
Semantic Data Caching and Replacement

Shaul Dar
�

Michael J. Franklin
�

Björn T. Jónsson
�

Data Technologies Ltd. University of Maryland University of Maryland
dar@dtl.co.il franklin@cs.umd.edu bthj@cs.umd.edu

Divesh Srivastava Michael Tan
�

AT&T Research University of Maryland
divesh@research.att.com mdtanx@cs.umd.edu

Abstract

We propose a semantic model for client-side caching and replace-
ment in a client-server database system and compare this approach
to page caching and tuple caching strategies. Our caching model
is based on, and derives its advantages from, three key ideas.
First, the client maintains a semantic description of the data in
its cache,which allows for a compact specification, as a remainder
query, of the tuples needed to answer a query that are not available
in the cache. Second, usage information for replacement policies
is maintained in an adaptive fashion for semantic regions, which
are associated with collections of tuples. This avoids the high
overheads of tuple caching and, unlike page caching, is insensi-
tive to bad clustering. Third, maintaining a semantic description
of cached data enables the use of sophisticated value functions that
incorporate semantic notions of locality, not just LRU or MRU,
for cache replacement. We validate these ideas with a detailed
performance study that includes traditional workloads as well as
a workload motivated by a mobile navigation application.

1 Introduction

1.1 Data-shipping Architectures

A key to achieving high performance and scalability in
client-server database systems is to effectively utilize the
computational and storage resources of the client machines.
For this reason, many such systems are based on data-
shipping. In a data-shipping architecture, query processing
is performed largely at the clients, and copies of data are
brought on-demand from servers to be processed at the
clients. In order to minimize latency and the need for future
interaction with the server, most data-shipping systems use

�
The work of Shaul Dar and Michael Tan was performed when they

were at AT&T Bell Laboratories, Murray Hill, NJ, USA.�
Supported in part by NSF Grant IRI-94-09575, an IBM SUR award,

and a grant from Bellcore.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

the local client memory and/or disk to cache the data that
they have received from the server for possible later reuse.

Data-shipping architectures were popularized by the
early generations of Object-Oriented Database Manage-
ment Systems (OODBMS). These systems were aimed, in
large part, at providing very efficient support for naviga-
tional access to data (i.e., pointer chasing), as found in
object-oriented programming languages. Data-shipping is
well suited to navigational access, as it brings data close
to the application, allowing for very lightweight interaction
between the application and the database system.

When caching is incorporated into a data-shippingarchi-
tecture, servers are used primarily to service cache misses,
and thus, client-server interaction is typically fault-driven.
That is, clients request specific data items from the server
when such items cannot be located in the local cache. The
relationship between the client and server in this case is
similar to that between a database buffer manager and a
disk manager in a centralized database system. Not sur-
prisingly, the techniques used to manage client caches in
existing data-shipping systems are closely related to those
developed for database buffer management in traditional
systems. That is, a client cache is managed as a pool of
individual items, typically pages or tuples. An individual
item can be located in the cache by performing a lookup
using its identifier, or by scanning the contents of the cache.

As with traditional buffer managers, one of the key re-
sponsibilities of a client cache manager is to determine
which data items should be retained in the cache, given lim-
ited cache space. Such decisions are made using a cache
replacement policy; each of the items is assigned a value
and when space must be made available in the cache, the
item or items with the least value are chosen as replacement
victims. The value function for cache items is typically
based on access history, such as a Least Recently Used
(LRU) or a Most Recently Used (MRU) policy.

1.2 Incorporating Associative Access

In recent years, it has become apparent that large classes
of applications are not well-served by purely navigational
access to data. Such applications require associative access
to data, e.g., as provided by relational query languages.

Associative access imposes different demands on a cache
manager than navigational access. For example, using asso-
ciative access, data items are not specified directly, but are
selected and grouped dynamically based on their data val-
ues. Because of the differences between navigational and
associative access, many client-server systems that focus on
associative access forego the data-shipping architecture in
favor of a query-shippingapproach, where requests are sent
from clients to servers using a higher-level query specifi-
cation. The traditional query-shipping approach, however,
as supported by most commercial relational database sys-
tems, does not support client caching. Thus, query-shipping
architectures are less able to exploit client resources for per-
formance or scalability enhancement.

In this paper, we propose a semantic model for data
caching and replacement. Semantic caching is a technique
that integrates support for associative access into an ar-
chitecture based on data-shipping. Thus, semantic caching
provides the ability to exploit client resources, while also ex-
ploiting the semantic knowledge of data that arises through
the use of associative query specifications. In this approach,
servers can process simple predicates (i.e., constraint for-
mulas) on the database, sending back to the client those
tuples that satisfy the predicate. The results of these predi-
cates can then be cached at the client. A novel aspect of this
approach, however, is that rather than managing the cache
on the basis of individual items we exploit the semantic
information that is implicit in the query predicates in order
to more effectively manage the client cache.

1.3 Semantic Caching

Our semantic caching model is based on, and derives its
advantages from, three key ideas.

First, the client maintains a semantic description of the
data in its cache, instead of maintaining a list of physical
pages or tuple identifiers. Query processing makes use of
the semantic descriptions to determine what data are lo-
cally available in the cache, and what data are needed from
the server. The data needed from the server are compactly
specified as a remainder query. Remainder queries pro-
vide reduced communication requirements and additional
parallelism compared to faulting-based approaches.

Second, the information used by the cache replacement
policy is maintained in an adaptive fashion for semantic re-
gions, which are associated with sets of tuples. These sets
are defined and adjusted dynamically based on the queries
that are posed at the client. The use of semantic regions
avoids the high storage overheads of the tuple caching ap-
proach of maintaining replacement information on a per-
tuple basis and, unlike the page caching approach, is also
insensitive to bad clustering of tuples on pages.

Third, maintaining a semantic description of the data in
the cache encourages the use of sophisticated value func-
tions, in determining replacement information. Value func-

tions that incorporate semantic notions of locality can be
devised for traditional query-based applications as well as
for emerging applications such as mobile databases.

We validate the advantages of semantic caching with
a detailed performance study that is focused initially on
traditional workloads, and is then extended to workloads
motivated by a mobile navigation application.

2 Architectures for Cache Management

In order to evaluate the performance impact of semantic
caching, we compare it to two traditional cache manage-
ment architectures: page caching and tuple caching. In this
section, we first outline the primary dimensions for com-
paring the three architectures in the context of associative
query processing. We then describe the approaches in light
of these dimensions. We focus on the particular instantia-
tions of the architectures that are studied in this paper, rather
than on an analysis of all possible design choices. More
detailed discussions of the traditional architectures can be
found in, among other places, [DFMV90, KK94, Fra96].

