Incremental View Maintenance

CPS 296.1

Topics in Database Systems

Virtual views

» A view is defined by a query over base tables

— Example: CREATE VIEW V' AS SELECT ... FROM R, S WHERE ..;
» A view can be queried just as a normal table

— Example: SELECT * FROM V;
* Traditionally, database views are virtual

— DBMS stores the view definition query instead of contents

— Queries that reference views are rewritten (“expanded”) using

the view definition queries to reference base tables directly

* Why use virtual views?

— Access control

— Hiding complexity

— Logical data independence

Materialized views

» A view can be materialized, i.e., its contents can be pre-
computed and stored by the DBMS
* Why materialized views?
— Query performance
— Reliability (if materialized elsewhere)
* Issues
— View maintenance: how to maintain the consistency between
base data and materialized results
— View selection: how to choose what views to materialize
— Answering query using views: how to rewrite queries to make

use of the materialized results
3

View maintenance

* When base data changes, materialized views need to
maintained
— Re-computation
— Incremental maintenance: compute and apply only the

incremental changes to the materialized views

» Techniques are widely applicable
— Derived data maintenance (warehouse, cache, etc.)
— Integrity constraint checking

» A theoretical introduction: Griffin and Libkin. “Incremental
Maintenance of Views with Duplicates.” SIGMOD, 1995

* Many practical issues to be addressed next week

Review of bag algebra

* Closer to SQL than relational algebra
* A table is a bag (or multiset)

— Duplicate tuples are allowed

— The number of duplicates matters
+ Bag algebra operators

— o, (selection), z, (projection), x (cross product)
» Above three are the most commonly used
— @ (additive union), © (monus), min (minimum
intersection), max (maximum union)

— € (duplicate elimination) s

Bag algebra operators (slide 1)

* Selection: g, (S)
— Filters out tuples
— Preserves duplicates (those that pass p)
* Projection: 7, (S)
— Projects away attributes not in 4
— Preserves duplicates; that is, | S| =| 7, (S) |
* Cross product: R x S
— Pairs up tuples
— count((7, s), R x S) = count(r, R) - count(s, S)

Bag algebra operators lide 2)

+ Additive union: R @ §
— count(x, R ® S) = count(x, R) + count(x, S)
— Example: {2 apples} @ {3 apples} = {5 apples}
* Monus: R© S
— count(x, R © §) = count(x, R) — count(x, S);
or 0 if count(x, R) < count(x, S)
— Example: {2 apples, 2 bananas} © {3 apples, 1 banana} =
{1 banana}
* Duplicate elimination: & (S)
— count(x, € (S))=1; or 0 ifx is not in S at all

— Example: € ({2 apples, 2 bananas}) = {1 apple, 1 banana}
7

Bag algebra operators (slide 3)

¢ Minimum intersection: R min S
— count(x, R min S) = min(count(x, R), count(x, S))
— Example: {2 apples} min {3 apples} = {2 apples}
— Can you define it using the other operators?
*RminS=RO(RCSYS)
* Maximum union: R max S
— count(x, R max §) = max(count(x, R), count(x, S))
— Example: {2 apples} max {3 apples} = {3 apples}
— Can you define it using the other operators?
*cRmax S=R®(S©OR)=(R®S)© (RminS) 8

Describing changes to base tables

* A transaction ¢ modifies R, ..., R, in one atomic step
R, — (R,©VR)) ® AR,
R,—(R,©VR,) @ AR,
* VR, contains
— Tuples deleted by ¢ from R;
— Old contents of the R, tuples updated by ¢
* AR, contains
— Tuples inserted by ¢ into R;
— New contents of the R; tuples updated by ¢

Pre-expression

* S(R,, ..., R,) is a bag algebra query expression
defining a view
* Pre-expression of S w.r.t. ¢, pre(t, S), is defined as
S((R,©VR)D®AR,, ...,(R,©VR,) ®AR,)
— Intuitively represents full re-computation of the view
— Uses the current state of the database before the
transaction is applied
— Computes the would-be contents of the view after the
transaction
» Allows integrity constraint checking before
committing a transaction

Problem

+ Find expressions VS and AS such that

pre(z, WS S V‘S)\® ?S

Current contents of the view Incremental changes to the view
caused by t

¢ In general, V.S and AS may reference
— Current state of the database (before # is applied)
* Including base tables R, ..., R,, and even S itself

— Incremental changes to the base tables, VR, AR, ...,
VR,, AR,, to be made by ¢

“Good” solutions

* Minimality: VS© S=¢

— Do not “over” delete
 Strong minimality: in addition to minimality,

VSmin AS=O

— Do not delete a tuple and then insert it back again
* Why minimality?

