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1 Introduction

Early database systemswere required to store only small character strings, such asthe entriesin atuple
in a traditiona relational database. Thus, the data was quite homogeneous. Today, we wish for our
database systems to be able to deal not only with character strings (both small and large), but also with
a heterogeneous variety of multimedia data (such as images, video, and audio). Furthermore, the data
that we wish to access and combine may reside in a variety of data repositories, and we may want our
database system to serve as middleware that can access such data.

Onefundamental difference between small character strings and multimedia datais that multimedia
data may have attributes that are inherently fuzzy. For example, we do not say that a given image is
simply either “red” or “not red”. Instead, there is a degree of redness, which ranges between 0 (not at
all red) and 1 (totally red).

One approach [Fag99] to deal with such fuzzy data is to make use of an aggregation function .
If 21,...,2, (each in the interval [0, 1]) are the grades of object R under the m attributes, then
t(z1,...,zm) isthe (overal) grade of object R.! As we shall discuss, such aggregation functions
are useful in other contexts as well. Thereis a large literature on choices for the aggregation function
(see Zimmermann's textbook [Zim96] and the discussion in [Fag99]).

One popular choice for the aggregation function is min. In fact, under the standard rules of fuzzy
logic[Zad69], if object R hasgrade z; under attribute A; and z» under attribute A, then the grade under
the fuzzy conjunction A1 A A, ismin(z1, z2). Another popular aggregation function is the average (or
the sum, in contexts where we do not care if the resulting overall grade no longer lies in the interval
[0,1]).

We say that an aggregation function ¢ is monotone if t(z1,...,zm) < t(zi,...,z,,) whenever
z; < z; for every 7. Certainly monotonicity is a reasonable property to demand of an aggregation
function: if for every attribute, the grade of object R’ is at least as high as that of object R, then we
would expect the overall grade of R’ to be at least as high asthat of R.

The notion of a query is different in a multimedia database system than in a traditional database
system. Given a query in atraditional database system (such as a relational database system), there is
an unordered set of answers.? By contrast, in a multimedia database system, the answer to a query can
be thought of as a sorted list, with the answers sorted by grade. Asin[Fag99], we shall identify a query
with a choice of the aggregation function¢. The user istypically interested in finding the top & answers,
where k isagiven parameter (suchask = 1, k = 10, or £ = 100). This means that we want to obtain
k objects (which we may refer to as the “top & objects’) with the highest grades on this query, along
with their grades (ties are broken arbitrarily). For convenience, throughout this paper we will think of
k as aconstant value, and we will consider algorithmsfor obtaining the top k& answersin databases that
contain at least k objects.

Other applications: There are other applications besides multimedia databases where we make
use of an aggregation function to combine grades, and where we want to find the top £ answers. One
important example is information retrieval [Sal89], where the objects R of interest are documents, the
m altributes are search terms sy, . . ., s, and the grade z; measures the relevance of document R for

We shall often abuse notation and write ¢( R) for the grade t(z1, . . ., zm) Of R.

20f course, in arelational database, the result to a query may be sorted in someway for conveniencein presentation, such
as sorting department members by salary, but logically speaking, theresult is still simply aset, with a crisply-defined collection
of members.



search term s;, for 1 < ¢ < m. It is common to take the aggregation function ¢ to be the sum. That is,
thetotal relevance score of document R when the query consistsof the search terms sy, . . ., s,,, istaken
tobet(z1,...,zm) =21+ -+ Tm.

Another application arisesin a paper by Aksoy and Franklin [AF99] on scheduling large-scale on-
demand data broadcast. In this case each object is a page, and there are two fields. Thefirst field repre-
sents the amount of time waited by the earliest user requesting a page, and the second field represents
the number of users requesting a page. They make use of the product functiont witht(z1, z2) = z122,
and they wish to broadcast next the page with the top score.

The model: We assume that each database consists of a finite set of objects. We shall typically
take N to represent the number of objects. Associated with each object R are m fields z1, . . ., zm,
where z; € [0, 1] for each :. We may refer to z; as the ¢th field of R. The database is thought of as
consisting of m sorted lists L4, . . ., L,,,, each of length N (thereis one entry in each list for each of the
N objects). We may refer to L, aslist <. Eachentry of L, isof theform (R, z;), where z; isthesth field
of R. Eachlist L; issorted in descending order by the z; value. We take thissimple view of a database,
sincethisview isall that isrelevant, asfar asour algorithmsare concerned. We are completely ignoring
computational issues. For example, in practice it might well be expensive to compute the field values,
but we ignore thisissue here, and take the field values as being given.

