Semantic Data Caching and Replacement

Shaul Dar* Michael J. Franklin' Bjorn T. Jonsson®
Data TechnologiesLtd. University of Maryland University of Maryland
dar@ditl.co.il franklin@cs.umd.edu bthj @cs.umd.edu
Divesh Srivastava Michael Tan*

AT& T Research
divesh@research.att.com

Abstract

We propose a semantic model for client-side caching and replace-
ment in aclient-server database system and comparethis approach
to page caching and tuple caching strategies. Our caching model
is based on, and derives its advantages from, three key ideas.
First, the client maintains a semantic description of the data in
its cache,which allowsfor a compact specification, asaremainder
query, of thetuples neededto answer aquery that are not available
in the cache. Second, usage information for replacement policies
is maintained in an adaptive fashion for semantic regions, which
are associated with collections of tuples. This avoids the high
overheads of tuple caching and, unlike page caching, is insensi-
tive to bad clustering. Third, maintaining a semantic description
of cached dataenablesthe use of sophisticated valuefunctionsthat
incorporate semantic notions of locality, not just LRU or MRU,
for cache replacement. We validate these ideas with a detailed
performance study that includes traditional workloads as well as
aworkload motivated by a mobile navigation application.

1 Introduction
1.1 Data-shipping Architectures

A key to achieving high performance and scalability in
client-server database systems is to effectively utilize the
computationa and storageresources of the client machines.
For this reason, many such systems are based on data-
shipping. In adata-shipping architecture, query processing
is performed largely at the clients, and copies of data are
brought on-demand from servers to be processed at the
clients. In order to minimizelatency and the need for future
interaction with the server, most data-shipping systems use

*The work of Shaul Dar and Michael Tan was performed when they
were at AT& T Bell Laboratories, Murray Hill, NJ, USA.

t Supported in part by NSF Grant |RI-94-09575, an IBM SUR award,
and a grant from Bellcore.

Permission to copy without fee all or part of this material is granted
provided that the copiesare not madeor distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
\ery Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission fromthe Endowment.

Proceedingsof the 22nd VL DB Conference
Mumbai(Bombay), | ndia, 1996

University of Maryland
mdtanx@cs.umd.edu

the local client memory and/or disk to cache the data that
they have received from the server for possible later reuse.

Data-shipping architectures were popularized by the
early generations of Object-Oriented Database Manage-
ment Systems (OODBMYS). These systems were aimed, in
large part, a providing very efficient support for naviga-
tional access to data (i.e., pointer chasing), as found in
object-oriented programming languages. Data-shipping is
well suited to navigational access, as it brings data close
to the application, allowing for very lightweight interaction
between the application and the database system.

When cachingisincorporated into a data-shipping archi-
tecture, servers are used primarily to service cache misses,
and thus, client-server interaction istypically fault-driven.
That is, clients request specific data items from the server
when such items cannot be located in the local cache. The
relationship between the client and server in this case is
similar to that between a database buffer manager and a
disk manager in a centralized database system. Not sur-
prisingly, the techniques used to manage client caches in
existing data-shipping systems are closely related to those
developed for database buffer management in traditional
systems. That is, a client cache is managed as a pool of
individual items, typically pages or tuples. An individual
item can be located in the cache by performing a lookup
usingitsidentifier, or by scanning the contents of the cache.

As with traditional buffer managers, one of the key re-
sponsibilities of a client cache manager is to determine
which dataitems should be retained in the cache, givenlim-
ited cache space. Such decisions are made using a cache
replacement policy; each of the items is assigned a value
and when space must be made available in the cache, the
item or itemswith theleast val ue are chosen as repl acement
victims. The value function for cache items is typicaly
based on access history, such as a Least Recently Used
(LRU) or aMost Recently Used (MRU) policy.

1.2 Incorporating Associative Access

In recent years, it has become apparent that large classes
of applications are not well-served by purely navigational
access todata. Such applicationsrequire associative access
to data, e.g., as provided by relationa query languages.



Associative access imposes different demands on a cache
manager than navigational access. For example, using asso-
ciative access, data items are not specified directly, but are
selected and grouped dynamically based on their data val-
ues. Because of the differences between navigationa and
associ ative access, many client-server systemsthat focuson
associative access forego the data-shipping architecture in
favor of aquery-shippingapproach, where requestsare sent
from clients to servers using a higher-level query specifi-
cation. The traditiona query-shipping approach, however,
as supported by most commercial relational database sys-
tems, doesnot support client caching. Thus, query-shipping
architecturesareless ableto exploit client resources for per-
formance or scalability enhancement.

In this paper, we propose a semantic model for data
caching and replacement. Semantic caching is atechnique
that integrates support for associative access into an ar-
chitecture based on data-shipping. Thus, semantic caching
providestheability to exploit client resources, whileal so ex-
ploiting the semantic knowledge of datathat arises through
the use of associative query specifications. Inthisapproach,
servers can process simple predicates (i.e., constraint for-
mulas) on the database, sending back to the client those
tuplesthat satisfy the predicate. The results of these predi-
cates can then be cached at the client. A novel aspect of this
approach, however, is that rather than managing the cache
on the basis of individua items we exploit the semantic
information that isimplicit in the query predicates in order
to more effectively manage the client cache.

1.3 Semantic Caching

Our semantic caching modd is based on, and derives its
advantages from, three key ideas.

First, the client maintains a semantic description of the
data in its cache, instead of maintaining a list of physical
pages or tuple identifiers. Query processing makes use of
the semantic descriptions to determine what data are lo-
caly availablein the cache, and what data are needed from
the server. The data needed from the server are compactly
specified as a remainder query. Remainder queries pro-
vide reduced communication reguirements and additional
parallelism compared to faulting-based approaches.

Second, the information used by the cache replacement
policy ismaintained in an adaptive fashion for semantic re-
gions, which are associated with sets of tuples. These sets
are defined and adjusted dynamically based on the queries
that are posed at the client. The use of semantic regions
avoids the high storage overheads of the tuple caching ap-
proach of maintaining replacement information on a per-
tuple basis and, unlike the page caching approach, is aso
insensitiveto bad clustering of tuples on pages.

Third, maintaining a semantic description of the datain
the cache encourages the use of sophisticated value func-
tions, in determining replacement information. Value func-

tions that incorporate semantic notions of locality can be
devised for traditional query-based applications as well as
for emerging applications such as mobile databases.

We validate the advantages of semantic caching with
a detailed performance study that is focused initialy on
traditional workloads, and is then extended to workloads
motivated by a mobile navigation application.

2 Architecturesfor Cache Management

In order to evaluate the performance impact of semantic
caching, we compare it to two traditional cache manage-
ment architectures: page caching and tuplecaching. Inthis
section, we first outline the primary dimensions for com-
paring the three architectures in the context of associative
guery processing. We then describe the approachesin light
of these dimensions. We focus on the particular instantia-
tionsof thearchitecturesthat are studiedin thispaper, rather
than on an analysis of al possible design choices. More
detailed discussions of the traditiona architectures can be
found in, among other places, [DFMV90, KK 94, Frad6].

