
1

Incremental Mining of
Frequent Itemsets

CPS 296.1
Topics in Database Systems

2

Mining a growing database
� Given: DB, a database of transactions, each

containing a set of items
� Find: L(DB), the set of all frequent itemsets

� A set of items X is frequent if no less than
smin% × | DB | transactions contain X

� If we add a set of transaction to the database (i.e.,
DB ← DB] MDB), what is L(DB] MDB)?
� Re-computation is not optimal because it ignores the

result of mining the old DB

3

Incorrect approaches
� L(DB] MDB) = L(DB) ∪ L(MDB)?

� X can be frequent in DB, but it can be infrequent in
MDB and DB] MDB

� And vice versa: X can be frequent in MDB, but it can
be infrequent in DB and DB] MDB

!L(DB) is not monotone
� L(DB] MDB) = L(DB) ∩ L(MDB)?

� X can be infrequent in DB, but it can be frequent in
MDB and DB] MDB

� And vice versa
4

Positive and negative border
� Positive border, bd+(DB): maximal

frequent itemsets in DB
� X is in the positive border if X is

frequent and no proper superset of X
is frequent

� Example: bd+(DB) = { ab, c }

� Negative border, bd�(DB): minimal
infrequent itemsets in DB
� X is in the negative border if X is

infrequent and no proper subset of X
is infrequent

� Example: bd�(DB) = { d, ac, bc }

∅

a b c

ab ac bcad bd cd

d

abc abd bcdacd

abcd

frequent

5

Facts about negative border
� Observation 1: Every 1-itemset is in either L(DB) or

bd�(DB)
� Observation 2: recall pass k of Apriori

� Generate Ck (candidate itemsets of size k) from Lk � 1 (frequent
itemsets of size k � 1)

� Count Ck to determine Lk (⊆ Ck)
!Ck � Lk is the negative border at level k
!Apriori counts Ck � Lk

!After mining DB, we know itemsets in both L(DB) and
bd�(DB), together with their counts
� Remember such information to help the incremental mining

algorithm
6

First try at an incremental algorithm
� Input: DB, MDB, L(DB) and bd�(DB) together

with their counts in DB
� Output: L(DB] MDB) together with their counts

in DB] MDB (" will come back later to this requirement)

� Method
� Same as Apriori, but
� When counting Ck, if X ∈ Ck is in L(DB) or bd�(DB),

do not go through DB because the count of X in DB is
already known; simply go through MDB

!We might save a scan over DB (but not MDB) if all
itemsets in Ck have been counted in DB

2

7

A problem of the first try
� Each scan over DB may count only a few

itemsets # insufficient computation to overlap
I/O
� Also a problem in Apriori
� But aggravated in the incremental algorithm because

some of Ck may have been counted before
!In general, a trade-off in level-wise algorithms

� If we count an itemset X in the next level, we risk
doing useless work because a subset of X (which we
are counting at the same time) may turn out to be
infrequent

8

Another problem (?) (slide 1)

� Did not use the fact that bd�(DB)
and beyond are infrequent in DB

� Example
� Pass 1

� Scan of DB is saved
� Say all 1-itemsets turn out to be

frequent in DB] MDB
� Pass 2

� Scan of DB is needed because ad, bd,
cd ∈ C2 but they have never been
counted in DB

� But at least we know they are
infrequent in DB; perhaps their counts
in MDB are not high enough to make
them frequent in DB] MDB, so we
could have avoided scanning DB

∅

a b c

ab ac bcad bd cd

d

abc abd bcdacd

abcd

L(DB)
bd�(DB)

9

Another problem (?) (slide 2)

� If we also care about bd�

(DB] MDB) with counts,
then we still need to count
ad, bd, cd in DB
� Counts for bd�(DB] MDB)

are needed to make the
incremental algorithm ready
for next MDB

∅

a b c

ab ac bcad bd cd

d

abc abd bcdacd

abcd

L(DB)
bd�(DB)

10

Observation 1
� If X is infrequent in DB, then X can be frequent in DB]
MDB only if X is frequent in MDB
� Infrequent in both DB and MDB # infrequent in DB] MDB

! Strategy implied
� First, mine MDB to find L(MDB) and bd�(MDB) with counts
� When counting Ck, if X ∈ Ck is in L(MDB) or bd�(MDB), do not

go through MDB because the count of X in MDB is already
known

� Add the following pruning condition: For any X ∈ Ck, if we
already know X ∉ L(DB) and X ∉ L(MDB), remove X from Ck

11

Observation 2
� If none of the itemsets in bd�(DB) becomes frequent in

DB] MDB, then no new itemset will be introduced (i.e.,
L(DB] MDB) ⊆ L(DB))
� Say X is infrequent in DB
� Then there exists Y ⊆ X s.t. Y ∈ bd�(DB)
� Since none of the itemsets in bd�(DB) is frequent in DB]
MDB, Y is infrequent in DB] MDB

� That means X ⊇ Y is infrequent in DB] MDB
! Strategy implied

� In MDB, count itemsets in bd�(DB) to find their counts in
DB] MDB

� If none of these itemsets are frequent in DB] MDB, there is no
need to scan DB at all 12

Second try (slide 1)

! Thomas et al. �An Efficient Algorithm for the Incremental
Updation of Association Rules in Large Databases.� SIGKDD,
1997

� Mine MDB to obtain L(MDB) and bd�(MDB) with counts
� While mining MDB, also count itemsets in L(DB) and

bd�(DB)
� For each itemset in L(DB) and bd�(DB), calculate its

count in DB] MDB

(Continue on the next slide)

3

13

Second try (slide 2)

(Continued from the previous slide)
� If none of the itemsets in bd�(DB) is frequent in DB]
MDB, stop and output itemsets in L(DB) and bd�(DB)
that are in L(DB] MDB) or bd�(DB] MDB), together
with their counts

� Otherwise, scan DB once
� Count all itemsets in C =

L(MDB) ∪ bd�(MDB) � L(DB) � bd�(DB) �
{ X | ∃Y ∈ L(DB) ∪ bd�(DB) s.t. Y is known to be

infrequent in DB] MDB and Y ⊆ X }
� Output itemsets in L(DB), bd�(DB), and C that are in

L(DB] MDB) or bd�(DB] MDB), together with their counts 14

Experiments
� Not nearly close to

the ideal speed-up
� Incremental algorithm

does not replace Apriori
� Smaller MDB means

bigger speed-up (usually)
� Speed-up is lower for very high support threshold

� Apriori makes very few passes anyway

� Speed-up is lower for very low support threshold
� Probability of the negative border expanding is higher

15

First vs. second try
� Second try (Thomas et al.) scans DB at most once

� May need to count lots of itemsets in the same pass
� Some of these itemset may not need to be counted

� Example?
� Also, complete mining of MDB may be unnecessary

� Example?

� First try scans DB multiple times (up to the number of
scans required by Apriori minus one)
� Will not scan DB if the second try does not
� May count very few itemsets in one pass
� Every itemset counted is necessary

! Fundamental trade-off in play again!

