
1

XML Storage

CPS 296.1
Topics in Database Systems

2

Approaches
� Text files

� Use DOM/XSLT to parse and access XML data
� Specialized DBMS

� Lore, Strudel, eXist, etc.
� Still a long way to go

� Object-oriented DBMS
� eXcelon (ObjectStore), ozone, etc.
� Not as mature as relational DBMS

� Relational (and object-relational) DBMS
� Middleware and/or object-relational extensions

3

Mapping XML to relational
� Just use a CLOB column

+ Simple, compact, reasonable clustering
+ Additional text indexing can help
� Updates are expensive
� Poor integration with query processing

� Use generic schema
� Florenscu and Kossman, �A Performance Evaluation of Alternative

Mapping Schemes for Storing XML Data in a Relational Database.�
Technical Report, INRIA, 1999

� Use DTD to derive schema
� Shanmugasundaram et al., �Relational Databases for Querying XML

Documents: Limitations and Opportunities.� VLDB, 1999
4

Storing arbitrary XML

� Just a labeled directed graph
� Internal nodes: elements with sub-elements and/or attributes;

labeled by OID
� Leaf nodes: attributes, or elements with atomic values; labeled

by VID and value
� Edges: links to sub-elements or attributes; labeled by name

&o1

&o2

&v1 &v2 &v3 &v4

book

title author
year

author

�Databases� �Ramakrishnan� �Gerhke� �1999�

5

Mapping the link structure
� Edge table: edge(source, ordinal, name, target)

� Source: parent OID
� Target: child OID or VID
� Name: attribute name, or tag name of the sub-element
� Ordinal: order of the outgoing edges from source

(corresponding to the order in the XML source)
� Primary key: {source, ordinal}

� Primary index supports forward traversal
� Secondary Index: {name, target}

� Supports backward traversal
6

Mapping leaf values
� Approach 1: separate value tables

� One table for each datatype: string(VID, value),
date(VID, value), etc.

� Primary key: { VID }; secondary index: { value }
� Approach 2: inlining

� In edge table, target stores value instead of VID
� One column for each type, or
� One VARCHAR column for all

2

7

Example mapping
&o1

&o2

&v1 &v2 &v3 &v4

book

title author
year

author

�Databases� �Ramakrishnan� �Gerhke� �1999�

source ordinal name target
&o1 1 book &o2
&o2 1 title &v1
&o2 2 author &v2
&o2 3 author &v3
&o2 4 author &v4
� � � �

edge
VID value
&v1 Databases
&v2 Ramakrishnan
&v3 Gerhke
&v4 1999
� �

value

8

Mapping queries
� Path expression becomes joins

� Example: book/section/title
select e3.target
from edge e1, edge e2, edge e3
where e1.name = ’book’ and e1.target = e2.source
and e2.name = ’section’ and e2.target = e3.source
and e3.name = ’title’;

!Let relational query optimizer pick traversal (join) order!
� Wildcards require SQL3 recursion

� Example: book//title
with reachable-from-book(tag, ID) as

(select name, target from edge where name = ’book’) union all
(select name, target from reachable-from-book, edge where ID = source)

select ID from reachable-from-book where tag = ’title’;

!Traditional query optimizer may not be smart enough to
recognize the reverse join order

9

Experiments
� Joins hurt, but performance is reasonable for most

queries, even complex ones
� Inlining helps a lot, even for big values
� Clustering edge table by name helps
� Certain queries, e.g., reconstruction of the

original XML document, are expensive because
of declustering
� Recall that edge table is ordered by {source, ordinal}
� Assigning OID�s in DFS order helps, but edges are

still not listed in DFS order
10

Storing XML with DTD
� Observation: more structure " more optimization

� Much XML data conforms to pre-defined DTD�s
� Use DTD�s to optimize mapping to relational schema

Commercial RDBMS (DB2)

Automatic Translation Layer

DTD

Relational
Schema

Translation
Information

XML
Documents

Tuples

XML-QL
Query

SQL
Query

Relational
Result

XML
Result

11

DTD graph

� Issues in mapping DTD to relational schema
� Complex DTD specification involving wildcards
� Tow-level nature of relational schema (tuples and attributes)

versus arbitrary nesting of DTD
� Recursion 12

Simplification of DTD

� Grouping
� �, e*, �, e*, � " e*, �
� �, e*, �, e?, � " e*, �
� �, e?, �, e*, � " e*, �
� �, e?, �, e?, � " e*, �

!Not equivalent transformations, but oh well�

� Flattening
� (e1, e2)* " e1*, e2*
� (e1, e2)? " e1?, e2?
� (e1 | e2) " e1?, e2?

� Simplification
� e1** " e1*
� e1*? " e1*
� e1?* " e1*
� e1?? " e1?

