View Self-Maintenance

CPS 296.1
Topics in Database Systems

Self-maintainable views

* A view is self-maintainable if it can be
maintained without accessing the base tables

— That is, using just the base table deltas and the old
content of the view itself

* Advantages of self-maintainable views
— Efficiency: no need to access base tables

— Simplicity: no problem with changing base table
states

Examples

* Self-maintainable
-V=0,R
« VV=0,(VR), AV=0,(AR)
— V=max(R) w.r.t. AR
« VV=V, AV=max(V,AR)
* Not self-maintainable
— V=R >< S w.r.t. insertions
c AV=(AR><S)® (R><AS) ® (AR >< AS)
« What about deletions?
— V'=max(R) w.r.t. VR
« If V' < VR, then ¥ must be recomputed as max(R)

Making a view self-maintainable

 If Vis not self-maintainable, add a set of auxiliary
views <A such that /" and <A taken together can
be maintained without accessing any base tables

— That is, using just the base table deltas and the old
content of ¥ and <A itself

» Example
— V'=max(R) is not self-maintainable
— Add auxiliary view 4 = R
— Vand 4 together are self-maintainable
— Why not just 4 = second_max(R)? 4

A more interesting example

» Store(store_id, city, state, manager)
» Sale(sale id, store_id, day, month, year)
* Line(line_id, sale_id, item_id, price)

+ Item(item_id, item_name, category, supplier)

e V=nr

O state = “CA” AND year = 1996 AND category = “toy”
(Store &<y jq Sale ><g, jq Line ><

manager, month, sale_id, line_id, item_id, item_name, price

Item)

item_id

— Not self-maintainable because of joins

Naive approach

* Add auxiliary views that simply copy base tables

— Agor = Store

— Agy. = Sale

— Ay = Line
Ay = Item

— “ltem
* Implemented by most commercial data warehouses
* Certainly correct, but very inefficient

— All copies are self-maintainable by themselves

— Vis maintainable (even computable) from these copies

A smarter approach

e V=x

manager, month, sale_id, line_id, item_id, item_name , price
O state = “CA” AND year = 1996 AND category = “toy”
(Store > gtore id Sale > <gale id Line > item id Item)
Push selection/projection into auxiliary views
-4

Store ~ 7T store_id, manager O state = “CA” Store

= Agaie = T e id, store id, month T year = 1996 Sale
— Ay, = Line
- Altem =r item_id, item_name Jcategow: “toy” Item

e Correct, and less inefficient
— All select-project views are self-maintainable themselves

— Vis maintainable (even computable) from these views .

More information

» Key and foreign-key constraints
* Insert/delete/update patterns
— Append-only tables, updateable columns, etc.

« Store(store, id, city, state, manager)
Sale(sale, id, store _id, day, month, year)

Line(line_id, sal¢_id, item ,id, price)
Item(item”1d, ifem_name, category, supplier)

— Also, columns referenced in selection/join conditions
are not updated

.

.

8

Better auxiliary views

Given the additional constraints

¢ AStore -r store_id, manager O state = “CA” Store

— Same as before

¢ ASale =7 sale_id, store_id, month o year = 1996 Sale

l><storeiid ASIore
— Note the extra semijoin

* 4 item_id, item_name
— Same as before

* No4

TItem ~ 7 o category = “toy” Item

Line Needed

Why the extra semijoin?

ASale = (” sale_id, store_id, month Uyear =1996 Sale) l><stm'eiid ASlore
 Sale deltas do not need to be joined with Sale
* Line and Item deltas are always joined with Sale and
Store together
— Computable from Agy. > <yore g Asiore (SEMijoin does not hurt)
» AStore cannot join with existing Sale tuples
— Because every existing Sale references an existing store_id
» VStore cannot join with existing Sale tuples
— Because if it does, it would violate the foreign-key constraint
— If it cascades, join with Ag,, to find sale_id’s to delete from ¥

10

Why no 4, ;.7

* Line deltas do not need to be joined with Line

* Altem and ASale cannot join with existing Line tuples
— Because every existing Line references an existing item_id and
an existing sale_id
» VlItem and VSale cannot join with existing Line tuples

— Because if they do, they would violate the foreign-key
constraints

— If they cascade, delete from V deleted item_id’s and sale_id’s
Store deltas cannot join with existing Line tuples
— Because they cannot even join with existing Sale tuples

What about updates?

+ In most view maintenance literature, an update is treated
as a deletion followed by an insertion

Approach becomes problematic if we want to exploit
foreign-key constraints

« Example: updating Store.manager
— VStore =[123, “Fremont”, “CA”, “Amy”’]
— AStore = [123, “Fremont”, “CA”, “Ben”]

— Applying VStore and AStore separately would temporarily
violate the foreign-key constraint from Sale.store_id to
Store.store_id

» Must treat update as one operation

Characterizing updates

» Exposed update

— Changes the value of a column referenced in select/join
conditions of the view

— May cause insertion into or deletion from the view
* Protected update

— Not exposed, but changes the value of a column that is
included in the final projection of the view

— Causes the view column to be updated
* Ignorable update

— Neither exposed nor protected

— No effect on the view

Auxiliary views re-examined

* Assume no exposed updates

 For protected updates on Sale, Item, or Line, simply
update all V' tuples with the affected sale_id’s, item_id’s,
or line_id’s

* For protected updates on Store, join with Ag,. to find all
sale_id’s associated with the updated stores, and then
update V tuples with these sale id’s

14

What if exposed updates are allowed?