2.1 Overview of the Architectures

In this paper, we assume a client-server architecture in
which client machines have significant processing and stor-
ageresources, and are capabl e of executing queries. Wefo-
cusonsystemswithasingleserver, but all of theapproaches
studied here can be easily extended to a multiple server or
even a peer-to-peer architecture, such as SHORE [C+94].
The database is stored on disk at the server, and is orga
nized in terms of pages. Pages are physical units — they
are fixed length. The database contains index as well as
data pages. We assume that tuples are fixed-length and that
pages contain multiple tuples. Pages also contain header
information that enables the free space within a page to be
managed independently of space on any other page.

In this study, there are three main factors that impact
therelative performance of the architectures: (1) datagran-
ularity, (2) remainder queries vs. faulting, and (3) cache
replacement policy. We address these factors briefly bel ow.

211 DataGranularity

Inany systemthat usesdata-shipping, thegranularity of data
management is a key performance concern. As described
in [CFZ94, Fra96], the granularity decisions that must be
made include: (1) client-server transfer, (2) consistency
maintenance, and (3) cache management. In this study
(in contrast to [DFMV9Q]), all architectures ship data in
page-sized units. Also, we examine the architectures in
the context of read-only queries. Thus, the main impact of
granularity in this study is on cache management. Tuple
caching is based on individua tuples, page caching uses
statically defined groupsof tuples(i.e., pages) and semantic
caching uses dynamically defined groups of tuples.



Given that tuples are fixed-length, the main differences
between these three approaches to granularity are in the
relative space overhead they incur for cache management
(buffer control blocks, hash table entries, etc.), and in the
flexibility of grouping tuples. Tuple caching incurs over-
head that is proportiona to the number of tuples that can
be cached. In contrast, both page and semantic caching
reduce overhead by aggregating information about groups
of tuples. In terms of grouping tuples, semantic caching
provides complete flexibility, allowing the grouping to be
adjusted to the needs of the current queries. In contrast, the
static grouping used by page caching istied to a particular
clustering of tuplesthat isdetermined a priori, independent
of the current query access patterns.

2.1.2 Remainder Queriesvs. Faulting

Another important way in which the architectures differ is
in the way they request missing data from the server. Page
caching is faulting-based. It attempts to access all pages
from the local cache, and sends a request to the server for
a specific page when a cache miss occurs. Tuple caching
is similar to page caching in this regard, but takes care to
combine requests for missing tuples so that they can be
transferred from the server in page-sized groups. As de-
scribed in Section 2.3, when there is no index available at
the client, then the query predicate and some additiond in-
formation are sent to the server to avoid having to retrieve
an entirerelation. Thisisan extension to tuple caching that
we implemented in order to make afairer comparison with
semantic caching. Semantic caching describesthe exact set
of tuplesthat it requiresfromthe server usingaquery called
the remainder query. Sending queries to the server rather
than faulting itemsin can provide severa performance ben-
efits, such as parallelism between the client and the server,
and communi cations savings dueto the compact representa-
tion of the request for missing items. An additional benefit
of the approach is that in cases where al needed data is
present at the client, a null remainder query is generated,
meaning that contact with the server is not necessary.

2.1.3 Cache Replacement Policy

A fina issuethat impacts the performance of the dternative
architectures is the cache replacement policy. A cache
replacement policy dictateshow victimsfor replacement are
chosen when additiona spaceisrequiredinthecache. Such
policies apply avalue function to each of the cached items,
and chooseasvictims, thoseitemswith thelowest values. In
traditiona systems, value functionstypically are based on
temporal locality and/or spatial locality. Temporal locality
isthe property that itemsthat have been referenced recently
are likely to be referenced again in the near future; the
LRU policy isbased on theassumption of temporal locality.
Spatial locality is the property that if an item has been
referenced, other itemsthat arephysicaly closetoitarea so

likely to be referenced; page caching triesto exploit spatia
locality under the assumption that clustering of tuples to
pages is effective. As demonstrated in Section 3, semantic
caching enables the use of a dynamically defined version
of spatia locality, that we refer to as semantic locality.
Semanticlocality differsfrom spatial locality inthat itisnot
dependent on the static clustering of tuplesto pages; rather
it dynamically adapts to the pattern of query accesses.

2.2 Page Caching Architecture

In page caching architectures (also referred to as page-
server systems [DFMV90, CFZ94]), the unit of transfer
between servers and clientsis a page. Queriesare posed at
clients, and processed locally down to the level of requests
for individual pages. If arequested page is not present in
the local cache, arequest for the page is sent to the server.
In response to such a request, the server will obtain the
page from disk (if necessary) and send the page back to
the client. On the client side, page caching is supported
through amechanism that isnearly identical to that of atra-
ditional page-based database buffer manager. A client can
perform partia scans on indexed attributes by first access-
ing theindex (faultingin any missing index pages) and then
accessing qualifying data pages. If no index ispresent then
a page caching approach will scan an entire relation, again
faultingin any missing pages. Aswith a buffer manager, a
page cache is managed using simple replacement strategies
based on the usage of the dataitems, such as LRU or MRU.

2.3 Tuple Caching Architecture

Tuple caching isin many ways anal ogous to page caching,
the primary difference being that with tuple caching, the
client cache is maintained in terms of individual tuples (or
objects) rather than entire pages. Caching at the granularity
of asingleitem allows maximal flexibility in the tuning of
cache contents to the access locality properties of applica-
tions [DFMV90]. As described in [DFMV90], however,
thefaultingin of individual tuples (assuming that tuplesare
substantially smaller than pages) can lead to performance
problems due to the expense of sending large numbers of
small messages. In order to mitigate this problem, a tuple
caching system must group client requests for multiple tu-
ples into a single message and must also group the tuples
to be sent from servers to clientsinto blocks.

Scans of indexed attributes can be answered in a manner
similar to page caching. For scans of non-indexed attributes
however, there are two options. One optionisfor the client
to first perform the scan locally, and then send a list of all
qualifyingtuplesthat it hasinitscache, along with thescan
congtraint to the server. The server can then process the
scan, sending back tothe client only those qualifyingtuples
that are not in the client’s cache. An alternative is for the
client to simply ignoreits cache contents when performing
a scan on a non-indexed attribute. In this case, the scan



congtraint is sent to the server, and al quaifyingtuplesare
returned; duplicate tuples can be discarded at the client.
Finally, the tuple cache, like a page cache, is managed
using an access-based replacement policy such as LRU.
Unlikethe page cache, however, thereisno notion of spatial
locality for tuples, so only temporal locality is exploited.

24 Semantic Caching Architecture

Semantic caching manages the client cache as a collection
of semanticregions; that is, access informationis managed,
and cache replacement is performed, at the unit of semantic
regions. Semantic regions, like pages, provide a means for
the cache manager to aggregate information about multiple
tuples. Unlike pages, however, the size and shape (in the
semantic space) of regions can change dynamically.

Each semantic region hasaconstraint formuladescribing
its contents, a count of tuplesthat satisfy the constraint, a
pointer to a linked list of the actua tuples in the cache,
and additiona information that is used by the replacement
policy to rank the regions. The formula that describes a
region specifies the region’slocation in the semantic space.
Unlike the replacement value functions used by the page
and tuple caching architectures, the value functionsused by
semantic caching may take information about the semantic
locality of regionsinto account.

