
1

Review of Memory Management

• The traditional memory hierarchy,
the virtual memory abstraction.

• Hardware and software mechanisms to support the
abstraction.

• Management policies.

• Where are the opportunities for current research?
The underlying assumptions that are changing.

3/27/2001 40

Page Replacement Policy
When there are no free frames available, the OS must

replace a page (victim), removing it from memory to
reside only on disk (backing store), writing the
contents back if they have been modified since
fetched (dirty).

Replacement algorithm - goal to choose the best
victim, with the metric for “best” (usually) being to
reduce the fault rate.
– FIFO, LRU, Clock, Working Set…

(defer to later)

The Page Caching Problem
(aka Replacement Policy)

• Each thread/process/job utters a stream of page references.
– Model execution as a page reference string: e.g., “abcabcdabce..”

• The OS tries to minimize the number of faults incurred.
– The set of pages (the working set) actively used by each job

changes relatively slowly.
– Try to arrange for the resident set of pages for each active job to

closely approximate its working set.

• Replacement policy is the key.
– Determines the resident subset of pages..

3/27/2001 45

Replacement Algorithms
Assume fixed number of frames in memory assigned to

this process:

• Optimal - baseline for comparison - future references
known in advance - replace page used furthest in
future.

• FIFO

• Least Recently Used (LRU)
stack algorithm - don’t do worse with more memory.

• LRU approximations for implementation
Clock, Aging register

2

LRU
• At fault time: replace the resident page that was last used the

longest time ago
• Idea is to track the program’s temporal locality
• To implement exactly: we need to order the pages by time of

most recent reference
(per-reference information needed −> HW, too $$)
– timestamp pages at each ref, stack operations at each ref

• Stack algorithm - doesn’t suffer from Belady’s anomaly -- if i >
j then set of pages with j frames is a subset of set of pages with
i frames.

LRU Approximations for Paging

• Pure LRU and LFU are prohibitively expensive to
implement.
– most references are hidden by the TLB
– OS typically sees less than 10% of all references
– can’t tweak your ordered page list on every reference

• Most systems rely on an approximation to LRU for paging.
– periodically sample the reference bit on each page

• visit page and set reference bit to zero

• run the process for a while (the reference window)
• come back and check the bit again

– reorder the list of eviction candidates based on sampling

Clock Algorithm

• Maintain a circular queue with a
pointer to the next candidate
(clock hand).

• At fault time: scan around the clock,
looking for page with usage bit of zero
(that’s your victim),
clearing usage bits
as they are passed.

• We now know whether or not a page
has been used since the last time the
bits were cleared

Newest

1st Candidate

Practical Considerations
• Dirty bit - modified pages require a writeback to

secondary storage before frame is free to use
again.

• Variation tries to maintain a healthy pool of clean,
free frames
– on timer interrupt, scan for unused pages, move to free

pool, initiate writeback on dirty pages
– at fault time, if page is still in frame in pool, reclaim;

else take free, clean frame.

3

The Paging Daemon
• Most OS have one or more system processes responsible

for implementing the VM page cache replacement policy.
– A daemon is an autonomous system process that periodically

performs some housekeeping task.

• The paging daemon prepares for page eviction before the
need arises.
– Wake up when free memory becomes low.
– Clean dirty pages by pushing to backing store.

• prewrite or pageout

– Maintain ordered lists of eviction candidates.
– Decide how much memory to allocate to UBC, VM, etc.

FIFO with Second Chance

• Idea: do simple FIFO replacement, but give pages a
“second chance” to prove their value before they are
replaced.
– Every frame is on one of three FIFO lists:

• active, inactive and free

– Page fault handler installs new pages on tail of active list.
– “Old” pages are moved to the tail of the inactive list.

• Paging daemon moves pages from head of active list to tail of inactive
list when demands for free frames is high.

• Clear the refbit and protect the inactive page to “monitor” it.

– Pages on the inactive list get a “second chance”.
• If referenced while inactive, reactivate to the tail of active list.

Illustrating FIFO-2C
active

list

inactive
list

free
list

Consume frames from the head of
the free list.

If free shrinks belowthreshhold , kick
the paging daemon to start a scan.

2. Page at head of inactive list has not
been referenced? pmap_page_protect and
place on tail of free list.

3. Dirty page on inactive list? Push and
return to inactive list tail.

Restock inactive list by pulling pages from
the head of the active list: knock off the
reference bit and inactivate.

Inactive list scan:
1. Page on inactive list has been referenced?
Return to tail of active list (reactivation).

Paging daemon scans a few times per
second, even if not needed to restock free list.

Variable / Global Algorithms
• Not requiring each process to live

within a fixed number of frames,
replacing only its own pages.

• Can apply previously mentioned
algorithms globally to victimize
any process’s pages

• Algorithms that make number of
frames explicit.

si
ze

 o
f l

oc
al

ity
 s

et

time

transitions

stable

4

3/27/2001 55

Variable Space Algorithms
• Working Set

Tries to capture what the set of active pages currently is. The
whole working set should be resident in memory for the process
to bother running. WS is set of pages referenced during window
of time (now-t, now).

