
1

Incremental View Maintenance

CPS 296.1
Topics in Database Systems

2

Virtual views
� A view is defined by a query over base tables

� Example: CREATE VIEW V AS SELECT … FROM R, S WHERE …;

� A view can be queried just as a normal table
� Example: SELECT * FROM V;

� Traditionally, database views are virtual
� DBMS stores the view definition query instead of contents
� Queries that reference views are rewritten (�expanded�) using

the view definition queries to reference base tables directly
� Why use virtual views?

� Access control
� Hiding complexity
� Logical data independence

3

Materialized views
� A view can be materialized, i.e., its contents can be pre-

computed and stored by the DBMS
� Why materialized views?

� Query performance
� Reliability (if materialized elsewhere)

� Issues
� View maintenance: how to maintain the consistency between

base data and materialized results
� View selection: how to choose what views to materialize
� Answering query using views: how to rewrite queries to make

use of the materialized results
4

View maintenance
� When base data changes, materialized views need to

maintained
� Re-computation
� Incremental maintenance: compute and apply only the

incremental changes to the materialized views

� Techniques are widely applicable
� Derived data maintenance (warehouse, cache, etc.)
� Integrity constraint checking

!A theoretical introduction: Griffin and Libkin. �Incremental
Maintenance of Views with Duplicates.� SIGMOD, 1995

� Many practical issues to be addressed next week

5

Review of bag algebra
� Closer to SQL than relational algebra
� A table is a bag (or multiset)

� Duplicate tuples are allowed
� The number of duplicates matters

� Bag algebra operators
� σp (selection), πA (projection), × (cross product)

� Above three are the most commonly used

� ⊕ (additive union), ! (monus), min (minimum
intersection), max (maximum union)

� ∈ (duplicate elimination) 6

Bag algebra operators (slide 1)

� Selection: σp (S)
� Filters out tuples
� Preserves duplicates (those that pass p)

� Projection: πA (S)
� Projects away attributes not in A
� Preserves duplicates; that is, | S | = | πA (S) |

� Cross product: R × S
� Pairs up tuples
� count((r, s), R × S) = count(r, R) ⋅ count(s, S)

2

7

Bag algebra operators (slide 2)

� Additive union: R ⊕ S
� count(x, R ⊕ S) = count(x, R) + count(x, S)
� Example: {2 apples} ⊕ {3 apples} = {5 apples}

� Monus: R ! S
� count(x, R ! S) = count(x, R) � count(x, S);

or 0 if count(x, R) < count(x, S)
� Example: {2 apples, 2 bananas} ! {3 apples, 1 banana} =

{1 banana}

� Duplicate elimination: ∈ (S)
� count(x, ∈ (S)) = 1; or 0 if x is not in S at all
� Example: ∈ ({2 apples, 2 bananas}) = {1 apple, 1 banana}

8

Bag algebra operators (slide 3)

� Minimum intersection: R min S
� count(x, R min S) = min(count(x, R), count(x, S))
� Example: {2 apples} min {3 apples} = {2 apples}
� Can you define it using the other operators?

� R min S = R ! (R ! S)

� Maximum union: R max S
� count(x, R max S) = max(count(x, R), count(x, S))
� Example: {2 apples} max {3 apples} = {3 apples}
� Can you define it using the other operators?

� R max S = R ⊕ (S ! R) = (R ⊕ S) ! (R min S)

9

Describing changes to base tables
� A transaction t modifies R1, �, Rn in one atomic step

R1 ← (R1 !∇R1) ⊕ ∆R1

� �
Rn ← (Rn!∇Rn) ⊕ ∆Rn

� ∇Ri contains
� Tuples deleted by t from Ri

� Old contents of the Ri tuples updated by t

� ∆Ri contains
� Tuples inserted by t into Ri

� New contents of the Ri tuples updated by t

10

Pre-expression
� S (R1, �, Rn) is a bag algebra query expression

defining a view
� Pre-expression of S w.r.t. t, pre(t, S), is defined as

S ((R1 !∇R1) ⊕ ∆R1, �, (Rn!∇Rn) ⊕ ∆Rn)
� Intuitively represents full re-computation of the view
� Uses the current state of the database before the

transaction is applied
� Computes the would-be contents of the view after the

transaction
!Allows integrity constraint checking before

committing a transaction

11

Problem
� Find expressions ∇S and ∆S such that

pre(t, S) is equivalent to (S !∇S) ⊕ ∆S

� In general, ∇S and ∆S may reference
� Current state of the database (before t is applied)