When aquery isposed at aclient, itissplitintotwo dis-
joint pieces: (1) aprobe query, which retrieves the portion
of the result available in the local cache, and (2) aremain-
der query, which retrieves any missing tuplesin the answer
from the server. If the remainder query is not null (i.e., the
guery covers partsof the semantic spacethat are not cached)
then the remainder query is sent to the server and processed
there. Similar to tuple caching, the result of the remainder
query is packed into pages and sent to the client. Unlike
tuple caching, however, the mechanism for obtainingtuples
from the server isindependent of the presence of indexes.

3 Modd of Semantic Caching
3.1 Basic Terminology

Semantic caching expl oitsthe semantic information present
in associative query specifications to organize and manage
theclient cache. Inthisstudy, weconsider selection queries
on single relations, where the selection conditionis an ar-
bitrary constraint formula (that is, adisjunction of conjunc-
tions of built-in predicates); dealing with more complex
guerieswithinthe framework of semantic cachingisanim-
portant direction of future research. In semantic caching,
the portion of asinglerelation present in the client cacheis
also described by a constraint formula; the entire contents
of the client cache are described by a set of such constraint
formulas, one for each database relation.

A query can be split into two digoint portions: one that
can be completely answered using the tuples present in the

-
|
N | l=<— Q,
> | IS
8 [ 1=
g < 1 1
o |x
|

100,000

|
I
|
50,000 |
|
|
I

25 28 30 Age

Figure 1: Semantic Spaces

client cache, and another that requires tuples to be shipped
fromthe server. In semantic caching, the notionsof aprobe
guery and a remainder query correspond to these two por-
tionsof the query. Moreformally, given aquery onrelation
R with constraint formula @, if V' denotes the constraint
formuladescribing theset of tuplesof R presentintheclient
cache, then the probe query, denoted by P(Q, V'), can be
defined by the constraint formula@ A V on R. Further, the
remainder query, denoted by R(Q, V), can be defined by
the constraint formula@ A (=V) on R.

For example, consider a query to find al employees
whose sdary exceeds 50,000, and who are at most 30
years old. This query can be described by the constraint
formula@i = (Salary > 50,000 A Age < 30) onthere-
lation employee( N ame, Salary, Age). Assume that the
client cache contains al employees whose sdary is less
than 100, 000 as well as all employees who are between 25
and 28 years old. This can be described by the formula
V1 = (Salary < 100,000V (Age > 25 Age < 28)).

The probe query P(Q1, V1) into the client cache is de-
scribed by the constraint formula ((Salary > 50,000 A
Salary < 100,000 A Age < 30) V (Salary > 50,000 A
Age > 25\ Age < 28)). This constraint describes those
tuples in the cache that are answers to the query. The
remainder query R(Q1, V1) is described by the constraint
formula((Salary > 100,000 A Age < 25) V (Salary >
100,000 A Age > 28 A Age < 30)). This constraint de-
scribes those tuples that need to be fetched from the server.

When the constraint formulas are arithmetic constraints
over atributes Ay, ..., A,, they have a natural visuaiza
tion as sub-spaces of the n-dimensional semantic space
D1 x Dy x --- x D,, where D; isthedomain of attribute
A;. Figure 1 depicts the projection onto the Salary and
Age attributes of the semantic spaces associated with the
employee relaion, query (1, cache contents V1, the probe
query P(Q1, V1) and the remainder query R(Q1, V1).

3.2 Semantic Regions

Client cache sizeislimited, and existing tuplesin the cache
may need to be discarded to accommodate the tuples re-
quired to answer subsequent queries. Semantic caching



manages the client cache as a collection of semantic regions
that group together semantically related tuples; each tuple
in the client cache is associated with exactly one semantic
region. These semantic regions are defined dynamically
based on the queriesthat are posed at the client.

Each semantic region has a constraint formula that de-
scribes the tuples grouped together within the region, and
has a single replacement value (used to make cache re-
placement decisions) associated with it; all tupleswithin a
semantic region have the replacement value of that region.

When a query intersects a semantic region in the cache,
that region gets split into two smaller digoint semantic
regions, one of which is the intersection of the semantic
region and the query, and the other is the difference of the
semantic region with respect to the query. Data brought
into the cache as theresult of aremainder query also forms
anew semantic region. Thus, the execution of a query that
overlaps n semantic regions in the cache can result in the
formation of 2n + 1 regions; of these regions n + 1 are
part of the query. The question then arises whether or not
to coalesce some or al of these regions into one or more
larger regions.

A dtraightforward approach is to always coa esce two
regionsthat have the same cache replacement value, result-
ing in only one region corresponding to the query. With
small (relativeto cache size) queries, thisstrategy can lead
to good performance. When the answer to each query takes
up alarge fraction of the cache, however, this strategy can
result in semantic regionsthat are excessively large. There-
placement of alarge region can empty a significant portion
of the cache, resulting in poor cache utilization.

Another option is to never coalesce. For small queries
that tend to intersect, this can lead to excessive overhead,
but for larger queries, it aleviates the granularity problem.

In our approach, therefore, we use an adaptive heuristic.
Regions with the same cache replacement value may be
coalesced if either one of them is smaller than 1% of the
cache size. Asshownin Section 5.1, thisheuristic strikesa
good balance between the two extremes.

3.3 Replacement Issues

When there isinsufficient space in the cache, the semantic
regionwiththelowest valueand all tupleswithinthat region
are discarded from the cache. Semantic regions are, thus,
the unit of cache replacement. The value functionsused by
semantic caching can be based on temporal locdity (e.g.,
LRU, MRU), or on semantic locality of regions. Below,
we describe two caching/replacement policies, one where
the replacement value is based on recency of usage, and
another whereit isbased on a distance function.

Maintai ning replacement val ues based on recency of us-
age allows for the implementation of replacement policies
such as LRU or MRU. Conceptually, tuple caching and
page caching associate a replacement value with each tu-

Q2 Q2
Q1 Q1 Q1

| |
! E i N
] [

Q3

(a) Regions after Q1 (b) Regions after Q2 (c) Regions after Q3

Figure 2: Semantic Regions. Recency of Usage

Q2 Q2
Q1 Q1 Q1

[ ] Cl e H

Q3

(a) Regions after Q1 (b) Regions after Q2 (c) Regions after Q3

Figure 3: Semantic Regions. Manhattan Distance

ple or page, corresponding to the latest timetheitemin the
cache wasaccessed. Maintaining replacement val ues based
on recency of usage in the semantic caching approach as-
sociates such a value with each semantic region, based on
the sequence of queriesissued at the client. Figure 2 illus-
tratesthe semantic regions and their associ ated replacement
values, based on recency of usage, for a sequence of three
range queries on a single binary relation. The solid lines
show the semantic regions created when full coalescing is
performed, the dotted lines depict the additional semantic
regionsthat would result if no coalescing were performed.