— Rules out “bad” solutions such as VS =S, AS = pre(t, S)

— Simplifies further propagation of deltas
* Does not rule out VS = S ©pre(t, S), AS = pre(t, S) © S
» Need to ensure VS and AS are easy to evaluate

Change propagation

* A change propagation equation describes how to
“bubble up” a delta through a single operator

» For a complex expression, repeatedly apply
change propagation equations until all deltas are
“bubbled up” to the top of the expression
— The “bubbles” are the incremental changes

— The remaining expression corresponds exactly to the
current state of the view

Change propagation equations (slide 1)

Most commonly used ones
New view Old view Incremental changes
—tY A ——
* 3,(ReVR) =0, (R) 0, (VR)
*0,(R®AR)=0,(R) ®0, (AR)
» 7, (ROVR) =, (R, (VR min R)
* Ty (R @AR) =r, (R) @ﬂ'A (AR) Why not just ©z, (VR)?
(ROVR) x S=(R x S)© (VR x S)
* (ROAR)xS=(RxS)® (AR xS)

Change propagation equations (slide 2)

A non-obvious example
* (R®AR)©S=(RoS)®(ARS(S©R))
— Intuition

* Go ahead and insert AR?
» Almost works; except when S “over” deletes R, it may
cancel some effects of AR
— Another intuition
* © does not maintain negative counts

* (S © R) recovers these negative counts

Change propagation equations (slide 3)

The only examples where insertion (or deletion)
into a base table results in deletion (or insertion,
respectively) from the view

« RO(SOVS)=(RSS) @ ((VSmin S) © (S R))
« RO(S®AS)=(ROS)©AS

» All other bag algebra operators are monotone!

— That is, more input means no less output

Change propagation example

View U=S®T

. [(SOVS)®AS|®[(TSVT) @A

LG 9 S1o[(D TJ>bubbleupAT

. {[(SOVS)®AS] ®(TOVT)} ®AR
)bubbleupAS

. (SOVS)®(TOVD)} ©ASOAT

. [(SOVS)@®T]© (VT min T) ®AS® A b“bbliufblw -

« (SOT)O(VSminS)&(VTmin T) OAS @ AR T

That is, pre(z, U) = (U © VU) ® AU, where
— VU=(VSmin S) ®(VT min 7)
— AU=AS®AT

Minimality patch

s ViewU=Se&T
— VU= (VSminS) ® (VT min 7)
— AU=AS®AT
* Minimal, but not strongly minimal
— Ifx is in both V.S and AT, then x is in both VU and AU
* Apply minimality “patch”
- V,U=(Umin VU) ©AU
- a,U= AYEN min VU)
— Intuition
* Do not over delete

« Do not delete something that will be inserted later
* Do not insert something that was deleted earlier

Recap of change propagation

» Change propagation by hand: complicated, non-
deterministic, and may generate deltas that are not
minimal!

* Given a view definition U, it would be nice to provide
direct definitions for VU and AU

» The paper provides two mutually recursive functions
V(t, U) and A(¢, U) to compute VU and AU directly
— Guarantees strong minimality

— Exploits the strong minimality assumption to simplify
expressions

Examples of V(¢, U) and A(¢, U)

* For aview U of the form z, (S), where Sis a
subexpression
- V@ U)isz, (V(t,9) © m, (A,)
- AL U)is 7y (A, 8) © 7y (V(1, 5))

» For a view U of the form R, where R is just a base table
— V(¢t, U) is VR if t modifies R, or & otherwise
— A(t, U) is AR if t modifies R, or & otherwise
— Here we assume VR and AR are strongly minimal to begin with

» Recursively go down the expression tree, until we hit the
leaves (base tables) o

Deriving V(¢, U) and A(t, S)

Example: consider a view U of the form 7, (S)
pre(z, 7, (S))

=, (pre(t, 5))

=7 (SO V(L) ® AL S))~ v

) (56 V(4 8) © 7, (A,)2 gui)le e

= (m (S)© my (V(t, S) min S)) & 7, (A(t, S)) '

=, (S)on, (VD)) @ x, (A) simplification based on

minimality assumption

Finally, applying the minimality patch, we get:
Ve, U)=m, (V(t, 9) © 7, (A, 5))
A, U)=m, (A1, 8)) © s (VL S)) as

Aggregate functions

* The paper does not present a complete solution
— Aggregates are not modeled in bag algebra
— No GROUP-BY is considered

— Aggregate maintenance is not handled in the same
change propagation framework

»One aggregate operation is allowed at the very end

SUM, COUNT, AVG, STDEV, ...

* Can be defined by expression p(31, 20, --+» 2)s
where each 3, (R) sums up f(x) for all x in R
—SUM=3 ;=2 cr X
—COUNT=3%, =3 !
—AVG=3,/%,

* Each },can be materialized and maintained
incrementally (assuming minimality of deltas)

~Y,(ROVR)®AR) =Y, (R) ~ ¥, (VR) + ¥, (AR)

MIN, MAX

* Insertions
— No problem; simply compare and keep the current
MIN/MAX
 Deletions
— No effect if the current MIN/MAX is not deleted
— Problematic if the current MIN/MAX is deleted; need
to re-compute
* In general, re-computation is required if a
transaction deletes the current MIN/MAX and
does not insert a new MIN/MAX 7

Complexity analysis

* To compare re-computation and incremental
maintenance, the paper defines two evaluation strategies
— Ly 18 the cost function for re-computing O
— t, s the cost function for computing VO and AQ
» And shows that when the size of base table changes
tends to 0, (£,(VQ) + £,(AQ))/ 1y, (Q) approaches 0
* Some concerns
— Cost function is too rough and ¢, may in fact overestimate
* L SAYS jOin is as expensive as cross product!
— Conclusion is too weak (understandably so)

Some afterthoughts

 Algebraic approach has its advantages
— Easy to prove correctness
— Easy to add new operators to the language (just add more
change propagation equations)
— Delta expressions can be optimized by a query optimizer
* But
— Can we handle aggregates in the same algebraic framework?
— Are these heavy machinery and hairy expressions
necessary/efficient in practice?
* Why use pre-state of the database for maintenance?
What about using after-state?

— Using the after-state enables lazy view maintenance