� Including base tables R1, �, Rn, and even S itself

� Incremental changes to the base tables, ∇R1, ∆R1, �,
∇Rn, ∆Rn, to be made by t

Current contents of the view Incremental changes to the view
caused by t

12

�Good� solutions
� Minimality: ∇S! S = ∅

� Do not �over� delete

� Strong minimality: in addition to minimality,
∇S min ∆S = ∅

� Do not delete a tuple and then insert it back again

� Why minimality?
� Rules out �bad� solutions such as ∇S = S, ∆S = pre(t, S)
� Simplifies further propagation of deltas

� Does not rule out ∇S = S ! pre(t, S), ∆S = pre(t, S) ! S
!Need to ensure ∇S and ∆S are easy to evaluate

3

13

Change propagation
� A change propagation equation describes how to

�bubble up� a delta through a single operator
� For a complex expression, repeatedly apply

change propagation equations until all deltas are
�bubbled up� to the top of the expression
� The �bubbles� are the incremental changes
� The remaining expression corresponds exactly to the

current state of the view

14

Change propagation equations (slide 1)

Most commonly used ones

� σp (R !∇R) = σp (R) ! σp (∇R)
� σp (R ⊕∆R) = σp (R) ⊕ σp (∆R)
� πA (R !∇R) = πA (R) ! πA (∇R min R)
� πA (R ⊕∆R) = πA (R) ⊕ πA (∆R)
� (R !∇R) × S = (R × S) ! (∇R × S)
� (R ⊕∆R) × S = (R × S) ⊕ (∆R × S)

Why not just ! πA (∇R)?

Old viewNew view Incremental changes

15

Change propagation equations (slide 2)

A non-obvious example
� (R ⊕∆R) ! S = (R ! S) ⊕ (∆R ! (S ! R))

� Intuition
� Go ahead and insert ∆R?
� Almost works; except when S �over� deletes R, it may

cancel some effects of ∆R
� Another intuition

� ! does not maintain negative counts
� (S ! R) recovers these negative counts

16

Change propagation equations (slide 3)

The only examples where insertion (or deletion)
into a base table results in deletion (or insertion,
respectively) from the view

� R ! (S!∇S) = (R ! S) ⊕ ((∇S min S) ! (S ! R))
� R ! (S⊕∆S) = (R ! S) ! ∆S

� All other bag algebra operators are monotone!
� That is, more input means no less output

17

Change propagation example
View U = S ⊕ T
� [(S !∇S) ⊕∆S] ⊕ [(T !∇T) ⊕∆T]
� {[(S !∇S) ⊕∆S] ⊕ (T !∇T)} ⊕∆T
� {(S !∇S) ⊕ (T !∇T)} ⊕∆S ⊕∆T
� [(S !∇S) ⊕ T] ! (∇T min T) ⊕∆S ⊕∆T
� (S ⊕ T) ! (∇S min S) ! (∇T min T) ⊕∆S ⊕∆T

That is, pre(t, U) = (U !∇U) ⊕∆U, where
� ∇U = (∇S min S) ⊕ (∇T min T)
� ∆U = ∆S ⊕∆T

bubble up ∆T

bubble up ∆S

bubble up ∇T
bubble up ∇S

18

Minimality patch
� View U = S ⊕ T

� ∇U = (∇S min S) ⊕ (∇T min T)
� ∆U = ∆S ⊕∆T

� Minimal, but not strongly minimal
� If x is in both ∇S and ∆T, then x is in both ∇U and ∆U

� Apply minimality �patch�
� ∇2U = (U min ∇U) !∆U
� ∆2U = ∆U ! (U min ∇U)
� Intuition

� Do not over delete
� Do not delete something that will be inserted later
� Do not insert something that was deleted earlier

4

19

Recap of change propagation
� Change propagation by hand: complicated, non-

deterministic, and may generate deltas that are not
minimal!