The congtraint formula @1 corresponding to the first
guery is the only semantic region (with value 1) after Q1
isissued (see Figure 2(a)). The second query ()2 overlaps
with the semantic region with value 1, and the constraint
formula Q2 is the semantic region with value 2. Since
semantic regions have to be mutually digoint, the semantic
region with value 1 “shrinks’, after ()2 is issued, to the
portion that is digoint with Q2 (see Figure 2(b)). Similar
shrinking occurs when the third query is issued; note that
the semantic region with value 1 is no longer convex, and
its constraint formulais not conjunctive. In fact, semantic
regions may not be connected in the semantic space.

Analternativeto using recency informationfor determin-
ing replacement val uesisto use semantic distance. Figure3
shows the result of using Manhattan distance in the previ-
ousexample. Inthiscase, each semantic region isassigned
a replacement vaue that is the negative of the Manhattan
distance between the “ center of gravity” of that region and
the “center of gravity” of the most recent query. With this
distance function, semantic regions that are “close’ to the
most recent query have a small negative value, irrespective
of when they were created, and are hence less likely to be
discarded when free space is required.



34 An Operational Modd

We now describe an operational model of semantic caching.
In this modd the client processes a stream of queries
Q1,...,Q, on relation R. Let V;_; denote the cache
contents for relation R, and S;_1 denote the set of seman-
tic regions of relation R, when query @; isissued. Vg is
the constraint formula false, and Sp is empty. Processing
query @;, involves the following steps:

1. Computetheprobequery P(Q;, V;—1) and theremain-
der query R(Qi,Vi—1) from Q; and V;_1. Partly
answer query ; from the set of tuples that satisfy
P(Qi, Vie1).

2. Repartition S;_1 into S/ and update the replace-
ment values associated with the semantic regions
in 8/ based on P(Q;, Vi—1), R(Qi, Vi—1), and the
caching/replacement policy used.

3. Fetchthetuplesof R that satisfy theconstraint formula
R(Qi, Vi—1) from the server.

4. If the cache does not have enough free space, discard
semantic regions Sy, . . ., S, with low values among
the set of semanticregions S/, and discard tuplesinthe
cache that satisfy the constraint formulas Sy, . . ., Sk
until enough space isfree.

5. Answer therest of query ; by taking the set of tuples
that satlsfy R(Qz; Vi—l)-

6. Compute V; by taking the digunction of V;_; and
R(Qi, Vi—1), and then taking the difference with re-
spect to Sy, . . ., Sk; Determine the semantic regions
S; in the cache and update their replacement values
based on S!, R(Q;, Vi—1), the discarded semantic re-
gions Sy, . . ., Sk, and the caching/replacement policy.

4 Simulation Environment
4.1 Resources and Modd Parameters

Our simulator is an extension of the one used in [FIK96],
written in C++ using CSIM. It models a heterogeneous,
peer-to-peer database system such as SHORE [C+94], and
providesadetailed model of query processing costsin such
a system. For this study, the simulator was configured to
model a system with asingleclient and a single server.

Table 1 shows the main parameters of the model. Every
site has a CPU whose speed is specified by the Mips pa
rameter, NumDisks disks, and a main-memory buffer pool.
At the client, the size of the buffer pool is ClientCache.*
Thedetailsof buffer management overhead for the different
client caching strategies are described in Section 4.2.

The CPU ismodeled as aFIFO queue. Theclient hasan
optional disk-resident cache, which also usesthe parameter
ClientCache; thememory cacheisnot usedinthiscase. The
disk cache is used for queries on non-indexed attributes,
and the whole disk cache is scanned in sequence when

1As each pageis referenced only once per query, and server buffersare
cleared between queries, the buffer size at the server does not matter.

Mips 50 | CPU speed of asite (10° inst/sec)
NumDisks 1 | number of diskson asite
ClientCache 250 | cachesizeat the client (Kb)
Diskinst 5000 | inst. to read a page from disk
PageSze 4096 | sizeof onedatapage (bytes)
NetBw 8 | network bandwidth (Mbit/sec)
Msglnst 20000 | inst. to send/receive a message
PerSzeMl 12000 | inst. to send/receive a page
Display 0 | inst. to display atuple
Compare 2 | inst. to apply a predicate
Move 1 | inst. to copy 4 bytes

Table 1: Model Parameters and Default Settings

answering such queries. Disksaremodeled using adetailed
characterization adapted from the ZetaSim model [Bro92].
The disk model includes an elevator scheduling policy, a
controller cache, and read-ahead prefetching. There are
many parameters to the disk model (not shown) including:
rotational speed, seek factor, settletime, track and cylinder
sizes, controller cache size, etc. In addition to the time
spent waitingfor and accessing the disk, a CPU overhead of
Diskinst instructionsis charged for every disk 1/O request.

The database, the server buffer pool, and the client’s
disk cache are organized in pages of size PageSize. Pages
are the unit of disk 1/0 and data transfer between sites.
The network is modeled as a FIFO queue with a specified
bandwidth (NetBw); the details of a particular technology
(e.g, Ethernet, ATM) are not modeled. The cost of sending
amessage involves the time-on-the-wire (based on the size
of the message), a fixed CPU cost per message (Msginst),
and a size-dependent CPU cost (Per SzeMl).

When scanning a relation at the server, there is a ded-
icated process which attempts to keep the scan one page
ahead of the consumer at the client. Thisleads to overlap
between disk reads and network messages, which is most
apparent when the result sizeissmall relativeto theamount
of datascanned. In the extreme case, network communica-
tion can be done completely parallel to thedisk reads. This
overlap does not arise when data is faulted in to the client,
as thereis no dedicated process at the server in this case.

In addition to the CPU costs for systems functions such
as messages and 1/Os, there are aso costs associated with
the functions performed by query operators. The costs
that are modeled are those of displaying, comparing, and
moving tuplesin memory.

4.2 Buffer Management at the Client

In order to maintain fairness to the different caching ar-
chitectures, the ClientCache parameter includes both the
space needed for buffer management overhead, and the
space available for storing data. Since we do not consider
updatesin this study, we do not model the overhead needed
to facilitate updates. We also do not model the CPU cost of
cache management at the client.

To estimate the overhead of page buffer management, we



RelSze 10000 | Size of databaserelation (tuples)
TupleSize 200 | Sizeof eachtuple (bytes)

QuerySize | 1-10% | % of relation selected by each query
Skew 90% | % of queries within a hot region
HotSpot 10% | Size of the hot region (% of relation)

Table 2: Workload Parameters and Default Settings

used the Buffer Control Block of [GR93]. After removing
all attributes pertaining to updates and concurrency control,
we were | eft with 28 bytes per page. To model the storage
cost of indexes, we assume that the primary index takes up
negligible space, as also the upper levels of the secondary
index. The leaf level of the secondary index, however, has
8 bytesper tuple. Thisaddsup to 188 bytes of overhead for
apage of 20 tuples. In acache of size 250K b, we can then
fit z55es 188 ~ 60 pages.

For tuple shipping the same data structure can be used
for cache management, with two exceptions. Tuple size
needs to be kept, and tuple identifiers are typicaly larger
than page identifiers. However, since we used fixed size
tuples, and do not have a specific implementation of tuple
identifiers, we chose to use 28 bytes per tuple. With the 8
bytes for indexes, that adds up to 36 bytes per tuple. Ina
cache of size 250Kb, we can then fit 2509 ~ 1085 tuples.

