XML Storage

CPS 296.1
Topics in Database Systems

Approaches

» Text files
— Use DOM/XSLT to parse and access XML data
* Specialized DBMS
— Lore, Strudel, eXist, etc.
— Still a long way to go
* Object-oriented DBMS
— eXcelon (ObjectStore), ozone, etc.
— Not as mature as relational DBMS
* Relational (and object-relational) DBMS
— Middleware and/or object-relational extensions

Mapping XML to relational

+ Justuse a CLOB column
+ Simple, compact, reasonable clustering
+ Additional text indexing can help
— Updates are expensive
— Poor integration with query processing

» Use generic schema

— Florenscu and Kossman, “A Performance Evaluation of Alternative
Mapping Schemes for Storing XML Data in a Relational Database.”
Technical Report, INRIA, 1999

e Use DTD to derive schema

— Shanmugasundaram et al., “Relational Databases for Querying XML
Documents: Limitations and Opportunities.” VLDB, 1999

Storing arbitrary XML

“Databases” “Ramakrishnan”“Gerhke” “1999”

* Just a labeled directed graph

— Internal nodes: elements with sub-clements and/or attributes;
labeled by OID

— Leaf nodes: attributes, or elements with atomic values; labeled
by VID and value

— Edges: links to sub-elements or attributes; labeled by name
4

Mapping the link structure

» Edge table: edge(source, ordinal, name, target)
— Source: parent OID
— Target: child OID or VID
— Name: attribute name, or tag name of the sub-element

— Ordinal: order of the outgoing edges from source
(corresponding to the order in the XML source)

* Primary key: {source, ordinal}

— Primary index supports forward traversal
+ Secondary Index: {name, target}

— Supports backward traversal

Mapping leaf values

» Approach 1: separate value tables

— One table for each datatype: string(VID, value),
date(VID, value), etc.

— Primary key: { VID }; secondary index: { value }
* Approach 2: inlining

— In edge table, target stores value instead of VID

— One column for each type, or

— One VARCHAR column for all

Example mapping

Mapping queries

 Path expression becomes joins

— Example: book/section/title
select e3.target
from edge e1, edge e2, edge e3
where e1.name ='book’ and e1.target = e2.source
and e2.name = section’ and e2.target = e3.source
and e3.name = 'title’;

» Let relational query optimizer pick traversal (join) order!
* Wildcards require SQL3 recursion

— Example: book//title
with reachable-from-book(tag, ID) as
(select name, target from edge where name = ’book’) union all
(select name, target from reachable-from-book, edge where ID = source)
select ID from reachable-from-book where tag = 'title’;

» Traditional query optimizer may not be smart enough to
recognize the reverse join order 8

“Databases” “Ramakrishnan” “Gerhke” “1999”
edge value
source | ordinal | name | target VID value
&o1 1 book 802 &v1 Databases
&02 1 title &vi &v2 | Ramakrishnan
802 2 author | &2 &3 Gerhke
&02 3 author | &v3 &v4 1999
802 4 author | &v4 . o
7
Experiments

Joins hurt, but performance is reasonable for most
queries, even complex ones

Inlining helps a lot, even for big values
Clustering edge table by name helps

Certain queries, e.g., reconstruction of the
original XML document, are expensive because
of declustering

— Recall that edge table is ordered by {source, ordinal}

— Assigning OID’s in DFS order helps, but edges are
still not listed in DFS order

Storing XML with DTD

* Observation: more structure = more optimization
— Much XML data conforms to pre-defined DTD’s
— Use DTD’s to optimize mapping to relational schema

XML XML-QL| XML
DTD
Documents Query Result
‘ Automatic Translation Layer ‘

Relational Tuples SQL Relational
Schema Query Result
Translation
Information

Commercial RDBMS (DB2)

. e pm
L] v
e
'
r] W
T =
1 1
o
= g i bew
L
s
okl

e]

TLERETT sl T .
* Issues in mapping DTD to relational schema
— Complex DTD specification involving wildcards

— Tow-level nature of relational schema (tuples and attributes)
versus arbitrary nesting of DTD

— Recursion

11

Simplification of DTD

* Flattening Simplification

— (el, e2)* > el*, e2* —el** > el*

- (el,e2)? > el?,e2? —el*? > el*

— (el]e2) > el?,e2? —el?* >el*
+ Grouping —el?? > el?

— ., ek et L Der

— .,e¥ ,e?, ... De* ..

— ...,e? ...,e% ... De* ...
—..,e?,...,e2, ... De* ...

» Not equivalent transformations, but oh well...

Naive mapping

» Each type of element becomes one relation, whose
columns include
— AnID
— ID of the parent element (if applicable)
— All attributes of the element wrd .
» Example : T,
— article(ID) i
— author(ID, parentID)

Basic inlining

* Intuition: inline sub-elements as much as possible
in order to avoid joins

* Complications
— Cannot inline a set of sub-elements (*)
 Resort back to join using foreign keys
— Any element can be the root element
« Create one relation per element
— Recursion: inlining can go into an infinite loop
« Detect and break cycles; again resort back to joins

— title(ID, parentID, value) " a
» Many joins! N -
Element graph
= JE B
b - - i e

» For each element, construct an element graph using a
DEFS on the DTD graph
— Shows what a valid XML document looks like if it is rooted at
this element
— Cycles are detected and treated as backlinks