� Given a view definition U, it would be nice to provide
direct definitions for ∇U and ∆U

!The paper provides two mutually recursive functions
∇(t, U) and ∆(t, U) to compute ∇U and ∆U directly
� Guarantees strong minimality
� Exploits the strong minimality assumption to simplify

expressions
20

Examples of ∇(t, U) and ∆(t, U)
� For a view U of the form πA (S), where S is a

subexpression
� ∇(t, U) is πA (∇(t, S)) ! πA (∆(t, S))
� ∆(t, U) is πA (∆(t, S)) ! πA (∇(t, S))

� For a view U of the form R, where R is just a base table
� ∇(t, U) is ∇R if t modifies R, or ∅ otherwise
� ∆(t, U) is ∆R if t modifies R, or ∅ otherwise
� Here we assume ∇R and ∆R are strongly minimal to begin with

!Recursively go down the expression tree, until we hit the
leaves (base tables)

21

Deriving ∇(t, U) and ∆(t, S)
Example: consider a view U of the form πA (S)

pre(t, πA (S))
= πA (pre(t, S))
= πA ((S ! ∇(t, S)) ⊕ ∆(t, S))
= πA (S ! ∇(t, S)) ⊕ πA (∆(t, S))
= (πA (S) ! πA (∇(t, S) min S)) ⊕ πA (∆(t, S))
= (πA (S) ! πA (∇(t, S))) ⊕ πA (∆(t, S))

Finally, applying the minimality patch, we get:
∇(t, U) = πA (∇(t, S)) ! πA (∆(t, S))
∆(t, U) = πA (∆(t, S)) ! πA (∇(t, S))

bubble up ∆(t, S)
bubble up ∇(t, S)

simplification based on
minimality assumption

22

Aggregate functions

� The paper does not present a complete solution
� Aggregates are not modeled in bag algebra
� No GROUP-BY is considered
� Aggregate maintenance is not handled in the same

change propagation framework
!One aggregate operation is allowed at the very end

23

SUM, COUNT, AVG, STDEV, �
� Can be defined by expression φ(∑f1, ∑f2, �, ∑fn),

where each ∑f (R) sums up f(x) for all x in R
� SUM = ∑id = ∑x∈R x
� COUNT = ∑1 = ∑x∈R 1
� AVG = ∑id Ú ∑1

� Each ∑f can be materialized and maintained
incrementally (assuming minimality of deltas)
� ∑f ((R !∇R) ⊕∆R) = ∑f (R) � ∑f (∇R) + ∑f (∆R)

24

MIN, MAX
� Insertions

� No problem; simply compare and keep the current
MIN/MAX

� Deletions
� No effect if the current MIN/MAX is not deleted
� Problematic if the current MIN/MAX is deleted; need

to re-compute
� In general, re-computation is required if a

transaction deletes the current MIN/MAX and
does not insert a new MIN/MAX

5

25

Complexity analysis
� To compare re-computation and incremental

maintenance, the paper defines two evaluation strategies
� tview is the cost function for re-computing Q
� t∆ is the cost function for computing ∇Q and ∆Q

� And shows that when the size of base table changes
tends to 0, (t∆(∇Q) + t∆(∆Q)) Ú tview (Q) approaches 0

� Some concerns
� Cost function is too rough and tview may in fact overestimate

� tview says join is as expensive as cross product!

� Conclusion is too weak (understandably so)

26

Some afterthoughts
� Algebraic approach has its advantages

� Easy to prove correctness
� Easy to add new operators to the language (just add more

change propagation equations)
� Delta expressions can be optimized by a query optimizer

� But
� Can we handle aggregates in the same algebraic framework?
� Are these heavy machinery and hairy expressions

necessary/efficient in practice?
� Why use pre-state of the database for maintenance?

What about using after-state?
� Using the after-state enables lazy view maintenance