For semantic caching, the buffer management informa
tion is kept on a semantic region basis. The replacement
information needed is similar to page and tuple caching;
however, the page identifier, the frame index and the hash
overflow pointer are not needed. Instead, we need addi-
tional pointersto thelist of factorsin the constraint formula
describing the region, and to the list of tuples in the re-
gion. Thisisatota of 24 bytes. For each factor in the
congtraint formula we need the endpoints of the range of
each attribute (8 bytes per attribute), and a pointer to the
next factor (4 bytes). For each tuple we need a pointer to
the next tuple (4 bytes). Note, that we do not need to model
astorage overhead for indexes at the client, as the semantic
cache uses semanticinformation to organizethedata. Since
the overhead isvariable, our implementation simply makes
sure that the size of the overhead data structures and the
actual datais never more than the size of the cache.

4.3 Workload Specification

We use a benchmark consisting of simple selections. The
size of the result QuerySize is varied in the experiments,
but is dways smaller than the cache. A fixed portion of
the queries (Skew) has the semantic centerpoint within a
hot region of size HotSpot.> The remaining queries are
uniformly distributed over the cold area.
AsshowninTable2, weuseasinglerelationwith 10,000
tuples of 200 bytes each. We have intentionally kept the

2Since the only requirement for a hot query is that the centerpoint be
within the hot spot, a sizable fraction of the query may lie outside the hot
spot. The semantic area adjacent to the hot spot will therefore also havea
significant number of hits.

database small and have sized the cache proportionaly, in
order to make the running of alarge number of experiments
feasible. Aswith al caching studies, what determines the
performanceisthere ativesizesof the cache, databases, and
access regions, rather than their absolute sizes.® The rela
tion has three candidate keys, which we adopted from the
Wisconsin benchmark: Unique2 is indexed and perfectly
clustered; Uniquel is indexed but completely unclustered;
Unique3 is both unindexed and unclustered.

5 Experimentsand Results

In this section we examine the performance of the three
caching architectures using aworkload consisting of selec-
tion queries on a Wisconsin-style database using various
indexed and non-indexed attributes. As shown in Table 2,
the access pattern is skewed so that 90% of the querieshave
acenterpoint that lieswithin the hot region consisting of the
middle 10% of the relation. In all the experiments in this
section, the client cache is set to 250K b, which is sufficient
to store the entire hot region, including overhead, for all
three approaches.

The primary metric used isresponsetime. Where neces-
sary, other metricssuch ascachehit rates, message volumes,
etc. are used. The numberswere obtained by averaging the
results of three runs of queries. Each run consisted of 50
gueries to warm up the cache followed by 500 query exe-
cutions during which the measurements were taken. The
results presented here are a small, but representative set of
theexperimentswehave run. In particular weran numerous
sengitivity experiments varying cache size, hot region size,
tuplesize, skew, etc.

5.1 Indexed Selections

We first study the performance of the three caching ar-
chitectures when performing single- and double-attribute
selections on indexed attributes. Figure 4 shows the re-
sponse time for the three caching architectures when the
selection is performed on the Unique2 attribute, which has
aclustered index. The z-axis of the figure shows the query
result size expressed as a percentage of therelation size. In
this case, it can be seen that all three architectures provide
similar performance across therange of query sizes. Asthe
guery size is increased (while the cache size is held con-
stant), theresponsetimefor al of the architecturesworsens
due to lower client cache hit rates. Tuple caching has the
worst performance in thisexperiment and page and seman-
tic caching perform roughly equally. Tuplecaching’'sworse
performance in this case is due to its relatively high space
overhead. Asdescribedin Section 4.2, tuple caching incurs
an overhead of 36 bytes per every 200 byte tuple in the
indexed case. In contrast, page caching incurs an overhead

3We also conducted experiments where the database, cache, and the
queries, were all scaled up by a factor of 10. The results (in terms of
relative performance) in this case were nearly identical.



200

30

% 4500 T T T T
Page/LRU
180 - 4000 Tuple/LRU
160 25¢ Semantic/LRU 1
3500 T Always Coalesce-Semantic/LRU
@ 140 | ) 5 Never Coalesce-Semantic/LRU —C—
£ £ 3000 - 8 20 | g
2 120 2 Q
E E 2500 Page/LRU g
> 100 - Page/MRU & 15
2 2 2000 Tuple/LRU - =
S 80f s Semantic/LRU é
§ 0 1 ) § 1500 - 5 10
Page/LRU 1000 [e)
40 Tuple/LRU 1 5
Semantic/LRU g
20 g 500 = g
¢ ] £
0 Il Il Il Il Il Il Il 0 Il 0 Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10 i1 2 3 4 5 6 7 8 9 10

Query Size [% of Relation]
Figure 4: Resp. Time, Unique2
Mem. Cache, Varying Query Size

of less than 10 bytes per tuple, and because Unique2 is a
clustered attribute, nearly al of the tuplesin an accessed
page satisfy the query. Thus, page caching has approxi-
mately 10% more datain the cache than tuple caching here.
Semantic caching has even lower space overhead than page
caching in this experiment; however, this dight advantage
is mitigated by an equally slight degradation in cache uti-
lization as the query size increases. With larger regions,
the replacement granularity of semantic caching increases.
Replacing large regionstemporarily opensup largeholesin
the cache, which is detrimental to overall cache utilization.

Figure 5 shows the response times for the architectures
when thesglectionison Uniquel, thenon-clustered indexed
attribute. In this figure, the performance of page caching
is shown for two different cache value functions. LRU
and MRU. In this experiment, the page caching approach
performsfar worsethan both thetupleand semantic caching
approaches. Page caching's poor performance hereisto be
expected; since Uniquel is unclustered, the hot region of
the relation is not able to fit entirely in the cache. MRU
helps page caching dightly in this case, because the non-
clustered index scan processes the pages of the relation
sequentialy. Of course, random clustering is the worst
case for page caching, which is based on the assumption of
spatial locality. Nevertheless, comparing thisgraph withthe
previous one demonstrates the sensitivity of page caching
to clustering. Also the two experiments demonstrate that
the space overhead of semantic caching isthe same or better
than page caching, but that unlike page caching, a semantic
cache is not susceptible to poor static clustering.

The first two experiments examined single-attribute
gueries. We a so studied queriesthat are multi-attribute se-
lections on the combination of Uniquel and Unique2. The
resultsin this case (not shown) are similar to those of the
non-clustered selection of the previous experiment: page
caching suffers due to poor clustering; tuple and semantic
caching provide similar, and much better performance. The
important aspect of this experiment, however, can be seen
in Figure 6, which showsthetotal space overhead (as aper-
cent of the cache size) incurred by page and tuple caching

Query Size [% of Relation]
Figure5: Resp. Time, Uniquel
Mem. Cache, Varying Query Size

Query Size [% of Relation]

Figure 6: Overhead, Uniquel/Unique2
Mem. Cache, Varying Query Size

and three variants of semantic caching.

The storage overhead for tuplecaching and page caching
is proportional to the number of items that fit in the cache,
so it isindependent of the query size. Page caching has an
overhead of 6.5% (including the cost of unused space onthe
pages) while the overhead of tuple caching is 15.2% for all
guery sizesin Figure 6. Despiteits advantage in overhead,
however, page caching still performs much worsethan tuple
caching in thisexperiment because of the lack of clustering
with respect to the Uniquel attribute.