» Say Sale.year may be updated

e Must add auxiliary view

ALine =T line_id, sale_id, item_id, price Line
>< A

item_id

— Any Line can be a 1996 sale after a Sale.year update

Item

Self-maintenance algorithm

* How to generate definitions for auxiliary views
* How to maintain the original view
* How to maintain the auxiliary views

* Quass et al. “Making Views Self-Maintainable for Data
Warehousing.” PDIS, 1996

Join graph of a view

Rl _-Line _RI
RI__ Sale Item

Store

* Node R: base table R
* Directed edge R — S: join condition of the form
R.A=S.K, where K is a key of S

— The edge is further annotated with R/ if there is a
foreign-key constraint from R.4 to S.K

Dep(R)

* Dep(R) = { S| there is an edge R — S annotated
with R/, and S has no exposed updates }

* Example ‘RI/Line RI
RI__ Sale Ttem
Store

— Dep(Store) = &

— Dep(Sale) = { Store }

— Dep(Item) = &

— Dep(Line) = { Sale, Item }

Intuition behind Dep(R)

Ay can be semijoined with 4 for every S in Dep(R)

+ If 7 in R does not semijoin with Ag, then

— r must join with some existing s in S not in A
(foreign-key constraint)

— r cannot join with AS (key constraint on S)
— s will never contribute to V' (no exposed updates on S)
»r will never contribute to V

Dep(R)

* Dep®(R) is the transitive closure of Dep(R)
— That is, Dep*(R) « Dep(R), and
— If S'is in Dep*(R), then so are tables in Dep(S)

RI

» Example ‘R‘/Li“e\
— Dep*(Store) = & y Sale Ttem
— Dep*(Sale) = { Store } Store
— Dep*(Item) = &
— Dep”(Line) = { Sale, Item, Store }

Intuition behind Dep*(R)

» If Dep*(R) includes all tables in V other than R
itself, then A is not needed for processing inserts

» Every S is reachable from R from a chain of
foreign-key joins, sayR —» S, — ... = 5§, —= S
— AS cannot join with existing S tuples, and therefore
cannot join with exiting S;_ |, ..., S}, and R tuples

Need(R)

If the key of R is preserved in V'
Need(R) = &
* Otherwise, if there exists S s.t. § — R
Need(R) = { S } U Need(S)
» Otherwise, Need(R) = all tables except R itself

* Example V= nlnanager, month, sale_id, line_id, item_id, item_name , price (.)
— Need(Store) = { Sale }

— Need(Sale) = &
— Need(Item) = &
— Need(Line) = @ plore 2

RI Line._RI

RI__ Sale Item

Intuition behind Need(R)

« If S appears in Need(R) then 45 may be needed
for processing deletes and protected updates on R

* To process a delete or a protected update on R,
we need to identify V tuples that are affected by
this modification

— If R’s key is preserved in ¥, we know which tuples are
affected

— Otherwise, we can join the modification with 4 to
find the S keys of the affected V tuples 5

Generating auxiliary views

For each R

» If Dep*(R) includes all other tables and R is not
contained in any Need(S), then A is not needed
— Only happens for the root of the join graph

» Otherwise, push selection and projection down into A, as
much as possible, but preserve the key of R

» Semijoin 4, with 4 for every S in Dep(R)

» No recursive definition if join graph is a tree

Maintaining the original view

* Basic strategy: start with regular change
propagation equations, rewrite the change terms
to reference only deltas, 4;’s, and/or V'

— Inserts
— Deletes
— Updates (protected and exposed)

Strategy for inserts

« Eliminate terms that are guaranteed to be &

— If there is a foreign-key join from R.4 to S.K, then
L. DARD>C L DPIASDC ... =0

* In the remaining terms, replace R’s with 4;’s
— Rewrite ... ><4RD>< ... ><1S>Q ... a8
B I P I S IV P S
— Note that in the remaining terms, R always appears
together with S, so the semijoin with A is harmless

Strategy for deletes

* Rewrite terms to reference ¥ whenever possible

— Ifkey(R) is preserved in V, then
<. DAVREC =TV D<y) VR

— Ifkey(R) is not preserved in ¥, but there is a chain
join§; — 8§, — ... = S, — R, and key(S,) is
preserved in V, then

< DAVREQ L =T <)
(s, ><ey(sy)
(ASz l><kcy(53) (o0
(A, ><keyry VB --))

Strategy for updates

* Protected updates
— Similar to deletes

— Rewrite using V, using additional joins as necessary to
recover preserved keys

* Exposed updates
— Treated as deletes followed by inserts
— Cannot exploit foreign-key constraints

Maintaining auxiliary views

* Insertion

— AMp=@oAR)D><...D<AgD>< ...

— Since §'is in Dep(R), AS has no effect on 4,
* Deletion

— VAp=A4,><VR

— VA=A, >< VA

— Ay preserves the key of R and the foreign key reference to S
* Protected updates

— For a protected update on R, just update 4, because 4,
preserves the key

— Protected updates on S do not affect 4,

Recap

* Bottom line: use constraints to simplify view

maintenance

— Start with change propagation equations

— Using constraints, simplify equations or rewrite them
to reference the view itself

— Examine remaining terms and see if tables can be
joined to form auxiliary views

« Joins (or semijoins) serve as additional filters
— Don’t forget to check that auxiliary views themselves

are self-maintainable!
30

Compile- vs. run-time self-maintenance

» Compile-time self-maintenance (this paper)
— Views are always self-maintainable, no matter what

the current database state is and what changes may
occur in the future

— Strong guarantee, but large auxiliary views
* Run-time self-maintenance
— Look at each change and the current view content,
decide whether it is possible to self-maintain the view
« Example: V= max(R)
« Example: most updates are protected, but some are exposed

— Base tables are accessed only when necessary
31