2.1 Overview of the Architectures

In this paper, we assume a client-server architecture in
which client machines have significant processing and stor-
age resources, and are capable of executing queries. We fo-
cus on systems with a single server, but all of the approaches
studied here can be easily extended to a multiple server or
even a peer-to-peer architecture, such as SHORE [C+94].
The database is stored on disk at the server, and is orga-
nized in terms of pages. Pages are physical units — they
are fixed length. The database contains index as well as
data pages. We assume that tuples are fixed-length and that
pages contain multiple tuples. Pages also contain header
information that enables the free space within a page to be
managed independently of space on any other page.

In this study, there are three main factors that impact
the relative performance of the architectures: (1) data gran-
ularity, (2) remainder queries vs. faulting, and (3) cache
replacement policy. We address these factors briefly below.

2.1.1 Data Granularity

In any system that uses data-shipping, the granularity of data
management is a key performance concern. As described
in [CFZ94, Fra96], the granularity decisions that must be
made include: (1) client-server transfer, (2) consistency
maintenance, and (3) cache management. In this study
(in contrast to [DFMV90]), all architectures ship data in
page-sized units. Also, we examine the architectures in
the context of read-only queries. Thus, the main impact of
granularity in this study is on cache management. Tuple
caching is based on individual tuples, page caching uses
statically defined groups of tuples (i.e., pages) and semantic
caching uses dynamically defined groups of tuples.

Given that tuples are fixed-length, the main differences
between these three approaches to granularity are in the
relative space overhead they incur for cache management
(buffer control blocks, hash table entries, etc.), and in the
flexibility of grouping tuples. Tuple caching incurs over-
head that is proportional to the number of tuples that can
be cached. In contrast, both page and semantic caching
reduce overhead by aggregating information about groups
of tuples. In terms of grouping tuples, semantic caching
provides complete flexibility, allowing the grouping to be
adjusted to the needs of the current queries. In contrast, the
static grouping used by page caching is tied to a particular
clustering of tuples that is determined a priori, independent
of the current query access patterns.

2.1.2 Remainder Queries vs. Faulting

Another important way in which the architectures differ is
in the way they request missing data from the server. Page
caching is faulting-based. It attempts to access all pages
from the local cache, and sends a request to the server for
a specific page when a cache miss occurs. Tuple caching
is similar to page caching in this regard, but takes care to
combine requests for missing tuples so that they can be
transferred from the server in page-sized groups. As de-
scribed in Section 2.3, when there is no index available at
the client, then the query predicate and some additional in-
formation are sent to the server to avoid having to retrieve
an entire relation. This is an extension to tuple caching that
we implemented in order to make a fairer comparison with
semantic caching. Semantic caching describes the exact set
of tuples that it requires from the server using a query called
the remainder query. Sending queries to the server rather
than faulting items in can provide several performance ben-
efits, such as parallelism between the client and the server,
and communications savings due to the compact representa-
tion of the request for missing items. An additional benefit
of the approach is that in cases where all needed data is
present at the client, a null remainder query is generated,
meaning that contact with the server is not necessary.

2.1.3 Cache Replacement Policy

A final issue that impacts the performance of the alternative
architectures is the cache replacement policy. A cache
replacement policy dictates how victims for replacement are
chosen when additional space is required in the cache. Such
policies apply a value function to each of the cached items,
and choose as victims, those items with the lowest values. In
traditional systems, value functions typically are based on
temporal locality and/or spatial locality. Temporal locality
is the property that items that have been referenced recently
are likely to be referenced again in the near future; the
LRU policy is based on the assumption of temporal locality.
Spatial locality is the property that if an item has been
referenced, other items that are physically close to it are also

likely to be referenced; page caching tries to exploit spatial
locality under the assumption that clustering of tuples to
pages is effective. As demonstrated in Section 3, semantic
caching enables the use of a dynamically defined version
of spatial locality, that we refer to as semantic locality.
Semantic locality differs from spatial locality in that it is not
dependent on the static clustering of tuples to pages; rather
it dynamically adapts to the pattern of query accesses.

2.2 Page Caching Architecture

In page caching architectures (also referred to as page-
server systems [DFMV90, CFZ94]), the unit of transfer
between servers and clients is a page. Queries are posed at
clients, and processed locally down to the level of requests
for individual pages. If a requested page is not present in
the local cache, a request for the page is sent to the server.
In response to such a request, the server will obtain the
page from disk (if necessary) and send the page back to
the client. On the client side, page caching is supported
through a mechanism that is nearly identical to that of a tra-
ditional page-based database buffer manager. A client can
perform partial scans on indexed attributes by first access-
ing the index (faulting in any missing index pages) and then
accessing qualifying data pages. If no index is present then
a page caching approach will scan an entire relation, again
faulting in any missing pages. As with a buffer manager, a
page cache is managed using simple replacement strategies
based on the usage of the data items, such as LRU or MRU.

2.3 Tuple Caching Architecture

Tuple caching is in many ways analogous to page caching,
the primary difference being that with tuple caching, the
client cache is maintained in terms of individual tuples (or
objects) rather than entire pages. Caching at the granularity
of a single item allows maximal flexibility in the tuning of
cache contents to the access locality properties of applica-
tions [DFMV90]. As described in [DFMV90], however,
the faulting in of individual tuples (assuming that tuples are
substantially smaller than pages) can lead to performance
problems due to the expense of sending large numbers of
small messages. In order to mitigate this problem, a tuple
caching system must group client requests for multiple tu-
ples into a single message and must also group the tuples
to be sent from servers to clients into blocks.

Scans of indexed attributes can be answered in a manner
similar to page caching. For scans of non-indexed attributes
however, there are two options. One option is for the client
to first perform the scan locally, and then send a list of all
qualifying tuples that it has in its cache, along with the scan
constraint to the server. The server can then process the
scan, sending back to the client only those qualifying tuples
that are not in the client’s cache. An alternative is for the
client to simply ignore its cache contents when performing
a scan on a non-indexed attribute. In this case, the scan

constraint is sent to the server, and all qualifying tuples are
returned; duplicate tuples can be discarded at the client.

Finally, the tuple cache, like a page cache, is managed
using an access-based replacement policy such as LRU.
Unlike the page cache, however, there is no notion of spatial
locality for tuples, so only temporal locality is exploited.

2.4 Semantic Caching Architecture

Semantic caching manages the client cache as a collection
of semantic regions; that is, access information is managed,
and cache replacement is performed, at the unit of semantic
regions. Semantic regions, like pages, provide a means for
the cache manager to aggregate information about multiple
tuples. Unlike pages, however, the size and shape (in the
semantic space) of regions can change dynamically.

Each semantic region has a constraint formula describing
its contents, a count of tuples that satisfy the constraint, a
pointer to a linked list of the actual tuples in the cache,
and additional information that is used by the replacement
policy to rank the regions. The formula that describes a
region specifies the region’s location in the semantic space.
Unlike the replacement value functions used by the page
and tuple caching architectures, the value functions used by
semantic caching may take information about the semantic
locality of regions into account.