In contrast to page and tupl e caching, the space overhead
of semantic caching isdependent on both the query size and
the coalescing strategy. The three lines shown for semantic
caching in Figure 6 show the overhead for three different
approaches to coaescing regions. The highest space over-
head is observed when coaescing is turned off (“Never
Coadesce’). Recall that a query that touches n regions can
result in the creation of up to n + 1 new regions. If these
new regions are not coaesced, the overhead incurred can
be significant. Ascan be seen inthefigure, the overhead is
significantly worse for smaller queriesthan for larger ones.
For 1% queries, there are 55 regions and nearly 275 fac-
tors. In contrast, when coalescing isperformed aggressively
(“Always Coalesce”) overhead is decreased substantially
(e.g., by 85% for the smallest query). As stated previoudly,
however, aggressive coaescing can aso negatively affect
cache utilization by increasing the granularity of cache re-
placement. In this experiment, aggressive coalescing has
as much as 10% lower cache utilization compared to never
coalescing. Finally, the regular “semantic” line, showsthe
effectiveness of thedefault coal escing heuristicdescribedin
Section 3.2. Inthiscase, theoverhead isonly dlightly higher
than that of always coalescing, while the cache utilization
(not shown) is nearly the same as that of never coalescing.
Thus, these results demonstrate that the simple coa escing
heuristic used by semantic caching is highly effective.

Finally, it should also be noted that the space overhead
of semantic caching is impacted by the dimensionality of
the semantic space. Inthiscase, sincethe semantic spaceis
two-dimensional , semanti ¢ caching i ncurs somewhat higher



1400

T T T T T T T T 250 T T T T T T
2000 B F— - Tuple/ignore Cache —<
1 e e e e i e ] Tuple/LRU — 1200 "
200 Semantic/LRU
£ 1500 5 Z 1000
() o ()
2 £ 150 2 g0
[ < [
3 1000 = 8
a =~ < 600
S S 100 S
g Tuplefignore Cach : & g
& uple/lgnore Cache z @ 400 B
500 | Tuple/LRU - Tuple/LRU
Semantic/LRU 50 Semantic/LRU
200(P Semantic/Manhattan
= 7
—
0 Il Il Il Il Il Il Il Il Oé Il 0 Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Query Size [% of Relation]
Figure 7: Resp. Time, Unique3
Disk Cache, Varying Query Size

overhead due an increase in the number of semantic regions
and the complexity of the constraint formulasthat describe
them. For small queries, the overhead of the never coa esce
case is over four times higher than in a single-attribute
semantic space. The default coalescing heuristic, however,
does not suffer from this overhead explosion: its overhead
even for the smallest queriesis only about one third higher
than in the single attribute case.

5.2 Nonlndexed Selections

As described in Section 2, the availability (or lack) of in-
dexes at clients dictates the manner in which the page and
tuple caching architectures process queries. In this section
we examine the performance of the tuple caching and se-
manti c caching architectureswhen performing sel ectionson
an unindexed attribute (Unique3).* For tuple caching, we
explore two approaches to processing selections on unin-
dexed attributes. One approach exploits the client cache
by first applying the selection predicate to al of the cached
tuplesof thegiven relation and sending thelist of qualifying
tuples, aong with the selection predicateto the server. The
server then appliesthe predicateto the entirerel ation (recall
that there is no index) and sends any qualifying tuples that
are missing from the cache. The second approach simply
ignores the cache and sends the predicate to the server. In
this case all qualifying tuples are sent to the client.®

Figure 7 shows the response time of semantic caching
and the two tuple-based architectures when the client uses
itslocal disk as a cache, rather than its memory. We use a
disk cache here, in order to demonstrate a fundamental ad-
vantage of semantic caching over tuple (or page) caching;
namely, that the use of remainder queries for requesting
missing tuples from the server enables the client and the
server to processtheir (dig oint) portionsof thequery inpar-
allel. In contrast, for aclient to exploit atuple cacheinthis
case, it must scan thelocal cache prior to initiatingthe scan

4Page caching performssignificantly worse than the others here dueto
the lack of clustering, and is therefore not shown.

5Note that these approaches assume that the server has the ability to
process selection predicates, asis also required for semantic caching.

Query Size [% of Relation]
Figure 8: Network Volume, Unique3
Disk Cache, Varying Query Size

Query Size [% of Relation]
Figure 9: Resp. Time, Uniquel
Mem. Cache, Varying Query Size

at the server. Theresult of the sequential processing inthis
experiment is that tuple caching has worse response time
even than a tuple-based approach that completely ignores
the cache. The main reason for this non-intuitive behavior
is that because the selection is applied to a non-indexed
attribute, any data request sent to the server resultsin afull
scan of the relation (from disk) at the server. The cost of
thisscan dominatesall other activitiesin thiscase, and since
the server is able to overlap communication with 1/0O, the
communication costs do not factor into the total response
time. Thus, in this experiment, tuple caching performs ex-
trawork prior to contacting the server, but sees no benefit
in response time resulting from thiswork. Such a benefit,
however, is evident in Figure 8 which shows the number of
bytessent across the network per query. Inthiscase, theuse
of the client cache resultsin a significant reduction in mes-
sage volume. In a network constrained environment (e.g.,
a wireless mobile network), such communication savings
may be the dominant factor. Finally, it should be noted that
when amemory cache is used rather than a disk cache, the
performance of tuple caching isroughly equa to that of the
“tupleignore” policy in thisexperiment.

Turning to the performance of semantic caching in Fig-
ure 7, it can be seen that semantic caching provides signif-
icant performance benefits for small queries. This result
is unexpected, because as described above, any data re-
guest sent to the server incursafull relation scan, resulting
in performance similar to that of “tuple ignore”. Thisre-
sult illustrates another fundamental advantage of semantic
caching, namely that by maintaining semantic information
about cache contents, a semantic caching system can iden-
tify cases when it can answer a query without contacting
the server. In thisexperiment, over 60% of the small (1%)
gueries are answered completely from the client’s cache,
thus avoiding the disk scan at the server.® In contrast, tuple
caching, which also often had an entire answer in cache,
was till required to perform a disk scan at the server, only

6When the query size is so large that no queries are answered com-
pletely in cache, then the performance of semantic caching becomesequal
to that of “tuple ignore” in this experiment.



to find that no extra tuples were needed. Finaly, it should
be noted that in environments where communication chan-
nels are scarce, such as cdlular networks, the ability to
operate independently of the server can result in significant
monetary savingsin addition to performance gains.

5.3 Semantic Value Function

The previous experiments brought out severd intrinsicben-
efits of maintaining cache contents using semantic infor-
mation, including low space overhead, insensitivity to page
clustering, client-server paralelism, and the ability to an-
swer some querieswithout contacting theserver. Inthissec-
tionwedemonstrateanother advantage of semantic caching:
the ability toincorporate semantic localityin cache replace-
ment value functions. Asan examplewe usethe Manhattan
distance described in Section 3.3.