We consider two modes of accessto data. The first mode of access is sorted (or sequential) access.
Here the middleware system obtains the grade of an object in one of the sorted lists by proceeding
through the list sequentially from the top. Thus, if object R hasthe /th highest grade in the ith list, then
£ sorted accesses to the ith list are required to see this grade under sorted access. The second mode of
access is random access. Here, the middleware system requests the grade of object R in the :th list, and
obtainsit in one random access. If there are s sorted accesses and » random accesses, then the sorted
access cost is scg, the randomaccess cost isrcg, and the middleware cost is scg + rcg (the sum of the
sorted access cost and the random access cost).

Algorithms: Thereisan obvious naive algorithm for obtaining the top & answers. It looks at every
entry in each of the m sorted lists, computes (using ¢) the overall grade of every object, and returnsthe
top k& answers. The naive algorithm has linear middleware cost (linear in the database size), and thusis
not efficient for alarge database.

Fagin [Fag99] introduced an algorithm (“ Fagin’s Algorithm”, or FA), which often does much better
than the naive algorithm. In the case where the orderingsin the sorted listsare probabilistically indepen-
dent, FA findsthetop k answers, over adatabasewith N objects, with middiewarecost O (N (m—1)/mgl/m),
with arbitrarily high probability.® Fagin also proved that under this independence assumption, along
with an assumption on the aggregation function, every correct algorithm must, with high probability,
incur asimilar middleware cost in the worst case.

We shall present the “threshold algorithm”, or TA. This algorithm was discovered independently
by (at least) three groups, including Nepal and Ramakrishna [NR99] (who were the first to publish),
Guintzer, Balke, and Kiessling [GBKO0O], and ourselves.* For more information and comparison, see
Section 8 on related work.

3We shall not discussthe probability model here, including the notion of “independence”, sinceit is off track. For details,
see[Fag99].

*Our second author first defined TA, and did extensive simulations comparing it to FA, as a project in a database course
taught by Michael Franklin at the University of Maryland—College Park, in the Fall of 1997.




We shall show that TA is optimal in a much stronger sense than FA. We now define this notion of
optimality, which we consider to be interesting in its own right.

Instance optimality: Let A be a class of algorithms, and let D be a class of legal inputs to the
algorithms. We assume that we are considering a particular nonnegative performance cost measure
cost(\A, D), which represents the amount of a resource consumed by running the algorithm A € A on
input € D. This cost could be the running time of algorithm .A on input D, or in this paper, the
middleware cost incurred by running algorithm .A over database D.

We say that an algorithm B isinstance optimal over A and D if B € A and if for every A € A and
every D € D we have
cost(B, D) = O(cost(A, D)). (@)

Equation (1) meansthat there are constants ¢ and ¢’ such that cost(B, D) < ¢ - cost(.A, D) + ¢’ for every
choiceof A € A and D € D. We refer to ¢ asthe optimality ratio. It issimilar to the competitive ratio
in competitive analysis (we shall discuss competitive analysis shortly). We use the word “optimal” to
reflect that fact that B is essentially the best algorithmin A.

Intuitively, instance optimality corresponds to optimality in every instance, as opposed to just the
worst case or the average case. There are many algorithms that are optimal in a worst-case sense, but
are not instance optimal. An example is binary search: in the worst case, binary search is guaranteed to
require no more than log N probes, for N dataitems. However, for each instance, a positive answer can
be obtained in one probe, and a negative answer in two probes.