When a query is posed at a client, it is split into two dis-
joint pieces: (1) a probe query, which retrieves the portion
of the result available in the local cache, and (2) a remain-
der query, which retrieves any missing tuples in the answer
from the server. If the remainder query is not null (i.e., the
query covers parts of the semantic space that are not cached)
then the remainder query is sent to the server and processed
there. Similar to tuple caching, the result of the remainder
query is packed into pages and sent to the client. Unlike
tuple caching, however, the mechanism for obtaining tuples
from the server is independent of the presence of indexes.

3 Model of Semantic Caching

3.1 Basic Terminology

Semantic caching exploits the semantic information present
in associative query specifications to organize and manage
the client cache. In this study, we consider selection queries
on single relations, where the selection condition is an ar-
bitrary constraint formula (that is, a disjunction of conjunc-
tions of built-in predicates); dealing with more complex
queries within the framework of semantic caching is an im-
portant direction of future research. In semantic caching,
the portion of a single relation present in the client cache is
also described by a constraint formula; the entire contents
of the client cache are described by a set of such constraint
formulas, one for each database relation.

A query can be split into two disjoint portions: one that
can be completely answered using the tuples present in the

V
1

Q
1

Sa
la

ry

50,000

100,000

25 28 30 Age

(Q
 ,

V
)

1
1

R

P (Q ,V)
1 1

(Q
 ,

V
)

1
1

R

Figure 1: Semantic Spaces

client cache, and another that requires tuples to be shipped
from the server. In semantic caching, the notions of a probe
query and a remainder query correspond to these two por-
tions of the query. More formally, given a query on relation�

with constraint formula � , if � denotes the constraint
formula describing the set of tuples of

�
present in the client

cache, then the probe query, denoted by ���������
	 , can be
defined by the constraint formula ���� on

�
. Further, the

remainder query, denoted by ���������
	 , can be defined by
the constraint formula ����������	 on

�
.

For example, consider a query to find all employees
whose salary exceeds 50 � 000, and who are at most 30
years old. This query can be described by the constraint
formula � 1 � �������������� 50 � 000 � "!$#&% 30 	 on the re-
lation #('*)+�-,��.#(#��0/���'1#2�3�����4�����5�6 "!$#(. Assume that the
client cache contains all employees whose salary is less
than 100 � 000 as well as all employees who are between 25
and 28 years old. This can be described by the formula
� 1 � �0���$�-�$���87 100 � 000 9:�4 ;!�#=< 25 � ;!�#*% 28 	>	 .

The probe query ����� 1 ��� 1 	 into the client cache is de-
scribed by the constraint formula �6��������������� 50 � 000 �
�����������?7 100 � 000 �? "!$#&% 30 	@9A�0���$�-�$���:� 50 � 000 �
 ;!�#�< 25 �: ;!$#8% 28 	6	 . This constraint describes those
tuples in the cache that are answers to the query. The
remainder query ����� 1 ��� 1 	 is described by the constraint
formula �6�������������?< 100 � 000 � "!$#&7 25 	@9A�0���$�-�$���:<
100 � 000 �? "!$#� 28 �? ;!�#% 30 	>	 . This constraint de-
scribes those tuples that need to be fetched from the server.

When the constraint formulas are arithmetic constraints
over attributes 1 �(BCB(BD�6 "E , they have a natural visualiza-
tion as sub-spaces of the F -dimensional semantic spaceG

1 H G 2 HJICI(IKH G E , where
G*L

is the domain of attribute
 L . Figure 1 depicts the projection onto the ���$�-�$��� and
 ;!�# attributes of the semantic spaces associated with the
#('*)+�-,��.#(# relation, query � 1, cache contents � 1, the probe
query �M�0� 1 ��� 1 	 and the remainder query ���0� 1 �N� 1 	 .
3.2 Semantic Regions

Client cache size is limited, and existing tuples in the cache
may need to be discarded to accommodate the tuples re-
quired to answer subsequent queries. Semantic caching

manages the client cache as a collection of semantic regions
that group together semantically related tuples; each tuple
in the client cache is associated with exactly one semantic
region. These semantic regions are defined dynamically
based on the queries that are posed at the client.

Each semantic region has a constraint formula that de-
scribes the tuples grouped together within the region, and
has a single replacement value (used to make cache re-
placement decisions) associated with it; all tuples within a
semantic region have the replacement value of that region.

When a query intersects a semantic region in the cache,
that region gets split into two smaller disjoint semantic
regions, one of which is the intersection of the semantic
region and the query, and the other is the difference of the
semantic region with respect to the query. Data brought
into the cache as the result of a remainder query also forms
a new semantic region. Thus, the execution of a query that
overlaps F semantic regions in the cache can result in the
formation of 2 F �

1 regions; of these regions F �
1 are

part of the query. The question then arises whether or not
to coalesce some or all of these regions into one or more
larger regions.

A straightforward approach is to always coalesce two
regions that have the same cache replacement value, result-
ing in only one region corresponding to the query. With
small (relative to cache size) queries, this strategy can lead
to good performance. When the answer to each query takes
up a large fraction of the cache, however, this strategy can
result in semantic regions that are excessively large. The re-
placement of a large region can empty a significant portion
of the cache, resulting in poor cache utilization.

Another option is to never coalesce. For small queries
that tend to intersect, this can lead to excessive overhead,
but for larger queries, it alleviates the granularity problem.

In our approach, therefore, we use an adaptive heuristic.
Regions with the same cache replacement value may be
coalesced if either one of them is smaller than 1% of the
cache size. As shown in Section 5.1, this heuristic strikes a
good balance between the two extremes.

3.3 Replacement Issues

When there is insufficient space in the cache, the semantic
region with the lowest value and all tuples within that region
are discarded from the cache. Semantic regions are, thus,
the unit of cache replacement. The value functions used by
semantic caching can be based on temporal locality (e.g.,
LRU, MRU), or on semantic locality of regions. Below,
we describe two caching/replacement policies, one where
the replacement value is based on recency of usage, and
another where it is based on a distance function.

Maintaining replacement values based on recency of us-
age allows for the implementation of replacement policies
such as LRU or MRU. Conceptually, tuple caching and
page caching associate a replacement value with each tu-

Q1

1

Q1

Q2

1 2

Q1

Q2

Q3

1 2
3

(b) Regions after Q2 (c) Regions after Q3(a) Regions after Q1

Figure 2: Semantic Regions: Recency of Usage

Q1 Q1

Q2

Q1

Q2

Q3

(b) Regions after Q2 (c) Regions after Q3(a) Regions after Q1

0 −3 0
0

−7−4

Figure 3: Semantic Regions: Manhattan Distance

ple or page, corresponding to the latest time the item in the
cache was accessed. Maintaining replacement values based
on recency of usage in the semantic caching approach as-
sociates such a value with each semantic region, based on
the sequence of queries issued at the client. Figure 2 illus-
trates the semantic regions and their associated replacement
values, based on recency of usage, for a sequence of three
range queries on a single binary relation. The solid lines
show the semantic regions created when full coalescing is
performed, the dotted lines depict the additional semantic
regions that would result if no coalescing were performed.