Figure 9 shows the response time for selection queries
on the non-clustered, indexed attribute Uniquel. As can
be seen in the figure, the Manhattan distance provides bet-
ter performancefor al query result sizesin thisexperiment.
The Manhattan distanceismore effective than LRU at keep-
ing the hot region in memory, resulting in a better cache hit
rate. The reason that LRU loses in this workload is that
there are a significant number of queries (10%) that land in
the cold region of the relation. Such cold datais not likely
to be accessed in the near future, but it stays in the cache
until it ages out of the LRU chain. In contrast, using the
Manhattan di stance function, such a cold rangewouldloose
its value when the next “hot range” query is submitted.

6 Mobile Navigation Application

In the previous section, we showed that semantic locality
can improve performance even in a randomized workl oad.
In this section, we further examine the benefits of semantic
locality by exploring a workload that has more semantic
content than the sel ection-based workloads studied so far.
The workload models mobile clients accessing remotely-
stored map data through a low-bandwidth wireless com-
munication network (see, eg., [D+96]). Each tuplein the
database represents a road segment in the map, and each
page is a collection of such tuples. The application must
update the map data displayed to the user at regular inter-
vals, depending on the user’s current location, direction and
speed of motion.

6.1 Workload Specification

The database is one relation, two of whose attributes take
values between 0 and 8191. This pair of attributesforms a
dense key of therelation; there isatuplefor every possible
pair of values. These two attributes can be viewed as the
X and Y co-ordinatesin a 2-dimensional space. Therela
tion is clustered using the Z-ordering [Jag90] on these two
attributes. Each tupleis 200 byteslong.

Figure 10: Random Query Path

Weuseabenchmark of simplesel ectionsof tuples, which
is characteristic of map data accesses in a navigation appli-
cation. Each query is in the form of a rectangle of size
8 x 16, oriented along one of the two axes in the semantic
space of thetwo spatial attributes of the relation; thus, each
guery answer has 128 tuples. The location and orientation
of the query rectangle depends on the user’s current loca-
tion and direction of motion. A query path corresponds to
navigating through the 2-dimensional spacein aManhattan
fashion. Figure 10 gives an example of such aquery path.

We simulated a variety of query profiles: random,
squares, and Manhattan “lollipops’. The random profile
has a fixed probability of moving in one of the four direc-
tions. In each step, moving left, right or backward is by
4 units, moving forward is by 8 units; the difference es-
sentially models different speeds of motion. The square
profileinvolvesthe query path repeatedly traversing afixed
size square in the 2-dimension space. The Manhattan lol-
lipop profileis a square balanced on top of a“stick”. Each
guery path goes up the stick, traverses around the square
multiple times, goes down the stick, and then repeats the

cycle.

6.2 Semantic Value Function

Consider the query path in Figure 10. Using a replace-
ment policy likeLRU isnot very appropriatefor such query
profiles. Assume that when (19 isissued, some map data
must be discarded from the client cache. If an LRU policy
is used, the map data associated with @3 is likely to be
discarded, since it has not been accessed for alongtime. A
semantic caching policy can recognize the semantic prox-
imity of 3 and 219, and discard the data associated with
@9, 10, Q11in preference to thedataassociated with ()3,
resulting in better cache utilization. We now describe a se-
mantic value function, the directional Manhattan distance
function, that maintains a single number with each seman-
tic region based on its Manhattan distance from the user’s
current location and direction of motion.

Assumethat the user’ sdirection of motionisthe positive
X axis(for other directionsof motion, thedistancefunction
is defined similarly), and let p,, pi, p» and p; denote the



weights that model the relative importance of retaining in
the cache semantic regions that are ahead of, to the left
of, to the right of, and behind the current region. Let
(zu, yu) be the user’s current location, and (z,y) be the
center of asemanticregion S inthe cache. Thereplacement
information associated with S is computed as —(dpar +
dperp), Wherethevaues d, ., (paralle distance) and d,.,p
(perpendicular distance) are defined as follows:

if 2 >z, then (1 —pg) * (2 — 2y)
ese(1—pp) *(2y — 2)
dperp = iy >y then(1—pr)* (y — yu)
ese(1—pr)* (Yu —Y)

dpar —

6.3 Performance Results

We present a performance comparison of LRU, MRU and
the directional Manhattan distance function for semantic
caching for various query profiles. The metric used isaver-
ageresponse timeto answer queries over asequence of 500
queries. Wea so studiedthe LRU and MRU va uefunctions
for tuple caching; since they always do dightly worse than
their semantic counterparts, we do not discussthem further.

A key characteristic of the query profiles we study is
the possibility of loopsin a query path, i.e., the user can
visit or be close to a previoudy visited location. When
the query path is random and the loops are small, LRU is
expected to perform well since recent datawill be retained
in the cache. When the query path is regular and the loops
are larger, MRU is expected to perform well, since older
data (guaranteed to be touched again) will beretained inthe
cache. We demonstrate that, in contrast to LRU and MRU,
a value function based on semantic distance, performs ro-
bustly, across a wide range of loop sizes.

We study random query paths, for four different choices
of probability vaues. The directionad Manhattan dis-
tance function is the winner, though LRU is a close sec-
ond. An interesting point to note is that the directional
Manhattan distance function performs substantially bet-
ter than MRU when the query path is totally random
(.25/.25/.25/.25). When the query path approaches a
straight line (.80/.10/.10/.00), dl approaches perform
comparably — there is not much scope for improvement
inthiscase.” Our results are summarized in table 3.

Each step for the square and the Manhattan | ollipop pro-
filesis 8 unitslong. The square sizes studied were 32 x 32
and 160 x 160. This query profile — predictable and cyclic
—isided for MRU, which isthe clear winner. The query
resultsfor the 32 x 32 square arejust dightly larger thanthe
cache size. A semantic distance function can be expected
to be useful inthis case, and the directional Manhattan dis-
tance function considerably outperforms LRU. The query
results for the 160 x 160 square are approximately five

7In the absence of loops, i.e., when data is touched at most once,
caching is not useful, and no value function will perform well.

| Size/Path | Dir. Manhattan | LRU | MRU
Random
.25/.25/.25/.25 | 1.00(29.4ms) | 1.06 | 2.24
.33/.33/.33/.00 | 1.00(425ms) | 1.05 | 1.52
.50/.20/.20/.10 | 1.00 (446 ms) | 1.03 | 1.38
.80/.10/.10/.00 | 1.00(56.1ms) | 1.01 | 1.04
Square
32x32 2.29 9.57 | 1.00(7.23 ms)
160x 160 1.22 1.22 | 1.00(51.9 ms)
Manhattan Lollipop
160/32x32/1 | 1.86 2.02 | 1.00 (47.1 ms)
160/32x32/5 | 1.00(626ms) | 1.22 | 111
160/32x32/10 | 1.00(49.2ms) | 1.38 | 1.60
160/32x32/50 | 1.00(349ms) | 1.69 | 254

Table 3: Mobile Query Paths

times larger than the cache size. LRU and the directiona
Manhattan distance function essentially keep the same data
in the cache, and hence they perform similarly.

