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Roadmap
!Rank aggregation: merging ranked results from different 

searches
� Fagin et al. �Optimal Aggregation Algorithm for Middleware.� 
PODS, 2001

� Proximity search: finding all shortest paths in the link 
structure of a database
� Goldman et al. �Proximity Search in Databases.� VLDB, 1998

� WSQ: enhancing database queries with Web searches
� Goldman and Widom. �WSQ/DSQ: A Practical Approach for 

Combined Querying of Databases and the Web.� SIGMOD, 
2000
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Rank aggregation problem
� Each object R is graded using m different criteria

� Grades are x1, x2, �, xm
� Example: each grade measures the relevance of R for 

a particular search term
� The combined grade is calculated by an 

aggregation function t(x1, x2, �, xm)
� Example: weighted sum, min, max, etc.

� Problem: find the top k objects with the highest 
combined grade

4

Modes of access
� Sorted: sequentially request a list of objects (with 

their grades) ranked according to one criterion 
(from highest to lowest)
� Conceptually, there are m lists L1, L2, �, Lm, one for 

each criterion
� Example: search an image database for a list of �red� 

pictures, ranked by their �redness�
� Random: request the grade of an object according 

to one criterion
� Example: query an image database for the �redness� 

of one particular picture
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Assumptions
� Individual scores are in the interval [0, 1]
� Aggregation function is monotone

� If xi ≤ x�i for every i, then t(x1, x2, �, xm) ≤ t(x�1, x�2, 
�, x�m)

� Examples: min, sum
� Not an example: 1 � sum(x1, x2, �, xm)

� Cost per sorted access (one object, one score): cS
� Cost per random access (one object, one score): cR
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Naïve algorithm
� For each criterion, do sorted access to retrieve all 

objects and their grades
� That is, access all Li�s

� Calculate the combined grades for all objects
� Pick the top k
!Accesses the entire database
!Does not use the fact that Li�s are sorted
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FA (Fagin�s Algorithm)
� Do sorted access in parallel to all Li�s, until there are k

�matches�
� A �match� is an object that has been seen in all Li�s

� For each object that has been seen, do random accesses 
to get all its grades

� Calculate the combined grades and pick the top k

! Pop quiz
� Why not just consider the k matches?
� Why not consider objects seen after the k matches?

!Needs to remember lots of objects: large buffer size
!Does not use the aggregation function effectively 8

TA (Threshold Algorithm)
� Do sorted access in parallel to all Li�s

� Whenever an object is seen, do random accesses to 
get all its grades, and compute the combined grade

� Remember up to k objects with top combined grades
� Calculate the threshold value τ = t(x1, x2, �, xm), 

where xi�s are the bottom grades seen so far
� If we have seen at least k objects whose combined 

grade is at least τ, stop
� Output the top k objects we remembered

9

Intuition behind TA
� τ serves as an upper bound on the combined grade 

for objects that have never been seen
� When we stop, the top k objects we have 

remembered all have combined grade of at least τ
!The top k we have are the top k overall

� �Gather what information you need to allow you 
to know the top k answers, and then halt�
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FA versus TA
� TA never stops later than FA

� FA�s stopping condition (k matches) implies that 
TA�s stopping condition (k objects above threshold) 
has already been satisfied

� TA requires only bounded buffers (to remember 
the top k objects)

� TA may perform more random accesses
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Instance optimality
� A: a class of algorithms
� D: a class of legal inputs to algorithms
� cost(A, D): cost of running algorithm A with input D
� An algorithm B∈A is instance optimal over A and D if 

for every A∈A and every D∈D,
cost(B, D) = O( cost(A, D) )

� That is, cost(B, D) ≤ c · cost(A, D) ) + c�, where c is called the 
optimality ratio

!Much stronger than worst-case optimality
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Instance optimality of TA
� A: the class of all algorithms that do not make 

mistakes or wild guesses
� �No wild guesses� means no random access for R

unless R has been seen in sorted access
� D: the class of all possible inputs
� TA is instance optimal over A and D, with 

optimality ratio of at most m + m(m�1) cR Ú cS
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Intuition behind TA�s instance optimality

