Mutual Exclusion - goal is to ensure that critical
sections execute atomically w.r.t. related critical
sections in other threads or processes.

—How?

The Critical Section Problem

Each process follows this template:
while (1)

{ ...other stuff... //processes in here shouldn’t stop
others

enter_region();

critical section

exit_region();
}

The problem is to define enter_region and

exit_region to ensure mutual exclusion with some
degree of fairness.

Implementation Options for

Mutual Exclusion
« Disable Interrupts

« Busywaiting solutions - spinlocks
— execute a tight loop if critical section is busy
- _t)enefit; from specialized atomic (read-mod-write)
instructions
¢ Blocking synchronization
— sleep (enqueued on wait queue) while C.S. is busy
Synchronization primitives (abstractions, such as
locks) which are provided by a system may be
implemented with some combination of these
techniques.

The Critical Section Problem
while (1)

{ ..jotherstoff—

critical section

it roouan().
H—egHor—);

Peterson’s Alg. for 2 Process
Mutual Exclusion

e enter_region:

needin [me] = true;

turn = you,

while (needin [you] && turn == you) {no_op};
e exit_region:

needin [me] = false;
What about more than 2 processes?

Interleaving of Execution of
2 Threads (blue and green)

enter_region:
needin [me] = true;
turn = you;
while (needin [you] &&

turn == you) {no_op};

Critical Section
exit_region:
needin [me] = false;

enter_region:

needin [me] = true;

turn = you;

while (needin [you] &&

turn == you) {no_op};

Critical Section
exit_region:

needin [me] = false;

needin [blue] = true;

needin [green] = true;

turn = green;

turn = blue;

while (needin [green] && turn == green)

Critical Section
while (needin [blue] && turn == blue){no_op};

while (needin [blue] && turn == blue){no_op};
needin [blue] = false;

while (needin [blue] && turn == blue)
Critical Section

needin [green] = false;

Greedy Version (turn = me)

needin [blue] = true;

needin [green] = true;

turn = blue;

while (needin [green] && turn == green)

Critical Section

turn = green,;

while (needin [blue] && turn == blue)

Critical Section

Oooops!

Can we extend 2-process
algorithm to work with n
processes?

Can we extend 2-process
algorithm to work with n
processes?

edin [me] = true; edin [me] = true;
thm = you; B thm = you;
T g
fedin [me] = true;
m = you;
ot

CSs

| dea: Tournament -

Details:Bookkeeping (left to the reader)

feedin [me] = true;

Hardware Assistance

* Most modern architectures provide some
support for building synchronization: atomic
read-modify-write instructions.

« Example: test-and-set (loc, reg)

[sets bit to 1 in the new value of loc;
returns old value of loc in reg] >~

« Other examples: gtlonmﬁtf“o” meens

compare-and-swap, fetch-and-op

Busywaiting with
Test-and-Set

» Declare a shared memory location to represent a

busyflag on the critical section we are trying to
protect.

 enter_region (or acquiring the “lock”):

waitloop: tsl busyflag, RO // R0 = busyflag; busyflag = 1
bnz RO, waitloop // was it already set?

« exit region (or releasing the “lock”):

busyflag =0

Pros and Cons of Busywaiting

Key characteristic - the “waiting” process is
actively executing instructions in the CPU and
using memory cycles.

Appropriate when:

— High likelihood of finding the critical section
unoccupied (don't take context switch just to find that out) Or
estimated wait time is very short

Disadvantages:

— Wastes resources (CPU, memory, bus bandwidth)

— Looks busy if system is observing behavior

Blocking Synchronization

* OS implementation involving changing the state
of the “waiting” process from running to
blocked.

* Need some synchronization abstraction known
to OS - provided by system calls.

— mutex locks with operations acquire and release
— semaphores with operations P and V (down, up)
— condition variables with wait and signal

Template for Implementing
Blocking Synchronization

« Associated with the lock is a memory location
(busy) and a queue for waiting
threads/processes.
¢ Acquire syscall:
while (busy) {fenqueue caller on lock’s queue}
/*upon waking to nonbusy lock*/ busy = true;

* Release syscall:
busy = false;
/* wakup */ move any waiting threads to Ready
queue

Pros and Cons of Blocking

» Waiting processes/threads don’t consume
resources

» Appropriate: when the cost of a system call
is justified by expected waiting time
— High likelihood of contention for lock
— Long critical sections

» Disadvantage: OS involvement
->overhead

Semaphores

* Well-known synchronization abstraction

« Defined as a non-negative integer with two
atomic operations
P(s) - [wait until s > 0; s--]
V(s) - [s++]

¢ The atomicity and the waiting can be
implemented by either busywaiting or
blocking solutions.

Semaphore Usage

» Binary semaphores can provide mutual
exclusion (solution of critical section problem)

» Counting semaphores can represent a
resource with multiple instances (e.g. solving
producer/consumer problem)

 Signalling events (persistant events that stay
relevant even if nobody listening right now)

The Critical Section Problem
while (1)
{ [otherstoff—

Semaphore:
mutex initialy 1

P(mutex)

critical section

V(mutex)

Monitor Abstraction

* Encapsulates shared
data and operations
with mutual exclusive
use of the object (an
associated lock).