The constraint formula � 1 corresponding to the first
query is the only semantic region (with value 1) after � 1
is issued (see Figure 2(a)). The second query � 2 overlaps
with the semantic region with value 1, and the constraint
formula � 2 is the semantic region with value 2. Since
semantic regions have to be mutually disjoint, the semantic
region with value 1 “shrinks”, after � 2 is issued, to the
portion that is disjoint with � 2 (see Figure 2(b)). Similar
shrinking occurs when the third query is issued; note that
the semantic region with value 1 is no longer convex, and
its constraint formula is not conjunctive. In fact, semantic
regions may not be connected in the semantic space.

An alternative to using recency information for determin-
ing replacement values is to use semantic distance. Figure 3
shows the result of using Manhattan distance in the previ-
ous example. In this case, each semantic region is assigned
a replacement value that is the negative of the Manhattan
distance between the “center of gravity” of that region and
the “center of gravity” of the most recent query. With this
distance function, semantic regions that are “close” to the
most recent query have a small negative value, irrespective
of when they were created, and are hence less likely to be
discarded when free space is required.

3.4 An Operational Model

We now describe an operational model of semantic caching.
In this model the client processes a stream of queries
� 1 �CB(BCBD�D� � on relation

�
. Let � L � 1 denote the cache

contents for relation
�

, and
� L � 1 denote the set of seman-

tic regions of relation
�

, when query � L is issued. � 0 is
the constraint formula � �����(# , and

�
0 is empty. Processing

query � L , involves the following steps:

1. Compute the probe query ����� L ��� L � 1 	 and the remain-
der query ����� L �N� L � 1 	 from � L and � L � 1. Partly
answer query � L from the set of tuples that satisfy
����� L ��� L � 1 	 .

2. Repartition
� L � 1 into

���L and update the replace-
ment values associated with the semantic regions
in

���L
based on ���0� L ��� L � 1 	 , ����� L �N� L � 1 	 , and the

caching/replacement policy used.
3. Fetch the tuples of

�
that satisfy the constraint formula

���0� L ��� L � 1 	 from the server.
4. If the cache does not have enough free space, discard

semantic regions � 1 �CB(BCBD�D�
	 with low values among
the set of semantic regions

���L , and discard tuples in the
cache that satisfy the constraint formulas � 1 �CB(B(B3�D� 	
until enough space is free.

5. Answer the rest of query � L by taking the set of tuples
that satisfy ����� L �N� L � 1 	 .

6. Compute � L by taking the disjunction of � L � 1 and
���0� L ��� L � 1 	 , and then taking the difference with re-
spect to � 1 �(B(BCBD�D�
	 ; Determine the semantic regions� L

in the cache and update their replacement values
based on

���L , ����� L �N� L � 1 	 , the discarded semantic re-
gions � 1 �CB(BCBD�D�
	 , and the caching/replacement policy.

4 Simulation Environment

4.1 Resources and Model Parameters

Our simulator is an extension of the one used in [FJK96],
written in C++ using CSIM. It models a heterogeneous,
peer-to-peer database system such as SHORE [C+94], and
provides a detailed model of query processing costs in such
a system. For this study, the simulator was configured to
model a system with a single client and a single server.

Table 1 shows the main parameters of the model. Every
site has a CPU whose speed is specified by the Mips pa-
rameter, NumDisks disks, and a main-memory buffer pool.
At the client, the size of the buffer pool is ClientCache.1

The details of buffer management overhead for the different
client caching strategies are described in Section 4.2.

The CPU is modeled as a FIFO queue. The client has an
optional disk-resident cache, which also uses the parameter
ClientCache; the memory cache is not used in this case. The
disk cache is used for queries on non-indexed attributes,
and the whole disk cache is scanned in sequence when

1As each page is referenced only once per query, and server buffers are
cleared between queries, the buffer size at the server does not matter.

Mips 50 CPU speed of a site (106 inst/sec)
NumDisks 1 number of disks on a site
ClientCache 250 cache size at the client (Kb)
DiskInst 5000 inst. to read a page from disk
PageSize 4096 size of one data page (bytes)
NetBw 8 network bandwidth (Mbit/sec)
MsgInst 20000 inst. to send/receive a message
PerSizeMI 12000 inst. to send/receive a page
Display 0 inst. to display a tuple
Compare 2 inst. to apply a predicate
Move 1 inst. to copy 4 bytes

Table 1: Model Parameters and Default Settings

answering such queries. Disks are modeled using a detailed
characterization adapted from the ZetaSim model [Bro92].
The disk model includes an elevator scheduling policy, a
controller cache, and read-ahead prefetching. There are
many parameters to the disk model (not shown) including:
rotational speed, seek factor, settle time, track and cylinder
sizes, controller cache size, etc. In addition to the time
spent waiting for and accessing the disk, a CPU overhead of
DiskInst instructions is charged for every disk I/O request.

The database, the server buffer pool, and the client’s
disk cache are organized in pages of size PageSize. Pages
are the unit of disk I/O and data transfer between sites.
The network is modeled as a FIFO queue with a specified
bandwidth (NetBw); the details of a particular technology
(e.g, Ethernet, ATM) are not modeled. The cost of sending
a message involves the time-on-the-wire (based on the size
of the message), a fixed CPU cost per message (MsgInst),
and a size-dependent CPU cost (PerSizeMI).

When scanning a relation at the server, there is a ded-
icated process which attempts to keep the scan one page
ahead of the consumer at the client. This leads to overlap
between disk reads and network messages, which is most
apparent when the result size is small relative to the amount
of data scanned. In the extreme case, network communica-
tion can be done completely parallel to the disk reads. This
overlap does not arise when data is faulted in to the client,
as there is no dedicated process at the server in this case.

In addition to the CPU costs for systems functions such
as messages and I/Os, there are also costs associated with
the functions performed by query operators. The costs
that are modeled are those of displaying, comparing, and
moving tuples in memory.

4.2 Buffer Management at the Client

In order to maintain fairness to the different caching ar-
chitectures, the ClientCache parameter includes both the
space needed for buffer management overhead, and the
space available for storing data. Since we do not consider
updates in this study, we do not model the overhead needed
to facilitate updates. We also do not model the CPU cost of
cache management at the client.

To estimate the overhead of page buffer management, we

RelSize 10000 Size of database relation (tuples)
TupleSize 200 Size of each tuple (bytes)
QuerySize 1–10% % of relation selected by each query
Skew 90% % of queries within a hot region
HotSpot 10% Size of the hot region (% of relation)

Table 2: Workload Parameters and Default Settings

used the Buffer Control Block of [GR93]. After removing
all attributes pertaining to updates and concurrency control,
we were left with 28 bytes per page. To model the storage
cost of indexes, we assume that the primary index takes up
negligible space, as also the upper levels of the secondary
index. The leaf level of the secondary index, however, has
8 bytes per tuple. This adds up to 188 bytes of overhead for
a page of 20 tuples. In a cache of size 250Kb, we can then
fit 256000

4096
�

188
� 60 pages.