We consider a nondeterministic algorithm correct if on no branch does it make a mistake. We take
the middleware cost of a nondeterministic algorithm to be the minimal cost over all branches where it
haltswith thetop & answers. We take the middleware cost of a probabilistic algorithm to be the expected
cost (over al probabilistic choices by the algorithm). When we say that a deterministic algorithm 53
is instance optimal over A and D, then we are really comparing B against the best nondeterministic
algorithm, even if A contains only deterministic algorithms. Thisis because for each D € D, thereis
always a deterministic algorithm that makes the same choices on D as the nondeterministic a gorithm.
We can view the cost of the best nondeterministic algorithm that producesthetop k& answersover agiven
database as the cost of the shortest proof for that database that these are realy the top £ answers. So
instance optimality isquite strong: the cost of an instance optimal algorithm isessentially the cost of the
shortest proof. Similarly, we can view A asif it contains also probabilistic agorithms that never make
a mistake. For convenience, in our proofs we shall always assume that A contains only deterministic
algorithms, since the results carry over automatically to nondeterministic algorithmsand to probabilistic
algorithmsthat never make a mistake.

FA is optimal in a high-probability worst-case sense under certain assumptions. TA isoptimal in a
much stronger sense: itisinstance optimal, for severa natural choicesof A and D. In particular, instance
optimality holdswhen A is taken to be the class of algorithms that would normally be implemented in
practice (since the only algorithmsthat are excluded are those that make very lucky guesses), and when
D istaken to be the class of all databases. Instance optimality of TA holdsin this case for al monotone
aggregation functions. By contrast, high-probability worst-case optimality of FA holds only under the
assumption of “strictness’ (we shall define strictness later; intuitively, it means that the aggregation
function is representing some notion of conjunction).

The definition we have given for instance optimality is formally the same definition as is used in
competitive analysis[BEY 98, ST85], except that in competitive analysis, (1) we do not assumethat B ¢



A, and (2) cost(.A, D) does not typically represent a performance cost. |n competitive analysis, typically
(a) D isaclass of instances of a particular problem, (b) A is the class of offline agorithms that give a
solution to the instances in D, (c) cost(A, D) is anumber that represents the goodness of the solution
(where bigger numbers correspond to a worse solution), and (d) 5 is a particular online algorithm. In
this case, the online algorithm B is said to be competitive. The intuition is that a competitive online
algorithm may perform poorly in some instances, but only on instances where every offline algorithm
would also perform poorly.

Another example where the framework of instance optimality appears, but again without the as-
sumption that B € A, and again where cost(.A, D) does not represent a performance cost, is in the
context of approximation algorithms[Hoc97]. In this case, () D isa class of instances of a particular
problem, (b) A isthe class of algorithmsthat solve the instancesin D exactly (in cases of interest, these
agorithmsare not polynomial -time algorithms), () cost(.A, D) isthevalue of theresulting answer when
algorithm A isapplied to input D, and (d) B isaparticular polynomial-time algorithm.

Dagum et al. [DKLROO] give an interesting example of what we would call an instance optimal al-
gorithm. They consider the problem of determining the mean of an unknown random variable by Monte
Carlo estimation. In their case, (a) D is the class of random variables distributed in the interval [0, 1],
(b) A isthe class of algorithmsthat, by repeatedly doing independent evaluations of a random variable
and then averaging the results, obtain an estimate of the mean of the random variable to within a given
precision with a given probability, (c) cost(.A, D) isthe expected number of independent eval uations of
the random variable D under algorithm 4, and (d) B is their algorithm, which they call .A.A for “ap-
proximation algorithm”. Their main result says, in our terminology, that .A.4 isinstance optimal over A
and D.

Demaine et a. [DLMOQ] give an example of an algorithm that is close to instance optimal. They
consider the problem of finding the intersection, union, or diference of a collection of sorted sets. In
their case, (a) D isthe class of instances of collectionsof sorted sets, (b) A isthe class of algorithmsthat
do pairwise comparisons among elements, (c) cost(.4, D) isthe running time (number of comparisons)
in running algorithm A on instance D, and (d) B istheir algorithm. In acertain sense, their algorithmis
close to what we would call instance optimal (to explain the detailswould take us too far astray).

Approximation and early stopping: There are times when the user may be satisfied with an ap-
proximatetop & list. Assume § > 1. Define a #-approximation to the top & answersfor the aggregation
function ¢ to be a collection of & objects (and their grades) such that for each y among these & objects
and each z not among these k objects, 6¢(y) > t(z). Note that the same definition with § = 1 gives
the top & answers. We show how to modify TA to give such a #-approximation (and prove the instance
optimality of this modified algorithm under certain assumptions). In fact, we can easily modify TA into
an interactive process where at any time the system can show the user its current view of the top % list
along with a guarantee about the degree 6 of approximation to the correct answer. The user can then
decide whether he would like to stop the process at that point.

