
Concurrent Programming
A Review?

Why use processes/threads?
• To capture naturally concurrent activities within 

the structure of the programmed system.
– Asynchronous events

• To gain speedup by overlapping activities or 
exploiting parallel hardware.

Power/energy implications?

Threads and Processes
• Decouple the resource allocation aspect from the 

control aspect
• Thread abstraction - defines a single sequential 

instruction stream (PC, stack, register values)

• Process - the resource context serving as a 
“container” for one or more threads (shared 
address space)

• Kernel threads - unit of scheduling 
(kernel-supported thread operations −> still slow)

Threads and Processes

Address Space Address Space

Thread Thread Thread

User-Level Threads
• To avoid the performance penalty of kernel-

supported threads, implement at user level and 
manage by a run-time system 
– Contained “within” a single kernel entity (process)
– Invisible to OS (OS schedules their container, not 

being aware of the threads themselves or their states). 
Poor scheduling decisions possible.

• User-level thread operations can be 100x faster 
than kernel thread operations, but need better 
integration / cooperation with OS.



The Trouble with Threads...

Thread0 Thread1

Data: x

while(i<10)
{x=x+1;

i++;}

0

while(j<10)
{x=x+1;
j++;}

0 0i j

?

Nondeterminism
• What unit of work can be 

performed without 
interruption? Indivisible or 
atomic operations.

• Interleavings - possible 
execution sequences of 
operations drawn from all 
threads.

• Race condition - final 
results depend on ordering 
and may not be “correct”.

while (i<10) {x =x+1; i++;}

load value of x into reg
yield
add 1 to reg
yield
store reg value at x
yield

Reasoning about
Interleavings

• On a uniprocessor, the possible execution 
sequences depend on when context switches can 
occur
– Voluntary context switch - the process or thread 

explicitly yields the CPU (blocking on a system call it 
makes, invoking a Yield operation).

– Interrupts or exceptions occurring - an asynchronous 
handler activated that disrupts the execution flow.

– Preemptive scheduling - a timer interrupt may cause an 
involuntary context switch at any point in the code.

• On multiprocessors, the ordering of operations on 
shared memory locations is the important factor.

Unprotected Shared Data
Thread

for (i=0; i<20; i++){
key = rand;
SortedInsert (key);}

for (i=0; i<20; i++){
SortedRemove (*key);
print (key); }

?



Critical Sections
• If a sequence of non-atomic operations must be 

executed as if it were atomic in order to be correct, 
then we need to provide a way to constrain the 
possible interleavings in this critical section of our 
code. 
– Critical sections are code sequences that 

contribute to “bad” race conditions.
– Synchronization needed around such critical 

sections.
• Mutual Exclusion - goal is to ensure that critical 

sections execute atomically w.r.t. related critical 
sections in other threads or processes.
– How?

The Critical Section Problem
Each process follows this template:

while (1)
{ ...other stuff...   //processes in here shouldn’t stop 

others
enter_region( );
critical section
exit_region( );

}
The problem is to define enter_region and 

exit_region to ensure mutual exclusion with some 
degree of fairness.

Implementation Options for 
Mutual Exclusion

• Disable Interrupts
• Busywaiting solutions - spinlocks

– execute a tight loop if critical section is busy
– benefits from specialized atomic (read-mod-write) 

instructions

• Blocking synchronization
– sleep (enqueued on wait queue) while C.S. is busy

Synchronization primitives (abstractions, such as 
locks) which are provided by a system may be 
implemented with some combination of these 
techniques .

The Critical Section Problem
while (1)

{ ...other stuff...

critical section

exit_region( );

}



Peterson’s Alg. for 2 Process 
Mutual Exclusion 

• enter_region:
needin [me] = true;
turn = you;

while (needin [you] && turn == you) {no_op};                   

• exit_region:
needin [me] = false;

What about more than 2 processes?

Interleaving of Execution of 
2 Threads (blue and green)

enter_region:
needin [me] = true;
turn = you;
while (needin [you] && 

turn == you) {no_op};                   
Critical Section

exit_region:
needin [me] = false;

enter_region:
needin [me] = true;
turn = you;
while (needin [you] && 

turn == you) {no_op};                   
Critical Section

exit_region:
needin [me] = false;

?

needin [blue] = true;

needin [green] = true;
turn = green;

turn = blue;
while (needin [green] && turn == green) 

while (needin [blue] && turn == blue){no_op};

while (needin [blue] && turn == blue){no_op};

needin [blue] = false;

while (needin [blue] && turn == blue)

Critical Section

needin [green] = false;

Critical Section

needin [blue] = true;

needin [green] = true;
turn = blue;

turn = green;

while (needin [green] && turn == green) 

while (needin [blue] && turn == blue)
Critical Section

Critical Section

Oooops!

Greedy Version (turn = me)



Can we extend 2-process 
algorithm to work with n 

processes?

Can we extend 2-process 
algorithm to work with n 

processes?
needin [me] = true;
turn = you;

needin [me] = true;

turn = you;

needin [me] = true;
turn = you;

needin [me] = true;
turn = you;

needin [me] = true;

turn = you;

CS
Idea:Tournament
Details:Bookkeeping (left to the reader)

Hardware Assistance
• Most modern architectures provide some 

support for building synchronization: atomic 
read-modify-write instructions.

• Example: test-and-set (loc, reg)
[ sets bit to 1 in the new value of loc;
returns old value of loc in reg ]

• Other examples:
compare-and-swap,  fetch-and-op

[ ] notation means
atomic

Busywaiting with 
Test-and-Set

• Declare a shared memory location to represent a
busyflag on the critical section we are trying to 
protect.