For tuple shipping the same data structure can be used
for cache management, with two exceptions. Tuple size
needs to be kept, and tuple identifiers are typically larger
than page identifiers. However, since we used fixed size
tuples, and do not have a specific implementation of tuple
identifiers, we chose to use 28 bytes per tuple. With the 8
bytes for indexes, that adds up to 36 bytes per tuple. In a
cache of size 250Kb, we can then fit 256000

200
�

36
� 1085 tuples.

For semantic caching, the buffer management informa-
tion is kept on a semantic region basis. The replacement
information needed is similar to page and tuple caching;
however, the page identifier, the frame index and the hash
overflow pointer are not needed. Instead, we need addi-
tional pointers to the list of factors in the constraint formula
describing the region, and to the list of tuples in the re-
gion. This is a total of 24 bytes. For each factor in the
constraint formula we need the endpoints of the range of
each attribute (8 bytes per attribute), and a pointer to the
next factor (4 bytes). For each tuple we need a pointer to
the next tuple (4 bytes). Note, that we do not need to model
a storage overhead for indexes at the client, as the semantic
cache uses semantic information to organize the data. Since
the overhead is variable, our implementation simply makes
sure that the size of the overhead data structures and the
actual data is never more than the size of the cache.

4.3 Workload Specification

We use a benchmark consisting of simple selections. The
size of the result QuerySize is varied in the experiments,
but is always smaller than the cache. A fixed portion of
the queries (Skew) has the semantic centerpoint within a
hot region of size HotSpot.2 The remaining queries are
uniformly distributed over the cold area.

As shown in Table 2, we use a single relation with 10,000
tuples of 200 bytes each. We have intentionally kept the

2Since the only requirement for a hot query is that the centerpoint be
within the hot spot, a sizable fraction of the query may lie outside the hot
spot. The semantic area adjacent to the hot spot will therefore also have a
significant number of hits.

database small and have sized the cache proportionally, in
order to make the running of a large number of experiments
feasible. As with all caching studies, what determines the
performance is the relative sizes of the cache, databases, and
access regions, rather than their absolute sizes.3 The rela-
tion has three candidate keys, which we adopted from the
Wisconsin benchmark: Unique2 is indexed and perfectly
clustered; Unique1 is indexed but completely unclustered;
Unique3 is both unindexed and unclustered.

5 Experiments and Results

In this section we examine the performance of the three
caching architectures using a workload consisting of selec-
tion queries on a Wisconsin-style database using various
indexed and non-indexed attributes. As shown in Table 2,
the access pattern is skewed so that 90% of the queries have
a centerpoint that lies within the hot region consisting of the
middle 10% of the relation. In all the experiments in this
section, the client cache is set to 250Kb, which is sufficient
to store the entire hot region, including overhead, for all
three approaches.

The primary metric used is response time. Where neces-
sary, other metrics such as cache hit rates, message volumes,
etc. are used. The numbers were obtained by averaging the
results of three runs of queries. Each run consisted of 50
queries to warm up the cache followed by 500 query exe-
cutions during which the measurements were taken. The
results presented here are a small, but representative set of
the experiments we have run. In particular we ran numerous
sensitivity experiments varying cache size, hot region size,
tuple size, skew, etc.

5.1 Indexed Selections

We first study the performance of the three caching ar-
chitectures when performing single- and double-attribute
selections on indexed attributes. Figure 4 shows the re-
sponse time for the three caching architectures when the
selection is performed on the Unique2 attribute, which has
a clustered index. The � -axis of the figure shows the query
result size expressed as a percentage of the relation size. In
this case, it can be seen that all three architectures provide
similar performance across the range of query sizes. As the
query size is increased (while the cache size is held con-
stant), the response time for all of the architectures worsens
due to lower client cache hit rates. Tuple caching has the
worst performance in this experiment and page and seman-
tic caching perform roughly equally. Tuple caching’s worse
performance in this case is due to its relatively high space
overhead. As described in Section 4.2, tuple caching incurs
an overhead of 36 bytes per every 200 byte tuple in the
indexed case. In contrast, page caching incurs an overhead

3We also conducted experiments where the database, cache, and the
queries, were all scaled up by a factor of 10. The results (in terms of
relative performance) in this case were nearly identical.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e

[m
s]

Query Size [% of Relation]

Page/LRU
Tuple/LRU

Semantic/LRU

Figure 4: Resp. Time, Unique2
Mem. Cache, Varying Query Size

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e

[m
s]

Query Size [% of Relation]

Page/LRU
Page/MRU
Tuple/LRU

Semantic/LRU

Figure 5: Resp. Time, Unique1
Mem. Cache, Varying Query Size

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

O
ve

rh
ea

d
[%

 o
f C

ac
he

]

Query Size [% of Relation]

Page/LRU
Tuple/LRU

Semantic/LRU
Always Coalesce-Semantic/LRU
Never Coalesce-Semantic/LRU

Figure 6: Overhead, Unique1/Unique2
Mem. Cache, Varying Query Size

of less than 10 bytes per tuple, and because Unique2 is a
clustered attribute, nearly all of the tuples in an accessed
page satisfy the query. Thus, page caching has approxi-
mately 10% more data in the cache than tuple caching here.
Semantic caching has even lower space overhead than page
caching in this experiment; however, this slight advantage
is mitigated by an equally slight degradation in cache uti-
lization as the query size increases. With larger regions,
the replacement granularity of semantic caching increases.
Replacing large regions temporarily opens up large holes in
the cache, which is detrimental to overall cache utilization.

Figure 5 shows the response times for the architectures
when the selection is on Unique1, the non-clustered indexed
attribute. In this figure, the performance of page caching
is shown for two different cache value functions: LRU
and MRU. In this experiment, the page caching approach
performs far worse than both the tuple and semantic caching
approaches. Page caching’s poor performance here is to be
expected; since Unique1 is unclustered, the hot region of
the relation is not able to fit entirely in the cache. MRU
helps page caching slightly in this case, because the non-
clustered index scan processes the pages of the relation
sequentially. Of course, random clustering is the worst
case for page caching, which is based on the assumption of
spatial locality. Nevertheless, comparing this graph with the
previous one demonstrates the sensitivity of page caching
to clustering. Also the two experiments demonstrate that
the space overhead of semantic caching is the same or better
than page caching, but that unlike page caching, a semantic
cache is not susceptible to poor static clustering.

The first two experiments examined single-attribute
queries. We also studied queries that are multi-attribute se-
lections on the combination of Unique1 and Unique2. The
results in this case (not shown) are similar to those of the
non-clustered selection of the previous experiment: page
caching suffers due to poor clustering; tuple and semantic
caching provide similar, and much better performance. The
important aspect of this experiment, however, can be seen
in Figure 6, which shows the total space overhead (as a per-
cent of the cache size) incurred by page and tuple caching

and three variants of semantic caching.
The storage overhead for tuple caching and page caching

is proportional to the number of items that fit in the cache,
so it is independent of the query size. Page caching has an
overhead of 6.5% (including the cost of unused space on the
pages) while the overhead of tuple caching is 15.2% for all
query sizes in Figure 6. Despite its advantage in overhead,
however, page caching still performs much worse than tuple
caching in this experiment because of the lack of clustering
with respect to the Unique1 attribute.