Restricting random access: Aswe shall discussin Section 2, there are some systemswhere random
accessisimpossible. To deal with such situations, we show in Section 6.1 how to modify TA to obtain an
algorithm NRA (*no random accesses’) that does no random accesses. We prove that NRA isinstance
optimal over all algorithmsthat do not make random accesses and over all databases.

What about situationswhere random access is not forbidden, but smply expensive? Wimmerset al.
[WHRB99] discuss anumber of systemsissuesthat can cause random access to be expensive. Although
TA isinstance optimal, the optimality ratio depends on the ratio ¢ g/cg of the cost of a single random
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access to the cost of a single sorted access. We define another algorithm that is a combination of TA
and NRA, and call it CA (“combined algorithm™). The definition of the algorithm depends on cr/cs.
The motivation is to obtain an algorithm that is not only instance optimal, but whose optimality ratio
is independent of c¢g/cg. Our origina hope was that CA would be instance optimal (with optimality
ratio independent of cr/cg) in those scenarios where TA is instance optimal. Not only does this hope
fail, but interestingly enough, we prove that there does not exist any deterministic algorithm, or even
probabilistic algorithm that does not make a mistake, with optimality ratio independent of c¢g/cg in
these scenarios! However, wefind a new natural scenario where CA isinstance optimal, with optimality
ratio independent of cg/cg.

Outline of paper: In Section 2, we discuss modes of access (sorted and random) to data. In Sec-
tion 3, we present FA (Fagin's Algorithm) and its properties. In Section 4, we present TA (the Threshold
Algorithm). In Section 4.1, we show that TA isinstance optimal in several natural scenarios. In the most
important scenario, we give a theorem that says that the optimality ratio of TA isbest possible. In Sec-
tion 4.2, we discuss the dependence of the optimality ratio on various parameters. In Section 4.3, we
show how to turn TA into an approximation algorithm, and prove instance optimality among approxi-
mation algorithms. We also show how the user can prematurely halt TA and in a precise sense, treat
its current view of the top k& answers as an approximate answer. In Section 5, we consider situations
(suggested by Bruno, Gravano, and Marian [BGM02]) where sorted access isimpossible for certain of
the sorted lists. In Section 6, we focus on situations where random accesses are either impossible or
expensive. In Section 6.1 we present NRA (No Random Access algorithm), and show its instance opti-
mality among algorithms that make no random accesses. Further, we give a theorem that says that the
optimality ratio of NRA isbest possible. In Section 6.2 we present CA (Combined Algorithm), whichis
aresult of combining TA and NRA in order to obtain an agorithm that, intuitively, minimizes random
accesses. In Section 6.3, we show instance optimality of CA, with an optimality ratio independent of
cr/cs, in anatural scenario. In Section 6.4, we show that the careful choice made by CA of which
random accesses to make is necessary for instance optimaltiy with an optimality ratio independent of
cr/cs. We also compare and contrast CA versus TA. In Section 7, we prove various lower bounds on
the optimality ratio, both for deterministic algorithms and for probabilistic algorithms that never make
amistake. We summarize our upper and lower boundsin Section 7.1. In Section 8 we discuss related
work. In Section 9, we give our conclusions, and state some open problems.

2 Modesof Accessto Data

Issues of efficient query evaluationin a middleware system are very different from those in atraditional
database system. This is because the middleware system receives answers to queries from various
subsystems, which can be accessed only in limited ways. What do we assume about the interface
between a middleware system and a subsystem? Let us consider QBIC® [NBE193] (“Query By Image
Content”) as a subsystem. QBIC can search for images by various visual characteristics such as color
and texture (and an experimental version can search also by shape). In response to a query, such as
Color="red’, the subsystem will output the graded set consisting of all objects, one by one, along with
their grades under the query, in sorted order based on grade, until the middleware system tells the
subsystem to halt. Then the middleware system could later tell the subsystem to resume outputting the
graded set where it |eft off. Alternatively, the middieware system could ask the subsystem for, say, the

SQBIC isatrademark of IBM Corporation.



top 10 objectsin sorted order, along with their grades, then request the next 10, etc. In both cases, this
corresponds to what we have referred to as “ sorted access’.