Basic inlining algorithm

* For each element
— Construct the element graph
— Create a relation for the root
— Inline all descendents, except —
« Subtree below *: create a new relation with 4 .
parentID to the element above * 1
« Node with an incoming backpointer: create
anew relation with parentID to the source
of the backpointer
* Example: -
— editor: inline name, plus parentID to - e
editor.monograph =
— editor.monograph: inline everything
below, plus parentID to editor 16

Result schema using basic inlining

* author becomes scattered (i.e., it appears once for each
possible instantiation from a root)

— Need multiple queries to find all authors i

Shared inlining

+ Same intuition as basic inlining: inline as many sub-
elements as possible
— Also as before, */recursion cannot be inlined

» However, to avoid scattering, do not inline an element if
it is shared (i.e., appears in different contexts)

* Technique:
— Node with in-degree 1 in the DTD graph: inline
« Special cases: * and recursion
— Node with in-degree 0: create a separate relation, because it
cannot be inlined
— Node with in-degree greater than 1: create a separate relation,

because it is shared
18

Shared inlining example

* book: inline booktitle

« article: inline . -
contactauthor .

monograph: inline u
editor and name, with
parentID (to what?) Ll e
— Note there is no relation r '
for editor! -

title (shared)

author (shared): inline
everything -

Result schema using shared inlining
e e

» Subtlety 1: There is no relation for a non-shared,
inlinable element (e.g., editor)
— What if it is root? What if a foreign key needs to reference it?
— Reuse the relation in which it appears (e.g., monograph)
« Introduce isRoot column; set irrelevant columns to NULL
+ Subtlety 2: A shared element appears in different
contexts (e.g., /article/author, /book/author, etc.)

— Together with parentID, we need to store parentCODE so we
know in which relation to look for matching ID 20

Basic versus shared inlining

Shared inlining reduces scattering and hence the
number of queries

— More efficient than basic inlining for finding all
authors (anywhere in the XML document)

Shared inlining introduces extra joins for
processing path expressions

— Less efficient than basic inlining for finding
/book/author

* Best of both worlds?
»Hybrid inlining 21

Hybrid inlining

» Same as shared inlining, but additionally inline shared
elements that are not recursive or below *

Do not attempt to enumerate all contexts as basic
inlining does

S R B Rl = B B L .
ST S TECS AN SIS T PR S A
ST B LA R ATeCT SRECE ST M pEp e

.
L}

« author now appears twice (inlined once)
« title is now completely inlined twice 2

Shared versus hybrid inlining

* Hybrid inlining reduces joins through shared
elements by inlining them whenever possible
— No join needed for //book[contains(booktitle,
”database”]/author[firstname="Jeft”’] (shared inlining
requires one)
* Hybrid inlining requires more queries to union
together scattered information
— Two queries to find //author[firstname="Jeff’] (shared
inlining only needs one)
» Shared inlining and hybrid inlining target query-
and join-reduction respectively

23

Experiments

¢ 37 DTDs from real life

* Query set not from real life: all path expressions
(that are valid in a given DTD) of a given length

* Metric
— Total number of joins required for processing one
path expression
— Study trade-off of inlining
* Number of queries per path expression
« Number of joins per query

Results

Basic inlining blows up with too many relations
Shared versus hybrid

— 35% of the DTD’s: Thyoria << Jshared> Quybria > Qsharea> TIngbria < Tiharea
— 5% of the DTD’s: Jhyoria << Jspared> Qybria > Qunareas Thhybria ~ Tshared
— 16% of the DTD’s: Jhyorid < Jshared> Quybria > Quhareds Tohybrid > Tshared
— 43% of the DTD’s: Jigbria ~ Jsnareas Quybria ~ Qutarea> Thgbria ~ Tsharea
Sets of sub-elements contribute to much of the
fragmentation

Number of joins per SQL query scales with the length of
the path expression

If all path expressions start from the root, one query

— Hybrid is strictly better 25

Translating queries

 Translating path expressions
— Inlined = no join required
— Not inlined - join required
* Dealing with wildcards
— Example: /article/child::*/lastname
« Translation is not as simple as using the edge table
« Traversal may go through either column (if inlined) or join (if not
inlined)
« Need to look at the schema and generate all instantiations
— Example: /monograph//lastname
« Recursion is required
— Example: /book//lastname
« No recursion is required

Structuring query results

Simple results are fine

— Each tuple returned by SQL query gets converted to an element

Simple grouping is fine

— Tuples can be returned by SQL query in sorted order; adjacent
tuples are grouped into an element

Complex results are problematic, e.g., article with

multiple authors and multiple references

— One SQL query can only return a single table, whose columns
cannot store sets

— Option 1: return one table, with all combinations of authors and
references > bad

— Option 2: return two tables, one with only authors and the other
with only references = join is done outside the RDBMS 27

RDBMS wish list

 Support for sets

» Reference type to get rid of parentCODE

* IR indexes to facilitate full-text searches

* Flexible comparison to cast strings automatically
into appropriate types

» Multiple-query optimization for processing path
expressions

» Complex recursion for processing regular path

expressions
28

Afterthoughts

How does inlining relate to object clustering in object-
oriented DBMS, or even clustering in relational DBMS?
Instead of tweaking schema to get performance, should
we implement better clustering support in DBMS?
Starting with a schema without any inlining, how do we
drive the clustering strategy? From schema, data, query
workload, or query results?

‘What if there is no DTD?

— Use data mining to derive schema

— Deutsch et al. “Storing Semistructured Data with STORED.”

SIGMOD, 1999

29