In contrast to page and tuple caching, the space overhead
of semantic caching is dependent on both the query size and
the coalescing strategy. The three lines shown for semantic
caching in Figure 6 show the overhead for three different
approaches to coalescing regions. The highest space over-
head is observed when coalescing is turned off (“Never
Coalesce”). Recall that a query that touches F regions can
result in the creation of up to F �

1 new regions. If these
new regions are not coalesced, the overhead incurred can
be significant. As can be seen in the figure, the overhead is
significantly worse for smaller queries than for larger ones.
For 1% queries, there are 55 regions and nearly 275 fac-
tors. In contrast, when coalescing is performed aggressively
(“Always Coalesce”) overhead is decreased substantially
(e.g., by 85% for the smallest query). As stated previously,
however, aggressive coalescing can also negatively affect
cache utilization by increasing the granularity of cache re-
placement. In this experiment, aggressive coalescing has
as much as 10% lower cache utilization compared to never
coalescing. Finally, the regular “semantic” line, shows the
effectiveness of the default coalescing heuristic described in
Section 3.2. In this case, the overhead is only slightlyhigher
than that of always coalescing, while the cache utilization
(not shown) is nearly the same as that of never coalescing.
Thus, these results demonstrate that the simple coalescing
heuristic used by semantic caching is highly effective.

Finally, it should also be noted that the space overhead
of semantic caching is impacted by the dimensionality of
the semantic space. In this case, since the semantic space is
two-dimensional, semantic caching incurs somewhat higher

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e

[m
s]

Query Size [% of Relation]

Tuple/Ignore Cache
Tuple/LRU

Semantic/LRU

Figure 7: Resp. Time, Unique3
Disk Cache, Varying Query Size

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

N
et

w
or

k
T

ra
ffi

c
[k

b]

Query Size [% of Relation]

Tuple/Ignore Cache
Tuple/LRU

Semantic/LRU

Figure 8: Network Volume, Unique3
Disk Cache, Varying Query Size

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e

[m
s]

Query Size [% of Relation]

Tuple/LRU
Semantic/LRU

Semantic/Manhattan

Figure 9: Resp. Time, Unique1
Mem. Cache, Varying Query Size

overhead due an increase in the number of semantic regions
and the complexity of the constraint formulas that describe
them. For small queries, the overhead of the never coalesce
case is over four times higher than in a single-attribute
semantic space. The default coalescing heuristic, however,
does not suffer from this overhead explosion: its overhead
even for the smallest queries is only about one third higher
than in the single attribute case.

5.2 NonIndexed Selections

As described in Section 2, the availability (or lack) of in-
dexes at clients dictates the manner in which the page and
tuple caching architectures process queries. In this section
we examine the performance of the tuple caching and se-
mantic caching architectures when performing selections on
an unindexed attribute (Unique3).4 For tuple caching, we
explore two approaches to processing selections on unin-
dexed attributes. One approach exploits the client cache
by first applying the selection predicate to all of the cached
tuples of the given relation and sending the list of qualifying
tuples, along with the selection predicate to the server. The
server then applies the predicate to the entire relation (recall
that there is no index) and sends any qualifying tuples that
are missing from the cache. The second approach simply
ignores the cache and sends the predicate to the server. In
this case all qualifying tuples are sent to the client.5

Figure 7 shows the response time of semantic caching
and the two tuple-based architectures when the client uses
its local disk as a cache, rather than its memory. We use a
disk cache here, in order to demonstrate a fundamental ad-
vantage of semantic caching over tuple (or page) caching;
namely, that the use of remainder queries for requesting
missing tuples from the server enables the client and the
server to process their (disjoint)portionsof the query in par-
allel. In contrast, for a client to exploit a tuple cache in this
case, it must scan the local cache prior to initiating the scan

4Page caching performs significantly worse than the others here due to
the lack of clustering, and is therefore not shown.

5Note that these approaches assume that the server has the ability to
process selection predicates, as is also required for semantic caching.

at the server. The result of the sequential processing in this
experiment is that tuple caching has worse response time
even than a tuple-based approach that completely ignores
the cache. The main reason for this non-intuitive behavior
is that because the selection is applied to a non-indexed
attribute, any data request sent to the server results in a full
scan of the relation (from disk) at the server. The cost of
this scan dominates all other activities in this case, and since
the server is able to overlap communication with I/O, the
communication costs do not factor into the total response
time. Thus, in this experiment, tuple caching performs ex-
tra work prior to contacting the server, but sees no benefit
in response time resulting from this work. Such a benefit,
however, is evident in Figure 8 which shows the number of
bytes sent across the network per query. In this case, the use
of the client cache results in a significant reduction in mes-
sage volume. In a network constrained environment (e.g.,
a wireless mobile network), such communication savings
may be the dominant factor. Finally, it should be noted that
when a memory cache is used rather than a disk cache, the
performance of tuple caching is roughly equal to that of the
“tuple ignore” policy in this experiment.

Turning to the performance of semantic caching in Fig-
ure 7, it can be seen that semantic caching provides signif-
icant performance benefits for small queries. This result
is unexpected, because as described above, any data re-
quest sent to the server incurs a full relation scan, resulting
in performance similar to that of “tuple ignore”. This re-
sult illustrates another fundamental advantage of semantic
caching, namely that by maintaining semantic information
about cache contents, a semantic caching system can iden-
tify cases when it can answer a query without contacting
the server. In this experiment, over 60% of the small (1%)
queries are answered completely from the client’s cache,
thus avoiding the disk scan at the server.6 In contrast, tuple
caching, which also often had an entire answer in cache,
was still required to perform a disk scan at the server, only

6When the query size is so large that no queries are answered com-
pletely in cache, then the performance of semantic caching becomes equal
to that of “tuple ignore” in this experiment.

to find that no extra tuples were needed. Finally, it should
be noted that in environments where communication chan-
nels are scarce, such as cellular networks, the ability to
operate independently of the server can result in significant
monetary savings in addition to performance gains.

5.3 Semantic Value Function

The previous experiments brought out several intrinsic ben-
efits of maintaining cache contents using semantic infor-
mation, including low space overhead, insensitivity to page
clustering, client-server parallelism, and the ability to an-
swer some queries without contacting the server. In this sec-
tion we demonstrate another advantage of semantic caching:
the ability to incorporate semantic locality in cache replace-
ment value functions. As an example we use the Manhattan
distance described in Section 3.3.

Figure 9 shows the response time for selection queries
on the non-clustered, indexed attribute Unique1. As can
be seen in the figure, the Manhattan distance provides bet-
ter performance for all query result sizes in this experiment.
The Manhattan distance is more effective than LRU at keep-
ing the hot region in memory, resulting in a better cache hit
rate. The reason that LRU loses in this workload is that
there are a significant number of queries (10%) that land in
the cold region of the relation. Such cold data is not likely
to be accessed in the near future, but it stays in the cache
until it ages out of the LRU chain. In contrast, using the
Manhattan distance function, such a cold range would loose
its value when the next “hot range” query is submitted.