– Working Set Clock - a hybrid approximation

• Page Fault Frequency
Monitor fault rate, ifpff > high threshold, grow # frames
allocated to this process, ifpff < low threshold, reduce # frames.
Idea is to determine the right amount of memory to allocate.

Backing Store = Disk

text
data
BSS

user stack
args/env

kernel

data

file volume
with

executable programs

Fetches for clean text
or data are typically
fill-from-file.

Modified (dirty)
pages are pushed to
backing store (swap)
on eviction.

Paged -out pages are
fetched from backing
store when needed.

Initial references to user
stack and BSS are satisfied
by zero -fill on demand.

Rotational Media
SectorTrack

Cylinder

Head
Platter

Arm

Access time = seek time + rotational delay + transfer time

seek time = 5-15 milliseconds to move the disk arm and settle on a cylinder
rotational delay = 8 milliseconds for full rotation at 7200 RPM: average delay = 4 ms
transfer time = 1 millisecond for an 8KB block at 8 MB/s

Bandwidth utilization is less than 50% for any noncontiguous access at a block grain.

Layout issues: clustering

A Case for Large Pages
• Page table size is inversely proportional to the page size

– memory saved

• Transferring larger pages to or from secondary storage
(possibly over a network) is more efficient

• Number of TLB entries are restricted by clock cycle time,
– larger page size maps more memory
– reduces TLB misses

A Case for Small Pages

• Fragmentation
– not that much spatial locality
– large pages can waste storage
– data must be contiguous within page

5

MMU Games

Vanilla Demand Paging
– Valid bit in PTE means non-resident page.

Resulting page fault causes OS to initiate page
transfer from disk.

– Protection bits in PTE means page should not
be accessed in that mode (usually means
non-writable)

What else can you do with them?

A Page Table Entry (PTE)

PFN

valid bit: OS sets this to tell MMU
that the translation is valid.

write-enable: OS touches this to enable or
disable write access for this mapping.

reference bit: set when a reference is
made through the mapping.

dirty bit : set when a store is completed to the
page (page is modified).

Useful in forcing an exception!
Allows OS to regain control.

Simulating Usage Bits

• Turn off both valid bit and write-protect bit
• On first reference - fault allows recording the reference

bit information by OS in an auxillary data structure.
Set it valid for subsequent accesses to go through HW.

• On first write attempt - protection fault allows recording
the dirty bit information by OS in aux. data structure.

PFN

valid bit: OS sets this to tell MMU
that the translation is valid.

write-enable: OS touches this to enable or
disable write access for this mapping.

Copy-on-Write

• Operating systems spend a lot of their time copying data.
– particularly Unix operating systems, e.g., fork()
– cross-address space copies are common and expensive

• Idea: defer big copy operations as long as possible, and
hope they can be avoided completed.
– create a new shadow object backed by an existing object
– shared pages are mapped readonly in participating spaces

• read faults are satisfied from the original object (typically)
• write faults trap to the kernel

– make a (real) copy of the faulted page
– install it in the shadow object with writes enabled

6

Interconnect

CA

Mem
P

$
CA

Mem
P

$

CA

Mem
P

$ CA

Mem
P

$

Node 0 0,N-1 Node 1 N,2N-1

Node 2 2N,3N-1 Node 3 3N,4N-1

• Each node owns some of physical memory
• OS can allocate physical memory anywhere in system
• May or may not be hardware support for shared memory across

nodes (does the MMU recognize remote addresses?)
•NUMA (non-uniform memory access) vs. distributed memory architectures. 67

Distributed Shared Memory
(DSM)

Allows use of a shared memory programming
model (shared address space) in a distributed
system (processors with only local memory)

network
procproc

msg msg

mmu mmu

memmem

68

DSM Issues
• Can use the local memory management hardware to

generate fault when desired page is not locally
present or when write attempted on read-only copy.

• Locate the page remotely - current “owner” of page
(last writer) or “home” for page.

• Page sent in message to requesting node (read
access makes copy; write migrates)

• Consistency protocol - invalidations or broadcast of
changes (update)
– directory kept of caches holding copies

69

DSM States

Forced faults are key to consistency operations

• Invalid local mapping, attempted read access -
data flushed from most recent writer,
set write-protect bit for all copies.

• Invalid local mapping, attempted write access -
migrate data, invalidate all other copies.

• Local read-only copy, write-fault -
invalidate all other copies

7

70

Consistency Models
• Sequential consistency

– All memory operations appear to execute one at a time. A
write is considered done only when invalidations or
updates have propagated to all copies.

• Weaker forms of consistency
– Guarantees associated with synchronization primitives; at

other times, it doesn’t matter
– For example:

acquire lock - make sure others’ writes are done
release lock - make sure all my writes are seen by others