There is another way that we might expect the middleware system to interact with the subsystem.
The middleware system might ask the subsystem for the grade (with respect to a query) of any given
object. This corresponds to what we have referred to as “random access’. In fact, QBIC allows both
sorted and random access.

There are some situations where the middleware system is not allowed random access to some
subsystem. An example might occur when the middleware system is a text retrieval system, and the
subsystems are search engines. Thus, there does not seem to be away to ask a major search engine on
the web for itsinternal score on some document of our choice under a query.

Our measure of cost corresponds intuitively to the cost incurred by the middleware system in pro-
cessing information passed to it from a subsystem such as QBIC. Asbefore, if there are s sorted accesses
and r random accesses, then the middleware cost istaken to be scg + rcg, for some positive constants
cg and cg. Thefact that cg and cg may be different reflects the fact that the cost to a middleware system
of a sorted access and of arandom access may be different.

3 Fagin’sAlgorithm

In this section, we discuss FA (Fagin’'s Algorithm) [Fag99]. This algorithm is implemented in Garlic
[CHST95], an experimental IBM middleware system; see [WHRB99] for interesting details about the
implementation and performance in practice. Chaudhuri and Gravano [CG96] consider waysto simulate
FA by using “filter conditions’, which might say, for example, that the color score is at least 0.2. FA
works as follows.

1. Do sorted access in paralel to each of the m sorted lists L,. (By “in paralel”, we mean that we
access the top member of each of the listsunder sorted access, then we access the second member
of each of the lists, and so on.)® Wait until there are at least & “matches’, that is, wait until there
isaset H of at least & objects such that each of these objects has been seen in each of the m lists.

2. For each object R that has been seen, do random access to each of the lists L, to find the «th field
T; of R.

3. Compute the grade t(R) = t(z1, ..., z.,) for each object R that has been seen. Let Y be a set
containing the & objects that have been seen with the highest grades (ties are broken arbitrarily).
The output is then the graded set { (R, t(R)) | R€ Y}.7

Itisfairly easy to show [Fag99] that this algorithm is correct for monotone aggregation functions¢
(that is, that the algorithm successfully finds the top & answers). If there are N objects in the database,
and if the orderingsin the sorted lists are probabilistically independent, then the middleware cost of FA
isO(N(m=1)/mgl/m) with arbitrarily high probability [Fag99].

81t isnot actually important that the lists be accessed“in lockstep”. In practice, it may be convenientto allow the sorted lists
to be accessed at different rates, in batches, etc. Each of the algorithmsin this paper where there is“ sorted accessin parallel”
remain correct even when sorted accessis not in lockstep. Furthermore, all of our instance optimality results continueto hold
even when sorted accessis not in lockstep, as long as the rates of sorted access of the lists are within constant multiples of
each other.

"Graded setsare often presented in sorted order, sorted by grade.



An aggregation function ¢ is strict [Fag99] if ¢(z1, ..., 2x,) = 1 holds precisely when z; = 1 for
every <. Thus, an aggregation functionisstrict if it takes on the maximal value of 1 precisely when each
argument takes on this maximal value. We would certainly expect an aggregation function representing
the conjunction to be strict (see the discussionin [Fag99]). In fact, it is reasonable to think of strictness
as being akey characterizing feature of the conjunction.

Fagin showsthat his algorithm is optimal with high probability in the worst case if the aggregation
functionis strict (so that, intuitively, we are dealing with anotion of conjunction), and if the orderings
in the sorted lists are probabilistically independent. In fact, the access pattern of FA is obliviousto the
choice of aggregation function, and so for each fixed database, the middleware cost of FA is exactly the
same no matter what the aggregation function is. Thisistrue even for a constant aggregation function;
in this case, of course, there is a trivia agorithm that gives us the top & answers (any & objects will
do) with O(1) middleware cost. So FA is not optimal in any sense for some monotone aggregation
functionst. Asamore interesting example, when the aggregation function is max (which is not strict),
it is shown in [Fag99] that there is a simple algorithm that makes at most mk sorted accesses and no
random accesses that finds the top & answers. By contrast, as we shall see, the algorithm TA isinstance
optimal for every monotone aggregation function, under very weak assumptions.