» Associated Condition
Variables with
operations of Wait and
Signal.

conditions

Condition Variables

* We build the monitor abstraction out of a lock
(for the mutual exclusion) and a set of
associated condition variables.

« Wait on condition: releases lock held by

caller, caller goes to sleep on condition’s

queue. When awakened, it must
reacquire lock.

Signal condition: wakes up one waiting

thread.

Broadcast: wakes up all threads waiting on

this condition.

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}

4] >
3 ish
> S
i ; > monitor_lock L”
else tail->next = item; ‘E
tail = item;
4

release(lock);}
deQ:{acquire (lock);

if (head == null)

wait (lock, notEmpty) ;

item = head;

if (tail == head) tail = null;

head=item->next; conditions

release(lock);}

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty);

fotEmpty

item = head;

if (tail == head) tail = null;
head=item->next; conditions
release(lock);}

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty) ;

item = head;

if (tail == head) tail = null;
head=item->next; conditions
release(lock);}

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null) ®
{head = item; 3
signal (lock, notEmpty);} 3
else tail->next = item; Ej

monitor lock

tail = item;
release(lock);}

[RofEmpy @)

Monitor Abstraction

EnQ:{aquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);

deQ:{acquire (lock);
if (head == null) 1 if (head == null)
wait (lock, notEmpt»;‘/ | wait (lock, notEmpty);A/
item = head; | item = head;
if (tail == head) tail = null; | if (tail == head) tail = null;
head=item->next; conditions head=item->next; conditions
release(lock);} release(lock);}
Monitor Abstraction Pitfalls
EnQ:{aquire (lock);
if (head == null) ° > v'Race conditions, failure to implement mutual
{head = item; g g exclusion within critical sections of code.
signal (lock, notEmpty);} T o
else tail->next = item; B1 5, v Performance Issues (including energy implications)
tail = item; E{ / — Difficulty of detecting idleness with busywaiting synchronization
release(lock);
flocky} A » Deadlock

deQ:{acquire (lock);
while (head == null) —
wait (lock, notEmpty); ,
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

Y

|
|

conditions

» Starvation
» Priority inversion

Mars Pathfinder Example

¢ In July 1997 Pathfinder's computer reset itself several
times during data collection and transmission from

Mars.

— One of its processes failed to complete by a deadline, triggering

the reset

e Priority Inversion Problem

— A low priority process held a mutual exclusion semaphore on a
shared data structure but was preempted to let higher priority

processes run

— The high priority process that failed to complete on time was
blocked on this semaphore and priority inheritance was not

enabled.

— Meanwhile a bunch of medium priority processes ran, until
finally the deadline ran out. The low priority semaphoreholding
process never got the chance to fun again in that time to the

point of releasing the mutex.

5 Dining Philosophers

Philosopher 0

Philosopher 4 O}Q O,a/

—

O
Philosopher 3 O /(/ Oé\

Philosopher 2

hile(food available)
pick up 2 adj. forks;
eat;

put down forks;
think awhile;

Philosopher 1

Template for Philosopher

while_(food availahle)

/*pick up forks*/

/*put down forks*/

think awhile;

Naive Solution

while_(food available)

P(fork[left(me)]);

P(fark[right(me)]):

pick up forks/

efif;
V(fork[left(me)]);

Fput down forks*/

V(fark[right(me)]}:

think awhile;

Philosophy 101
(or why 5DP is interesting)

» How to eat with your Fellows without
causing Deadlock.
— Circular arguments (the circular wait condition)

— Not giving up on firmly held things (no
preemption)
— Infinite patience with Half-baked schemes

Circular ndition

while (food available)

{ |f (me = 0) {P(fork[left(me)]); P(fork[right(me)]);}
else {(P(fork[right(me)]); P(fork[left(me)]); }

eat;
V(fork[left(me)]); V(fork[right(me)]);

(hold some & wait for more) think awhile;
» Why Starvation exists and what we can }
do about it. Ordered resources
Hold and ondition Starvation
whiTETtooa avarrastey The difference between deadlock and
{ [Pmute; starvation is subtle:

while (forks[me] |=2)
{blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}
forks [leftneighbor (me)] --; forks[rightneighbor (me)]--;
(mutex):

[Ear;

if (blocking[leftneighbor (me)]) V(sleepy[leftneighbor (me)]);
if (blocking[rightneighbor (me)]) V(sleepy[rightneighbor (me)]);

P(mutex); forks[leftneighbor (me)] ++; forks[rightneighbor (me)]++;

V{mutex);
think awhile;

— Once a set of processes are deadlocked, there is
no future execution sequence that can get them
outofit.

— In starvation, there does exist some execution
sequence that is favorable to the starving process
although there is no guarantee it will ever occur.

— Rollback and Retry solutions are prone to
starvation.

— Continuous arrival of higher priority processes is
another common starvation situation.