6 Mobile Navigation Application

In the previous section, we showed that semantic locality
can improve performance even in a randomized workload.
In this section, we further examine the benefits of semantic
locality by exploring a workload that has more semantic
content than the selection-based workloads studied so far.
The workload models mobile clients accessing remotely-
stored map data through a low-bandwidth wireless com-
munication network (see, e.g., [D+96]). Each tuple in the
database represents a road segment in the map, and each
page is a collection of such tuples. The application must
update the map data displayed to the user at regular inter-
vals, depending on the user’s current location, direction and
speed of motion.

6.1 Workload Specification

The database is one relation, two of whose attributes take
values between 0 and 8191. This pair of attributes forms a
dense key of the relation; there is a tuple for every possible
pair of values. These two attributes can be viewed as the�

and � co-ordinates in a 2-dimensional space. The rela-
tion is clustered using the Z-ordering [Jag90] on these two
attributes. Each tuple is 200 bytes long.

Q9

Q10 Q11

Q3
Q19

Figure 10: Random Query Path

We use a benchmark of simple selections of tuples, which
is characteristic of map data accesses in a navigation appli-
cation. Each query is in the form of a rectangle of size
8 H 16, oriented along one of the two axes in the semantic
space of the two spatial attributes of the relation; thus, each
query answer has 128 tuples. The location and orientation
of the query rectangle depends on the user’s current loca-
tion and direction of motion. A query path corresponds to
navigating through the 2-dimensional space in a Manhattan
fashion. Figure 10 gives an example of such a query path.

We simulated a variety of query profiles: random,
squares, and Manhattan “lollipops”. The random profile
has a fixed probability of moving in one of the four direc-
tions. In each step, moving left, right or backward is by
4 units, moving forward is by 8 units; the difference es-
sentially models different speeds of motion. The square
profile involves the query path repeatedly traversing a fixed
size square in the 2-dimension space. The Manhattan lol-
lipop profile is a square balanced on top of a “stick”. Each
query path goes up the stick, traverses around the square
multiple times, goes down the stick, and then repeats the
cycle.

6.2 Semantic Value Function

Consider the query path in Figure 10. Using a replace-
ment policy like LRU is not very appropriate for such query
profiles. Assume that when � 19 is issued, some map data
must be discarded from the client cache. If an LRU policy
is used, the map data associated with � 3 is likely to be
discarded, since it has not been accessed for a long time. A
semantic caching policy can recognize the semantic prox-
imity of � 3 and � 19, and discard the data associated with
� 9 �D� 10 �3� 11 in preference to the data associated with � 3,
resulting in better cache utilization. We now describe a se-
mantic value function, the directional Manhattan distance
function, that maintains a single number with each seman-
tic region based on its Manhattan distance from the user’s
current location and direction of motion.

Assume that the user’s direction of motion is the positive�
axis (for other directions of motion, the distance function

is defined similarly), and let)����4)��4�)�� and)	� denote the

weights that model the relative importance of retaining in
the cache semantic regions that are ahead of, to the left
of, to the right of, and behind the current region. Let
� � � �3� � 	 be the user’s current location, and � � �3�2	 be the
center of a semantic region � in the cache. The replacement
information associated with � is computed as ��� ��� � � ������

�
� 	 , where the values

���
� � (parallel distance) and

�����
�
�

(perpendicular distance) are defined as follows:
� �
� � � if �� � � then � 1 �) � 	
	"� ��� � � 	

else � 1 �:)��>	�	"� � � � �+	����
�
� � if �&� � � then � 1 ��)���	
	"�0����� � 	

else � 1 �:) �C	
	"�0� � � �.	
6.3 Performance Results

We present a performance comparison of LRU, MRU and
the directional Manhattan distance function for semantic
caching for various query profiles. The metric used is aver-
age response time to answer queries over a sequence of 500
queries. We also studied the LRU and MRU value functions
for tuple caching; since they always do slightly worse than
their semantic counterparts, we do not discuss them further.

A key characteristic of the query profiles we study is
the possibility of loops in a query path, i.e., the user can
visit or be close to a previously visited location. When
the query path is random and the loops are small, LRU is
expected to perform well since recent data will be retained
in the cache. When the query path is regular and the loops
are larger, MRU is expected to perform well, since older
data (guaranteed to be touched again) will be retained in the
cache. We demonstrate that, in contrast to LRU and MRU,
a value function based on semantic distance, performs ro-
bustly, across a wide range of loop sizes.

We study random query paths, for four different choices
of probability values. The directional Manhattan dis-
tance function is the winner, though LRU is a close sec-
ond. An interesting point to note is that the directional
Manhattan distance function performs substantially bet-
ter than MRU when the query path is totally random
(B 25 �KB 25 �KB 25 �KB 25). When the query path approaches a
straight line (B 80 �5B 10 �KB 10 ��B 00), all approaches perform
comparably – there is not much scope for improvement
in this case.7 Our results are summarized in table 3.

Each step for the square and the Manhattan lollipop pro-
files is 8 units long. The square sizes studied were 32 H 32
and 160 H 160. This query profile – predictable and cyclic
– is ideal for MRU, which is the clear winner. The query
results for the 32 H 32 square are just slightly larger than the
cache size. A semantic distance function can be expected
to be useful in this case, and the directional Manhattan dis-
tance function considerably outperforms LRU. The query
results for the 160 H 160 square are approximately five

7In the absence of loops, i.e., when data is touched at most once,
caching is not useful, and no value function will perform well.

Size/Path Dir. Manhattan LRU MRU

Random
.25/.25/.25/.25 1.00 (29.4 ms) 1.06 2.24
.33/.33/.33/.00 1.00 (42.5 ms) 1.05 1.52
.50/.20/.20/.10 1.00 (44.6 ms) 1.03 1.38
.80/.10/.10/.00 1.00 (56.1 ms) 1.01 1.04

Square
32 � 32 2.29 9.57 1.00 (7.23 ms)
160 � 160 1.22 1.22 1.00 (51.9 ms)

Manhattan Lollipop
160/32 � 32/1 1.86 2.02 1.00 (47.1 ms)
160/32 � 32/5 1.00 (62.6 ms) 1.22 1.11
160/32 � 32/10 1.00 (49.2 ms) 1.38 1.60
160/32 � 32/50 1.00 (34.9 ms) 1.69 2.54

Table 3: Mobile Query Paths

times larger than the cache size. LRU and the directional
Manhattan distance function essentially keep the same data
in the cache, and hence they perform similarly.