Even in the cases where FA isoptimal, thisoptimality holds only in the worst case, with high proba-
bility. Thisleaves open the possibility that there are some algorithms that have much better middleware
cost than FA over certain databases. The algorithm TA, which we now discuss, is such an agorithm.

4 TheThresnhold Algorithm

We now present the threshold algorithm (TA).

1. Do sorted access in parallel to each of the m sorted lists ;. Asan object R is seen under sorted
access in some list, do random access to the other lists to find the grade z; of object R in every
list ;.2 Then compute the grade t(R) = t(z1, . . ., z,,) Of object R. If this grade is one of the &
highest we have seen, then remember object R and its grade t(R) (ties are broken arbitrarily, so
that only % objects and their grades need to be remembered at any time).

2. Foreachlist L, let z; bethe grade of the last object seen under sorted access. Define the threshold
valuer tobet(zy,...,z,,). Assoon asat least k objects have been seen whose grade is at least
equal to 7, then halt.

3. LetY beaset containing the & objectsthat have been seen with the highest grades. The output is
then the graded set {(R, ¢(R)) | R € Y }.

We now show that TA is correct for each monotone aggregation function¢.
Theorem 4.1 If the aggregation function ¢ is monotone, then TA correctly finds the top k& answers.

Proof: LetY beasin Part 3 of TA. We need only show that every member of Y has at least as high a
grade as every object z notin Y. By definition of Y, thisis the case for each object z that has been seen

81t may seem wasteful to do random accessto find a grade that was already determined earlier. Aswe discuss|ater, thisis
donein order to avoid unbounded buffers.



in running TA. So assume that z was not seen. Assume that the fieldsof z are 4, .. ., z,,. Therefore,
z; < z;, for every «. Hence, t(z) = t(z1,...,2m) < t(zy, ..., 2,,) = 7, Where the inequality follows
by monotonicity of ¢. But by definitionof Y, for every y inY wehavet(y) > 7. Therefore, for every y
inY wehavet(y) > 7 > t(z), asdesired. O

We now show that the stopping rule for TA always occurs at least as early as the stopping rule for
FA (that is, with no more sorted accesses than FA). In FA, if R is an object that has appeared under
sorted access in every list, then by monotonicity, the grade of R isat least equal to the threshold value.
Therefore, when there are at least k& objects, each of which has appeared under sorted access in every
list (the stopping rule for FA), there are at least k£ objects whose grade is at least equal to the threshold
value (the stopping rule for TA).

Thisimplies that for every database, the sorted access cost for TA is at most that of FA. This does
not imply that the middleware cost for TA isawaysat most that of FA, since TA may do more random
accesses than FA. However, since the middleware cost of TA is at most the sorted access cost times a
constant (independent of the database size), it does follow that the middleware cost of TA isat most a
constant timesthat of FA. Infact, we shall show that TA isinstance optimal, under natural assumptions.

We now consider the intuition behind TA. For simplicity, we discussfirst the case where k = 1, that
is, where the user istrying to determine the top answer. Assume that we are at a stage in the algorithm
where we have not yet seen any object whose (overal) gradeis at least as big as the threshold value .
The intuition is that at this point, we do not know the top answer, since the next object we see under
sorted access could have overall grade 7, and hence bigger than the grade of any object seen so far.
Furthermore, once we do see an object whose grade is at least 7, then it is safe to halt, as we see from
the proof of Theorem 4.1. Thus, intuitively, the stopping rule of TA says: “Halt as soon as you know
you have seen the top answer.” Similarly, for general k, the stopping rule of TA says, intuitively, “Halt
as soon as you know you have seen the top & answers.” So we could view TA as saying

Do sorted access (and the corresponding random access) until you know you have seen the top &
answers.

A little more generally, we can view TA as saying
Gather what information you need to allow you to know the top k& answers, and then halt.