For the Manhattan lollipop query path, the square sizeis
32 x 32, and the stick length is 160; we considered different
valuesfor the number of timesthe squareistraversedin each
cycle: 1,5,10and 50 (in this case the query path does not
completeafull cycle). When thesguareistraversed oncein
each cycle, the path is very regular and MRU outperforms
the other approaches. When the squareis traversed a large
number of times in each cycle, the regularity breaks down
and MRU begins to lose. The break-even point between
MRU and the directional Manhattan distance function is 4
rounds, and the break-even point between MRU and LRU
is between 6 and 7 rounds. The directional Manhattan
distance function is always better than LRU, and hence is
the clear winner when the square is traversed many times.

7 Redated Work

Data-shipping systems have been studied primarily in the
context of object-oriented database systems, and are dis-
cussed in detail in [Fra96]. The tradeoffs between page
caching (called page servers) and tuple caching (called ob-
ject servers) were initialy studied in [DFMV90]. That
work demonstrated the sensitivity of page caching to static
clustering, and a so the message overhead that resultsfrom
sending tuples from the server one-at-a-time. In our imple-
mentation of tuple caching, we took care to group tuples
into pages before transferring them from the server.
Alternative approaches to making page caching less
sengitive to static clustering have been proposed [KK94,
OTS94]. These schemes, known as Dual Buffering and
Hybrid Caching respectively, keep a mixture of pages and
objects in the cache based on heuristics. A page is kept
whole in the cache if enough of its objects are referenced,
otherwise individual objects are extracted and placed in a
separate object cache. These approaches aim to balance
the tradeoff between overhead and sensitivity to cluster-



ing. Semantic caching takesthedifferent approach of using
predicates to dynamically group tuples.

The caching of results based on projections (rather than
selections) was studied in [CKSV86]. However, the work
most closaly related to ours is the predicate caching ap-
proach of Keller and Basu [KB96], which uses a collection
of possibly overlapping constraint formulas, derived from
gueries, to describe client cache contents. Our work differs
from [KB96] in three significant respects. First, in [KB96]
there is no concept ana ogous to a semantic region. Recall
that maintaining semantic regions allows, in particular, the
use of sophisticated value functionsincorporating semantic
notions of locality. For discarding cached tuples, Keller
and Basu use instead, a reference counting approach based
on the number of predicates satisfied by the tuple. Second,
the focus of [KB96] is largely on the effects of database
updates. Third, [KB96] does not present any performance
resultsto validate their heuristics.

Making use of thetuplesin the cache can beviewed as a
simplecaseof “using materiaized viewsto answer queries’.
Thistopic has been the subject of considerable study in the
literature (e.g., [YL87, CR94, CKPS95, LMSS95]). None
of these studies, however, considered the issue of which
views to cache/materialize given a limited sized cache, or
the performance implications of view usability in a client-
server architecture.

ADMS [CR94, R+95] caches the results of subquery
expressions corresponding to join nodes in the evaluation
tree of each user query. Subsequent queries are optimized
by using previously cached views, so query matching plays
an important role. Cache replacement is performed by
tossing out entire views. Determining relevant datain the
cache is considerably simpler in our approach, since only
base-tuples of individual relations are cached.

8 Conclusionsand Future Work

We proposed a semantic model for data caching and re-
placement that integrates support for associative queries
into an architecture based on data-shipping. We identified
and studied the main factors that impact the performance
of semantic caching compared to traditional page caching
and tuple caching in a query-intensive environment: unit
of cache management, remainder queries vs. faulting, and
cache replacement policy. Semantic caching maintains re-
placement information with semantic regions that can be
dynamically adjusted to the needs of the current queries,
uses remainder queries to reduce the communication be-
tween the client and server, and enables the use of semantic
locality in the cache replacement policy.

We considered selection queries in our study, and are
currently exploring the use of semantic caching for complex
guery workloads. Semantic caching discards entireregions
fromthe cache, often resultingin poor cache utilization; we
areinvestigatingtheuseof region* shrinking” asatechnique

toalleviatethisproblem. Inthisstudy, wefocused on query-
intensive environments; exploring the impact of updatesis
necessary to make these techniques applicable to a larger
class of applications. We studied the utility of conventional
value functions (e.g., LRU and MRU), as well as of some
semantic value functions (e.g., Manhattan distance and its
directional variant) in traditional workloads as well as a
mobile navigation workload. Our plans for future work
includethefurther devel opment of semantic valuefunctions
for thisand other applications as well.

References

[Bro92] K.Brown.PRPL: A databaseworkload specificationlan-
guage, v1.3. M.S. thesis, Univ. of WI, Madison, 1992.

[C+94] M. Carey, et al. Shoring up persistent applications. Proc.
ACM SIGMOD Conf., 1994.

[CFZ94] M. Carey, M. Franklin, M. Zaharioudakis, Fine-grained
sharing in page server database systems, Proc. ACM SSGMOD
Conf., 1994.

[CKPS95] S. Chaudhuri, R. Krishnamurthy, S. Potamianos,
K. Shim. Optimizing queries with materialized views. Proc. of
IEEE Conf. on Data Engineering, 1995.

[CKSV86] G.P Copeland, S. N. Khosafian, M. G. Smith, P. Val-
duriez. Buffering schemesfor permanent data. Proc. of IEEE
Conf. on Data Engineering, 1986.

[CR94] C. Chen, N. Roussopoulos. Implementation and perfor-
mance evaluation of the ADMS query optimizer: Integrating
query result caching and matching. Proc. EDBT Conf. 1994.

[DFMV90] D.DeWitt, P. Futtersack, D. Maier, F. Velez. A study
of three alternative workstation-server architecturesfor object-
oriented database systems, Proc. VLDB Conf., 1990.

[D+96] S. Dar, et a. Columbus: Providing information and
navigation servicesto mobile users. Submitted, 1996.

[Fra96] M. Franklin, Client data caching: A foundation for high
performanceobject database systems, Kluwer, 1996.

[FIK96] M. Franklin, B. Jonsson, D. Kossmann. Performance
tradeoffs for client-server query processing. Proc. ACM SIG-
MOD Conf., 1996.

[GR93] J. Gray, A. Reuter. Transaction processing: Concepts
and techniques. Morgan Kaufmann, 1993.

[Jag90] H.V. Jagadish. Linear clustering of objectswith multiple
attributes. Proc. ACM SSIGMOD Conf., 1990.

[KB96] A.Keller, J. Basu. A predicate-based caching schemefor
client-server database architectures. VLDB J, 5(1), 1996.

[KK94] A. Kemper, D. Kossmann. Dual-buffering strategies in
object bases. Proc. VLDB Conf., 1994.

[LMSS95] A.Y.Levy,A.O.Mendelzon, Y. Sagiv, D. Srivastava.
Answering queries using views. Proc. PODS Conf., 1995.

[OTS94] J. O'Toole, L. Shrira. Hybrid caching for large scale
object systems. Proc. 6th Wkshp on Pers. Object Sys., 1994.

[R+95] N. Roussopoulos, et al. The ADMS project: Views“R”
Us. |EEE Data Engineering Bulletin, June 1995.

[RK86] N. Roussopoulos, H. Kang. Principles and techniquesin
the design of ADM S+-. IEEE Computer, December, 1986.
[YL87] H.Z.Yang, P-A. Larson. Query transformation for PSJ-

queries. Proc. VLDB Conf., 1987.



