
1

Integrating Web and Database
Searches

CPS 296.1
Topics in Database Systems

2

Roadmap
!Rank aggregation: merging ranked results from different

searches
� Fagin et al. �Optimal Aggregation Algorithm for Middleware.�
PODS, 2001

� Proximity search: finding all shortest paths in the link
structure of a database
� Goldman et al. �Proximity Search in Databases.� VLDB, 1998

� WSQ: enhancing database queries with Web searches
� Goldman and Widom. �WSQ/DSQ: A Practical Approach for

Combined Querying of Databases and the Web.� SIGMOD,
2000

3

Rank aggregation problem
� Each object R is graded using m different criteria

� Grades are x1, x2, �, xm
� Example: each grade measures the relevance of R for

a particular search term
� The combined grade is calculated by an

aggregation function t(x1, x2, �, xm)
� Example: weighted sum, min, max, etc.

� Problem: find the top k objects with the highest
combined grade

4

Modes of access
� Sorted: sequentially request a list of objects (with

their grades) ranked according to one criterion
(from highest to lowest)
� Conceptually, there are m lists L1, L2, �, Lm, one for

each criterion
� Example: search an image database for a list of �red�

pictures, ranked by their �redness�
� Random: request the grade of an object according

to one criterion
� Example: query an image database for the �redness�

of one particular picture

5

Assumptions
� Individual scores are in the interval [0, 1]
� Aggregation function is monotone

� If xi ≤ x�i for every i, then t(x1, x2, �, xm) ≤ t(x�1, x�2,
�, x�m)

� Examples: min, sum
� Not an example: 1 � sum(x1, x2, �, xm)

� Cost per sorted access (one object, one score): cS
� Cost per random access (one object, one score): cR

6

Naïve algorithm
� For each criterion, do sorted access to retrieve all

objects and their grades
� That is, access all Li�s

� Calculate the combined grades for all objects
� Pick the top k
!Accesses the entire database
!Does not use the fact that Li�s are sorted

2

7

FA (Fagin�s Algorithm)
� Do sorted access in parallel to all Li�s, until there are k

�matches�
� A �match� is an object that has been seen in all Li�s

� For each object that has been seen, do random accesses
to get all its grades

� Calculate the combined grades and pick the top k

! Pop quiz
� Why not just consider the k matches?
� Why not consider objects seen after the k matches?

!Needs to remember lots of objects: large buffer size
!Does not use the aggregation function effectively 8

TA (Threshold Algorithm)
� Do sorted access in parallel to all Li�s

� Whenever an object is seen, do random accesses to
get all its grades, and compute the combined grade

� Remember up to k objects with top combined grades
� Calculate the threshold value τ = t(x1, x2, �, xm),

where xi�s are the bottom grades seen so far
� If we have seen at least k objects whose combined

grade is at least τ, stop
� Output the top k objects we remembered

9

Intuition behind TA
� τ serves as an upper bound on the combined grade

for objects that have never been seen
� When we stop, the top k objects we have

remembered all have combined grade of at least τ
!The top k we have are the top k overall

� �Gather what information you need to allow you
to know the top k answers, and then halt�

10

FA versus TA
� TA never stops later than FA

� FA�s stopping condition (k matches) implies that
TA�s stopping condition (k objects above threshold)
has already been satisfied

� TA requires only bounded buffers (to remember
the top k objects)

� TA may perform more random accesses

11

Instance optimality
� A: a class of algorithms
� D: a class of legal inputs to algorithms
� cost(A, D): cost of running algorithm A with input D
� An algorithm B∈A is instance optimal over A and D if

for every A∈A and every D∈D,
cost(B, D) = O(cost(A, D))

� That is, cost(B, D) ≤ c · cost(A, D)) + c�, where c is called the
optimality ratio