� Say an algorithm A stops sooner 
than TA on some input (i.e., one 
of the top k picked by A has 
combined grade less than τ)

� Construct another input by 
inserting a new object R right 
below where A stops looking

� Then A will make an mistake by 
failing to pick R

! See paper for a rigorous proof and 
other results

�
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Related work: Quick-Combine
� Güntzer et al. �Optimizing Multi-Feature Queries in Image Databases.� VLDB, 

2000

� Instead of doing sorted access on all Li�s in parallel, 
choose one Li to access next

� Prefer the list in which grades are declining at the fastest 
rate, so we can lower the threshold value faster
� Rate is measured by the decrease in successive grades, 

weighted by | ∂t Ú ∂xi |
! | ∂t Ú ∂xi | may be undefined
!Quick-Combine may beat TA in some cases, but is not 

instance optimal unless we ensure every Li is accessed 
every now and then

(e.g., min)
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Extending TA
� What if we only need approximate answers? TAθ

� Example: Web search, with lots of good-quality answers

� What if we have no sorted access for some criteria? TAZ
� Example: find good restaurants near me (sorted and random 

accesses for restaurant ratings, random access only for 
distances)

� What if we have no random access at all? NRA
� Example: Web search engines, which typically do not allow 

you to enter a URL and get its ranking

� What if consider the relative costs of random and sorted 
accesses? CA

16

Adding approximation: TAθ

� A θ-approximation (θ > 1) to the top k answers is 
a collection of k objects, such that
� For each R among these k objects, and for each R� not 

among these these k objects, θ t(R) ≥ t(R�)

� TAθ: same as TA, except that the stopping 
condition is �we have seen at least k objects 
whose combined grade is at least τ Ú θ �
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Restricting sorted access: TAZ

� Suppose we only have sorted access to Li for i∈Z

� TAZ: same as TA, except
� Only do sorted accesses to Li�s where i∈Z
� Use xj = 1 to calculate the threshold if sorted access to 
Lj is not allowed (j∉Z)

!Intuition: The first object that we see in Lj (if we 
could) can have grade 1
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No random access: NRA
� Key observation: 

Sometimes we do not have 
to know all individual 
grades of R in order to tell 
that R is among the top k

� Use bounds!

L1 L2

R1.x1 = 1
R2.x1 = 1
R?.x1 = 0

�
�

R?.x2 = ¼
�
�

R2.x2 = ¼
R1.x2 = 0

t(x1, x2) = avg(x1, x2)
We can now tell 

R1 and R2 are the top 2
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NRA
� Do sorted access in parallel to all Li�s; at each depth:

� Maintain bottom grades x1, x2, �, xm seen in the lists
� For each object R, calculate the lower and upper bounds for its 

combined grade
� If xi is not available, use 0 in calculating lower bound, and use xi in 

calculating upper bound
� Maintain a current top k list containing the k objects with the 

largest lower bounds (ties are broken by upper bounds)
� Stopping condition

� For every R not in the current top k list, the calculated upper 
bound for R is less than the calculated lower bound for all 
objects in the current top k list

!Lots of note-keeping!
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Combined algorithm: CA
� A compromise between TA (lots of random 

accesses) and NRA (no random accesses)
� Uses random accesses, but considers their cost 

relative to sorted access

� Suppose h = cR Ú cS ≥ 1
� CA: same as NRA, except

� Every h steps, pick an object with missing individual 
grades (see paper for details on which object to pick)

� Do random accesses to get the missing grades, and 
then recalculate the bounds
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Summary

� A very practical problem (rank aggregation)
� A simple algorithm (TA) and various extensions

� Nothing wild; just clean implementations of 
remarkably simple ideas (thresholds, bounds)

� But the amazing thing is that these simple algorithms 
are unbeatable for any input (instant optimality)!