3

13

Naïve mapping
� Each type of element becomes one relation, whose

columns include
� An ID
� ID of the parent element (if applicable)
� All attributes of the element

� Example
� article(ID)
� author(ID, parentID)
� title(ID, parentID, value)
� �

!Many joins! 14

Basic inlining
� Intuition: inline sub-elements as much as possible

in order to avoid joins
� Complications

� Cannot inline a set of sub-elements (*)
� Resort back to join using foreign keys

� Any element can be the root element
� Create one relation per element

� Recursion: inlining can go into an infinite loop
� Detect and break cycles; again resort back to joins

15

Element graph

� For each element, construct an element graph using a
DFS on the DTD graph
� Shows what a valid XML document looks like if it is rooted at

this element
� Cycles are detected and treated as backlinks 16

Basic inlining algorithm
� For each element

� Construct the element graph
� Create a relation for the root
� Inline all descendents, except

� Subtree below *: create a new relation with
parentID to the element above *

� Node with an incoming backpointer: create
a new relation with parentID to the source
of the backpointer

� Example:
� editor: inline name, plus parentID to

editor.monograph
� editor.monograph: inline everything

below, plus parentID to editor

17

Result schema using basic inlining

� author becomes scattered (i.e., it appears once for each
possible instantiation from a root)
� Need multiple queries to find all authors 18

Shared inlining
� Same intuition as basic inlining: inline as many sub-

elements as possible
� Also as before, */recursion cannot be inlined

� However, to avoid scattering, do not inline an element if
it is shared (i.e., appears in different contexts)

� Technique:
� Node with in-degree 1 in the DTD graph: inline

� Special cases: * and recursion
� Node with in-degree 0: create a separate relation, because it

cannot be inlined
� Node with in-degree greater than 1: create a separate relation,

because it is shared

4

19

Shared inlining example
� book: inline booktitle
� article: inline

contactauthor
� monograph: inline

editor and name, with
parentID (to what?)
� Note there is no relation

for editor!

� title (shared)
� author (shared): inline

everything 20

Result schema using shared inlining

� Subtlety 1: There is no relation for a non-shared,
inlinable element (e.g., editor)
� What if it is root? What if a foreign key needs to reference it?
� Reuse the relation in which it appears (e.g., monograph)

� Introduce isRoot column; set irrelevant columns to NULL

� Subtlety 2: A shared element appears in different
contexts (e.g., /article/author, /book/author, etc.)
� Together with parentID, we need to store parentCODE so we

know in which relation to look for matching ID

21

Basic versus shared inlining
� Shared inlining reduces scattering and hence the

number of queries
� More efficient than basic inlining for finding all

authors (anywhere in the XML document)
� Shared inlining introduces extra joins for

processing path expressions
� Less efficient than basic inlining for finding

/book/author
� Best of both worlds?

!Hybrid inlining 22

Hybrid inlining
� Same as shared inlining, but additionally inline shared

elements that are not recursive or below *
� Do not attempt to enumerate all contexts as basic

inlining does

� author now appears twice (inlined once)
� title is now completely inlined twice

23

Shared versus hybrid inlining
� Hybrid inlining reduces joins through shared

elements by inlining them whenever possible
� No join needed for //book[contains(booktitle,

�database�]/author[firstname=�Jeff�] (shared inlining
requires one)

� Hybrid inlining requires more queries to union
together scattered information
� Two queries to find //author[firstname=�Jeff�] (shared

inlining only needs one)
!Shared inlining and hybrid inlining target query-

and join-reduction respectively
24

Experiments
� 37 DTDs from real life
� Query set not from real life: all path expressions

(that are valid in a given DTD) of a given length
� Metric

� Total number of joins required for processing one
path expression

� Study trade-off of inlining
� Number of queries per path expression
� Number of joins per query

5

25

Results
� Basic inlining blows up with too many relations
� Shared versus hybrid

� 35% of the DTD�s: Jhybrid << Jshared, Qhybrid > Qshared, TJhybrid < TJshared

� 5% of the DTD�s: Jhybrid << Jshared, Qhybrid >> Qshared, TJhybrid ~ TJshared

� 16% of the DTD�s: Jhybrid < Jshared, Qhybrid >> Qshared, TJhybrid > TJshared

� 43% of the DTD�s: Jhybrid ~ Jshared, Qhybrid ~ Qshared, TJhybrid ~ TJshared

� Sets of sub-elements contribute to much of the
fragmentation

� Number of joins per SQL query scales with the length of
the path expression

� If all path expressions start from the root, one query
� Hybrid is strictly better 26

Translating queries
� Translating path expressions

� Inlined " no join required
� Not inlined " join required

� Dealing with wildcards
� Example: /article/child::*/lastname

� Translation is not as simple as using the edge table
� Traversal may go through either column (if inlined) or join (if not

inlined)
� Need to look at the schema and generate all instantiations

� Example: /monograph//lastname
� Recursion is required

� Example: /book//lastname
� No recursion is required

27

Structuring query results
� Simple results are fine

� Each tuple returned by SQL query gets converted to an element
� Simple grouping is fine

� Tuples can be returned by SQL query in sorted order; adjacent
tuples are grouped into an element

� Complex results are problematic, e.g., article with
multiple authors and multiple references
� One SQL query can only return a single table, whose columns

cannot store sets
� Option 1: return one table, with all combinations of authors and

references " bad
� Option 2: return two tables, one with only authors and the other

with only references " join is done outside the RDBMS 28

RDBMS wish list
� Support for sets
� Reference type to get rid of parentCODE
� IR indexes to facilitate full-text searches
� Flexible comparison to cast strings automatically

into appropriate types
� Multiple-query optimization for processing path

expressions
� Complex recursion for processing regular path

expressions

29

Afterthoughts
� How does inlining relate to object clustering in object-

oriented DBMS, or even clustering in relational DBMS?
� Instead of tweaking schema to get performance, should

we implement better clustering support in DBMS?
� Starting with a schema without any inlining, how do we

drive the clustering strategy? From schema, data, query
workload, or query results?

� What if there is no DTD?
� Use data mining to derive schema
� Deutsch et al. �Storing Semistructured Data with STORED.�
SIGMOD, 1999