!Much stronger than worst-case optimality
12

Instance optimality of TA
� A: the class of all algorithms that do not make

mistakes or wild guesses
� �No wild guesses� means no random access for R

unless R has been seen in sorted access
� D: the class of all possible inputs
� TA is instance optimal over A and D, with

optimality ratio of at most m + m(m�1) cR Ú cS

3

13

Intuition behind TA�s instance optimality

� Say an algorithm A stops sooner
than TA on some input (i.e., one
of the top k picked by A has
combined grade less than τ)

� Construct another input by
inserting a new object R right
below where A stops looking

� Then A will make an mistake by
failing to pick R

! See paper for a rigorous proof and
other results

�

L1 L2 Lm

x1

x2 xm τ

x1

x2 xm R
Se

en
 b

y
A

14

Related work: Quick-Combine
� Güntzer et al. �Optimizing Multi-Feature Queries in Image Databases.� VLDB,

2000

� Instead of doing sorted access on all Li�s in parallel,
choose one Li to access next

� Prefer the list in which grades are declining at the fastest
rate, so we can lower the threshold value faster
� Rate is measured by the decrease in successive grades,

weighted by | ∂t Ú ∂xi |
! | ∂t Ú ∂xi | may be undefined
!Quick-Combine may beat TA in some cases, but is not

instance optimal unless we ensure every Li is accessed
every now and then

(e.g., min)

15

Extending TA
� What if we only need approximate answers? TAθ

� Example: Web search, with lots of good-quality answers

� What if we have no sorted access for some criteria? TAZ
� Example: find good restaurants near me (sorted and random

accesses for restaurant ratings, random access only for
distances)

� What if we have no random access at all? NRA
� Example: Web search engines, which typically do not allow

you to enter a URL and get its ranking

� What if consider the relative costs of random and sorted
accesses? CA

16

Adding approximation: TAθ

� A θ-approximation (θ > 1) to the top k answers is
a collection of k objects, such that
� For each R among these k objects, and for each R� not

among these these k objects, θ t(R) ≥ t(R�)

� TAθ: same as TA, except that the stopping
condition is �we have seen at least k objects
whose combined grade is at least τ Ú θ �

17

Restricting sorted access: TAZ

� Suppose we only have sorted access to Li for i∈Z

� TAZ: same as TA, except
� Only do sorted accesses to Li�s where i∈Z
� Use xj = 1 to calculate the threshold if sorted access to
Lj is not allowed (j∉Z)

!Intuition: The first object that we see in Lj (if we
could) can have grade 1

18

No random access: NRA
� Key observation:

Sometimes we do not have
to know all individual
grades of R in order to tell
that R is among the top k

� Use bounds!

L1 L2

R1.x1 = 1
R2.x1 = 1
R?.x1 = 0

�
�

R?.x2 = ¼
�
�

R2.x2 = ¼
R1.x2 = 0

t(x1, x2) = avg(x1, x2)
We can now tell

R1 and R2 are the top 2

4

19

NRA
� Do sorted access in parallel to all Li�s; at each depth:

� Maintain bottom grades x1, x2, �, xm seen in the lists
� For each object R, calculate the lower and upper bounds for its

combined grade
� If xi is not available, use 0 in calculating lower bound, and use xi in

calculating upper bound
� Maintain a current top k list containing the k objects with the

largest lower bounds (ties are broken by upper bounds)
� Stopping condition

� For every R not in the current top k list, the calculated upper
bound for R is less than the calculated lower bound for all
objects in the current top k list

!Lots of note-keeping!
20

Combined algorithm: CA
� A compromise between TA (lots of random

accesses) and NRA (no random accesses)
� Uses random accesses, but considers their cost

relative to sorted access

� Suppose h = cR Ú cS ≥ 1
� CA: same as NRA, except

� Every h steps, pick an object with missing individual
grades (see paper for details on which object to pick)

� Do random accesses to get the missing grades, and
then recalculate the bounds

21

Summary

� A very practical problem (rank aggregation)
� A simple algorithm (TA) and various extensions

� Nothing wild; just clean implementations of
remarkably simple ideas (thresholds, bounds)

� But the amazing thing is that these simple algorithms
are unbeatable for any input (instant optimality)!