These" programs’ can be viewed as being very high-level, “ knowledge—based programs’ [FHMV 97].
Infact, TA can beviewed asbeing “designed” by thinkingin terms of these knowledge-based programs.
Later, we shall give another scenario (situations where random accesses are forbidden) where we make
use of these same knowledge—based programs, but where the implementation is different. When we
consider the scenario where random accesses are expensive relative to sorted accesses, but are not for-
bidden, we need an additional design principle to decide how to gather the information, in order to
design an optimal algorithm.

The next simpletheorem gives a useful property of TA, that further distinguishesTA from FA.
Theorem 4.2 TA requires only bounded buffers, whose sizeis independent of the size of the database.

Proof: Other than alittlebit of bookkeeping, al that TA must remember isthe current top & objectsand
their grades, and (pointersto) the last objects seen in sorted order in each list. O
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By contrast, FA requires buffers that grow arbitrarily large as the database grows, since FA must
remember every object it has seen in sorted order in every list, in order to check for matching objectsin
the variouslists.

Thereisapriceto pay for the bounded buffers. Thus, for every time an object isfound under sorted
access, TA may do m — 1 random accesses (where m is the number of lists), to find the grade of the
object in the other lists. Thisisin spite of the fact that this object may have already been seen in these
other lists.

4.1 Instance Optimality of the Threshold Algorithm

In this section, we investigate the instance optimality of TA. We begin with an intuitive argument that

TA isinstance optimal. If A isan agorithm that stops sooner than TA on some database, before A
finds k& objects whose grade is at least equal to the threshold value 7, then .4 must make a mistake on
some database, since the next object in each list might have grade z, in each list ¢, and hence have grade
t(zq,...,2,) = 7. Thisnew object, which .4 has not even seen, has a higher grade than some object in
thetop % list that was output by .A, and so A erred by stopping too soon. We would liketo convert this
intuitive argument into a proof that for every monotone aggregation function, TA is instance optimal

over al agorithmsthat correctly find the top & answers, over the class of all databases. However, aswe
shall see, the situationisactually somewhat delicate. We first make a distinction between algorithmsthat
“make wild guesses’ (that is, perform random access on objects not previously encountered by sorted
access) and those that do not. (Neither FA nor TA make wild guesses, nor does any “natural” algorithm
in our context.) Our first theorem (Theorem 4.3) saysthat for every monotone aggregation function, TA
isinstance optimal over all agorithmsthat correctly find the top & answers and that do not make wild
guesses, over the class of all databases. We then show that this distinction (wild guesses vs. no wild

guesses) isessential: if algorithmsthat make wild guesses are alowed in the class A of algorithms that
an instance optimal algorithm must compete against, then no algorithmisinstance optimal (Example 4.5
and Theorem 4.6). The heart of this example (and the corresponding theorem) is the fact that there may
be multiple objects with the same grade in some list. Indeed, once we restrict our attention to databases
where no two objects have the same value in the same list, and make a slight, natural additional restric-
tion on the aggregation function beyond monotonicity, then TA isinstance optimal over all algorithms
that correctly find the top & answers (Theorem 4.7).

In Section 4.3 we consider instance optimality in the situation where we relax the problem of finding
the top &£ objectsinto finding approximately the top k.

We now give our first positive result on instance optimality of TA. We say that an algorithm makes
wild guessesif it does random access to find the grade of some object R in somelist beforethe algorithm
has seen R under sorted access. That is, an algorithm makes wild guessesif thefirst grade that it obtains
for some object R is under random access. We would not normally implement algorithms that make
wild guesses. In fact, there are some contexts where it would not even be possibleto make wild guesses
(such as a database context where the algorithm could not know the name of an object it has not already
seen). However, making alucky wild guess can help, as we show later (Example 4.5).

We now show instance optimality of TA among algorithmsthat do not make wild guesses. In this
theorem, when we take D to be the class of all databases, we readly mean that D is the class of al
databases that involve sorted lists corresponding to the arguments of the aggregation function¢. We are
taking k£ (wherewe aretrying to find the top k£ answers) and the aggregation function ¢ to befixed. Since



we are taking t to be fixed, we are thereby taking the number m of arguments of ¢ (that is, the number
of sorted lists) to be fixed. In Section 4.2, we discuss the assumptionsthat £ and m are constant.

Theorem 4.3 Assume that the aggregation function ¢ is monotone. Let D be the class of all databases.
Let A be the class of all algorithmsthat correctly find the top & answers for ¢ for every database and
that do not make wild guesses. Then TA isinstance optimal over A and D.