• enter_region (or acquiring the “lock”):
waitloop: tsl busyflag, R0  // R0 = busyflag ; busyflag = 1

bnz R0, waitloop // was it already set?

• exit region (or releasing the “lock”):
busyflag = 0



Pros and Cons of Busywaiting
• Key characteristic - the “waiting” process is 

actively executing instructions in the CPU and 
using memory cycles.

• Appropriate when:
– High likelihood of finding the critical section 

unoccupied (don’t take context switch just to find that out) or 
estimated wait time is very short

• Disadvantages:
– Wastes resources (CPU, memory, bus bandwidth)

– Looks busy if system is observing behavior

Blocking Synchronization
• OS implementation involving changing the state 

of the “waiting” process from running to 
blocked.

• Need some synchronization abstraction known 
to OS - provided by system calls.
– mutex locks with operations acquire and release
– semaphores with operations P and V (down, up)
– condition variables with wait and signal

Template for Implementing 
Blocking Synchronization

• Associated with the lock is a memory location 
(busy) and a queue for waiting 
threads/processes.

• Acquire syscall: 
while (busy) {enqueue caller on lock’s queue}
/*upon waking to nonbusy lock*/ busy = true;

• Release syscall:
busy = false;  
/* wakup */ move any waiting threads to Ready 
queue

Pros and Cons of Blocking
• Waiting processes/threads don’t consume 

resources
• Appropriate: when the cost of a system call 

is justified by expected waiting time
– High likelihood of contention for lock
– Long critical sections

• Disadvantage: OS involvement 
−> overhead



Semaphores
• Well-known synchronization abstraction
• Defined as a non-negative integer with two 

atomic operations
P(s) - [wait until s > 0; s--]

V(s) - [s++]

• The atomicity and the waiting can be 
implemented by either busywaiting or 
blocking solutions.

Semaphore Usage
• Binary semaphores can provide mutual 

exclusion (solution of critical section problem)

• Counting semaphores can represent a 
resource with multiple instances (e.g. solving 
producer/consumer problem)

• Signalling events  (persistant events that stay 
relevant even if nobody listening right now)

The Critical Section Problem
while (1)

{ ...other stuff...

critical section

}

P(mutex)

V(mutex)

Semaphore:
mutex initially 1

Monitor Abstraction
• Encapsulates shared 

data and operations 
with mutual exclusive 
use of the object (an 
associated lock).

• Associated Condition 
Variables with 
operations of Wait and 
Signal.

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
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conditions



Condition Variables
• We build the monitor abstraction out of a lock 

(for the mutual exclusion) and a set of 
associated condition variables.

• Wait on condition: releases lock held by 
caller, caller goes to sleep on condition’s 
queue.  When awakened, it must 
reacquire lock.

• Signal condition: wakes up one waiting 
thread.

• Broadcast: wakes up all threads waiting on 
this condition.

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
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m
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conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
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conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue
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conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}



Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue
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conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
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conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
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conditions

EnQ:{aquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item; 
release(lock);}

deQ:{acquire (lock);
while (head == null)

wait (lock, notEmpty) ;

item = head;
if (tail == head) tail = null; 
head=item->next;
release(lock);}

Pitfalls
üRace conditions, failure to implement mutual 

exclusion within critical sections of code.
ü Performance Issues (including energy implications)

– Difficulty of detecting idleness with busywaiting synchronization

ØDeadlock
Ø Starvation

Ø Priority inversion



Mars Pathfinder Example
• In July 1997 Pathfinder’s computer reset itself several 

times during data collection and transmission from 
Mars.
– One of its processes failed to complete by a deadline, triggering 

the reset

• Priority Inversion Problem
– A low priority process held a mutual exclusion semaphore on a 

shared data structure but was preempted to let higher priority 
processes run

– The high priority process that failed to complete on time was 
blocked on this semaphore and priority inheritance was not 
enabled.

– Meanwhile a bunch of medium priority processes ran, until 
finally the deadline ran out.  The low priority semaphore-holding 
process never got the chance to fun again in that time to the 
point of releasing the mutex.

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
eat;
put down forks;
think awhile;

}

Template for Philosopher
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

Naive Solution
while (food available)
{ /*pick up forks*/

eat;
/*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);



Philosophy 101
(or why 5DP is interesting)

• How to eat with your Fellows without 
causing Deadlock.
– Circular arguments (the circular wait condition)
– Not giving up on firmly held things (no 

preemption)
– Infinite patience with Half -baked schemes 

(hold some & wait for more)

• Why Starvation exists and what we can 
do about it.

while (food available)

{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

else {(P(fork[right(me)]); P(fork[left(me)]); }

eat;

V(fork[left(me)]); V(fork[right(me)]); 

think awhile;

}

Circular Wait Condition

Ordered resources

Hold and Wait Condition
while (food available)
{ P(mutex);

while (forks [me] != 2) 
{blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}

forks [leftneighbor(me)] --;  forks [rightneighbor(me)]--;
V(mutex):
eat;
P(mutex); forks [leftneighbor(me)] ++;  forks [rightneighbor(me)]++;
if (blocking[leftneighbor(me)]) V(sleepy[leftneighbor(me)]); 
if (blocking[rightneighbor(me)]) V(sleepy[rightneighbor(me)]); 
V(mutex);
think awhile;

}

Starvation
The difference between deadlock and 

starvation is subtle:
– Once a set of processes are deadlocked, there is 

no future execution sequence that can get them 
out of it.

– In starvation, there does exist some execution 
sequence that is favorable to the starving process 
although there is no guarantee it will ever occur.

– Rollback and Retry solutions are prone to 
starvation.

– Continuous arrival of higher priority processes is 
another common starvation situation.