For the Manhattan lollipop query path, the square size is
32 H 32, and the stick length is 160; we considered different
values for the number of times the square is traversed in each
cycle: 1 � 5 � 10 and 50 (in this case the query path does not
complete a full cycle). When the square is traversed once in
each cycle, the path is very regular and MRU outperforms
the other approaches. When the square is traversed a large
number of times in each cycle, the regularity breaks down
and MRU begins to lose. The break-even point between
MRU and the directional Manhattan distance function is 4
rounds, and the break-even point between MRU and LRU
is between 6 and 7 rounds. The directional Manhattan
distance function is always better than LRU, and hence is
the clear winner when the square is traversed many times.

7 Related Work

Data-shipping systems have been studied primarily in the
context of object-oriented database systems, and are dis-
cussed in detail in [Fra96]. The tradeoffs between page
caching (called page servers) and tuple caching (called ob-
ject servers) were initially studied in [DFMV90]. That
work demonstrated the sensitivity of page caching to static
clustering, and also the message overhead that results from
sending tuples from the server one-at-a-time. In our imple-
mentation of tuple caching, we took care to group tuples
into pages before transferring them from the server.

Alternative approaches to making page caching less
sensitive to static clustering have been proposed [KK94,
OTS94]. These schemes, known as Dual Buffering and
Hybrid Caching respectively, keep a mixture of pages and
objects in the cache based on heuristics. A page is kept
whole in the cache if enough of its objects are referenced,
otherwise individual objects are extracted and placed in a
separate object cache. These approaches aim to balance
the tradeoff between overhead and sensitivity to cluster-

ing. Semantic caching takes the different approach of using
predicates to dynamically group tuples.

The caching of results based on projections (rather than
selections) was studied in [CKSV86]. However, the work
most closely related to ours is the predicate caching ap-
proach of Keller and Basu [KB96], which uses a collection
of possibly overlapping constraint formulas, derived from
queries, to describe client cache contents. Our work differs
from [KB96] in three significant respects. First, in [KB96]
there is no concept analogous to a semantic region. Recall
that maintaining semantic regions allows, in particular, the
use of sophisticated value functions incorporating semantic
notions of locality. For discarding cached tuples, Keller
and Basu use instead, a reference counting approach based
on the number of predicates satisfied by the tuple. Second,
the focus of [KB96] is largely on the effects of database
updates. Third, [KB96] does not present any performance
results to validate their heuristics.

Making use of the tuples in the cache can be viewed as a
simple case of “using materialized views to answer queries”.
This topic has been the subject of considerable study in the
literature (e.g., [YL87, CR94, CKPS95, LMSS95]). None
of these studies, however, considered the issue of which
views to cache/materialize given a limited sized cache, or
the performance implications of view usability in a client-
server architecture.

ADMS [CR94, R+95] caches the results of subquery
expressions corresponding to join nodes in the evaluation
tree of each user query. Subsequent queries are optimized
by using previously cached views, so query matching plays
an important role. Cache replacement is performed by
tossing out entire views. Determining relevant data in the
cache is considerably simpler in our approach, since only
base-tuples of individual relations are cached.

8 Conclusions and Future Work

We proposed a semantic model for data caching and re-
placement that integrates support for associative queries
into an architecture based on data-shipping. We identified
and studied the main factors that impact the performance
of semantic caching compared to traditional page caching
and tuple caching in a query-intensive environment: unit
of cache management, remainder queries vs. faulting, and
cache replacement policy. Semantic caching maintains re-
placement information with semantic regions that can be
dynamically adjusted to the needs of the current queries,
uses remainder queries to reduce the communication be-
tween the client and server, and enables the use of semantic
locality in the cache replacement policy.

We considered selection queries in our study, and are
currently exploring the use of semantic caching for complex
query workloads. Semantic caching discards entire regions
from the cache, often resulting in poor cache utilization; we
are investigating the use of region “shrinking” as a technique

to alleviate this problem. In this study, we focused on query-
intensive environments; exploring the impact of updates is
necessary to make these techniques applicable to a larger
class of applications. We studied the utility of conventional
value functions (e.g., LRU and MRU), as well as of some
semantic value functions (e.g., Manhattan distance and its
directional variant) in traditional workloads as well as a
mobile navigation workload. Our plans for future work
include the further development of semantic value functions
for this and other applications as well.

References
[Bro92] K. Brown. PRPL: A databaseworkload specification lan-

guage, v1.3. M.S. thesis, Univ. of WI, Madison, 1992.
[C+94] M. Carey, et al. Shoring up persistent applications. Proc.

ACM SIGMOD Conf., 1994.
[CFZ94] M. Carey, M. Franklin, M. Zaharioudakis, Fine-grained

sharing in page server database systems, Proc. ACM SIGMOD
Conf., 1994.

[CKPS95] S. Chaudhuri, R. Krishnamurthy, S. Potamianos,
K. Shim. Optimizing queries with materialized views. Proc. of
IEEE Conf. on Data Engineering, 1995.

[CKSV86] G. P. Copeland, S. N. Khosafian, M. G. Smith, P. Val-
duriez. Buffering schemes for permanent data. Proc. of IEEE
Conf. on Data Engineering, 1986.

[CR94] C. Chen, N. Roussopoulos. Implementation and perfor-
mance evaluation of the ADMS query optimizer: Integrating
query result caching and matching. Proc. EDBT Conf. 1994.

[DFMV90] D. DeWitt, P. Futtersack, D. Maier, F. Velez. A study
of three alternative workstation-server architectures for object-
oriented database systems, Proc. VLDB Conf., 1990.

[D+96] S. Dar, et al. Columbus: Providing information and
navigation services to mobile users. Submitted, 1996.

[Fra96] M. Franklin, Client data caching: A foundation for high
performance object database systems, Kluwer, 1996.

[FJK96] M. Franklin, B. Jónsson, D. Kossmann. Performance
tradeoffs for client-server query processing. Proc. ACM SIG-
MOD Conf., 1996.

[GR93] J. Gray, A. Reuter. Transaction processing: Concepts
and techniques. Morgan Kaufmann, 1993.

[Jag90] H.V. Jagadish. Linear clustering of objects with multiple
attributes. Proc. ACM SIGMOD Conf., 1990.

[KB96] A. Keller, J. Basu. A predicate-basedcaching scheme for
client-server database architectures. VLDB J, 5(1), 1996.

[KK94] A. Kemper, D. Kossmann. Dual-buffering strategies in
object bases. Proc. VLDB Conf., 1994.

[LMSS95] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava.
Answering queries using views. Proc. PODS Conf., 1995.

[OTS94] J. O’Toole, L. Shrira. Hybrid caching for large scale
object systems. Proc. 6th Wkshp on Pers. Object Sys., 1994.

[R+95] N. Roussopoulos, et al. The ADMS project: Views “R”
Us. IEEE Data Engineering Bulletin, June 1995.

[RK86] N. Roussopoulos, H. Kang. Principles and techniques in
the design of ADMS+-. IEEE Computer, December, 1986.

[YL87] H. Z. Yang, P.-A. Larson. Query transformation for PSJ-
queries. Proc. VLDB Conf., 1987.

