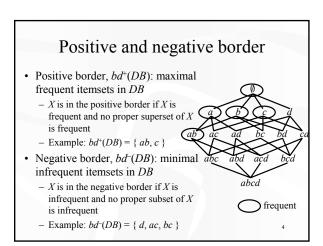


Mining a growing database

- Given: *DB*, a database of transactions, each containing a set of items
- Find: L(DB), the set of all frequent itemsets
 A set of items X is frequent if no less than s_{min}% × | DB | transactions contain X
- If we add a set of transaction to the database (i.e., $DB \leftarrow DB \uplus \triangle DB$), what is $L(DB \uplus \triangle DB)$?
 - Re-computation is not optimal because it ignores the result of mining the old *DB*

Incorrect approaches

- $L(DB \uplus \triangle DB) = L(DB) \cup L(\triangle DB)$?
 - X can be frequent in DB, but it can be infrequent in $\triangle DB$ and $DB \uplus \triangle DB$
 - And vice versa: X can be frequent in $\triangle DB$, but it can be infrequent in DB and $DB \uplus \triangle DB$
 - > L(DB) is not monotone
- $L(DB \uplus \triangle DB) = L(DB) \cap L(\triangle DB)$?
 - X can be infrequent in DB, but it can be frequent in $\triangle DB$ and $DB \uplus \triangle DB$
 - And vice versa



Facts about negative border

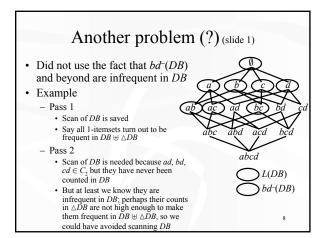
- Observation 1: Every 1-itemset is in either *L*(*DB*) or *bd*-(*DB*)
- Observation 2: recall pass k of Apriori
 - Generate C_k (candidate itemsets of size k) from L_{k-1} (frequent itemsets of size k-1)
 - Count C_k to determine $L_k (\subseteq C_k)$
 - $\succ C_k L_k$ is the negative border at level k
 - Apriori counts $C_k L_k$
- After mining DB, we know itemsets in both L(DB) and bd⁻(DB), together with their counts
 - Remember such information to help the incremental mining algorithm

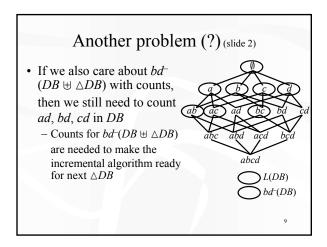
First try at an incremental algorithm
Input: DB, △DB, L(DB) and bd⁻(DB) together with their counts in DB

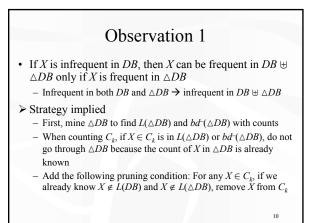
- Output: $L(DB \uplus \triangle DB)$ together with their counts in $DB \uplus \triangle DB$ (\leftarrow will come back later to this requirement)
- Method
 - Same as Apriori, but
 - When counting C_k , if $X \in C_k$ is in L(DB) or $bd^-(DB)$, do not go through DB because the count of X in DB is already known; simply go through $\triangle DB$
 - We might save a scan over DB (but not $\triangle DB$) if all itemsets in C_k have been counted in DB

A problem of the first try

- Each scan over *DB* may count only a few itemsets → insufficient computation to overlap I/O
 - Also a problem in Apriori
 - But aggravated in the incremental algorithm because some of C_k may have been counted before
- > In general, a trade-off in level-wise algorithms
 - If we count an itemset X in the next level, we risk doing useless work because a subset of X (which we are counting at the same time) may turn out to be infrequent

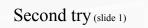






Observation 2

- If none of the itemsets in bd-(DB) becomes frequent in DB ⊎ △DB, then no new itemset will be introduced (i.e., L(DB ⊎ △DB) ⊆ L(DB))
 - Say X is infrequent in DB
 - Then there exists $Y \subseteq X$ s.t. $Y \in bd^{-}(DB)$
 - Since none of the itemsets in $bd^-(DB)$ is frequent in $DB \uplus \triangle DB$, Y is infrequent in $DB \uplus \triangle DB$
 - That means $X \supseteq Y$ is infrequent in $DB \uplus \triangle DB$
- Strategy implied
 - In $\triangle DB$, count itemsets in $bd^-(DB)$ to find their counts in $DB \uplus \triangle DB$
 - If none of these itemsets are frequent in $DB \uplus \triangle DB$, there is no need to scan DB at all



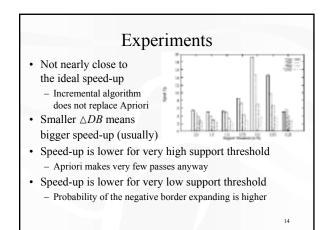
- Thomas et al. "An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases." SIGKDD, 1997
- Mine $\triangle DB$ to obtain $L(\triangle DB)$ and $bd^{-}(\triangle DB)$ with counts
- While mining $\triangle DB$, also count itemsets in L(DB) and $bd^{-}(DB)$
- For each itemset in L(DB) and $bd^{-}(DB)$, calculate its count in $DB \uplus \triangle DB$

(Continue on the next slide)

Second try (slide 2)

(Continued from the previous slide)

- If none of the itemsets in bd⁺(DB) is frequent in DB ⊎ △DB, stop and output itemsets in L(DB) and bd⁺(DB) that are in L(DB ⊎ △DB) or bd⁺(DB ⊎ △DB), together with their counts
- Otherwise, scan DB once
 - Count all itemsets in $C = L(\triangle DB) \cup bd^{-}(\triangle DB) L(DB) bd^{-}(DB) \{X \mid \exists Y \in L(DB) \cup bd^{-}(DB) \text{ s.t. } Y \text{ is known to be infrequent in } DB \uplus \triangle DB \text{ and } Y \subseteq X \}$
 - Output itemsets in L(DB), $bd^-(DB)$, and C that are in $L(DB \uplus \triangle DB)$ or $bd^-(DB \uplus \triangle DB)$, together with their counts



First vs. second try

- Second try (Thomas et al.) scans *DB* at most once
 - May need to count lots of itemsets in the same pass
 Some of these itemset may not need to be counted
 - Example?
 Also, complete mining of △DB may be unnecessary
 Example?
- First try scans *DB* multiple times (up to the number of scans required by Apriori minus one)

15

- Will not scan DB if the second try does not
- May count very few itemsets in one pass
- Every itemset counted is necessary
- > Fundamental trade-off in play again!