Proof: Assumethat A € A, and that algorithm A is run over database D. Assume that agorithm
A halts at depth d (that is, if d; is the number of objects seen under sorted access to list ¢, for 1 <
t < m, then d = max, d;). Assume that .4 sees a distinct objects (some possibly multiple times). In
particular, ¢ > d. Since .A makes no wild guesses, and sees a distinct objects, it must make at least o
sorted accesses, and so its middleware cost is at least acg. We shall show that TA halts on D by depth
a + k. Hence, the middleware cost of TA isat most (a + k)mcs + (a + k)m(m — 1)cg, which is
amcs + am(m — 1)cg plusan additive constant of kmcg + km(m — 1)cg. So the optimality ratio of
TA isat most “’”°5+“’”(’” Uer — 4 m(m — 1)er/cgs. (Later, we shall show that if the aggregation
functionis strict, then th|$|s precisely the optimality ratio of TA, and thisis best possible.)

Notethat for each choice of d’, the algorithm TA sees at least d’ objects by depth d’ (thisis because
by depth d’ it has made md’ sorted accesses, and each object is accessed at most m times under sorted
access). Let Y be the output set of .A (consisting of the top & objects). If there are at most & objects
that .A does not see, then TA haltsby depth a + & (after having seen every object), and we are done. So
assumethat there are at least k 4 1 objectsthat .A does not see. SinceY isof size k, thereis some object
V that .A doesnot seeand thatisnotinY.

Let 74 be the threshold value when algorithm A4 halts. This means that if z, is the grade of the last
object seen under sorted accessto list ¢ for algorithm A4, for 1 < ¢ < m, then74 = t(z4,...,2,,). (If
list 2 isnot accessed under sorted access, wetake z; = 1.) Let uscall an object R bigif t(R) > 74, and
otherwise call object R small.

We now show that every member R of Y ishig. Define a database D’ to be just like D, except that
object V' hasgrade z, inthesth list, for 1 < ¢ < m. Put V inlist< below al other objects with grade
z; inlistz (for 1 < ¢ < m). Algorithm A performs exactly the same, and in particular gives the same
output, for databases D and D’. Therefore, algorithm A has R, but not V, in its output for database D’.
Sincethe grade of V in D’ is 74, it follows by correctness of A that R isbig, as desired.

There are now two cases, depending on whether or not algorithm .4 sees every member of its output
sety.®

Case 1: Algorithm A sees every member of Y. Then by depth d, TA will see every member of Y.
Since, as we showed, each member of Y isbig, it followsthat TA haltsby depthd < ¢ < a + &, as
desired.

Case 2: Algorithm .A does not see some member R of Y. We now show that every object R’ that
is not seen by .A must be big. Define a database D’ that is just like D on every object seen by A. Let
the grade of V inlist ¢ be z;, and put V in list ¢ below all other objects with grade z, in list ¢ (for
1 < 17 < m). Therefore, the grade of V' in database D’ is 4. Since .A cannot distinguish between D
and D', it has the same output on D and D’. Since .A does not see R and does not see R/, it has no

9For the sake of generality, we are allowing the possibility that algorithm .4 can output an object that it has not seen. We
discussthisissue morein Section 4.2.
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information to distinguish between R and R'. Therefore, it must have been able to give R’ in its output
without making a mistake. But if R’ isin the output and not V', then by correctness of A, it followsthat
R'ishig. So R’ ishig, asdesired.

Since A sees ¢ objects, and since TA sees at least a + & objects by depth a + %, it followsthat by
depth a + k&, TA seesat least k& objects not seen by .A. We have shown that every object that is not seen
by A isbig. Therefore, by depth a + %, TA sees at least & big objects. So TA halts by depth a + &, as
desired. O

In the proof of Theorem 4.3, we showed that under the assumptions of Theorem 4.3 (no wild
guesses), the optimality ratio of TA is at most m + m(m — 1)cg/cg. The next theorem says that if
the aggregation function is strict, then the optimality ratio is precisely this value, and thisis best pos-
sible. Recall that an aggregation function ¢ is strict if t(z1, ..., z,) = 1 holds precisely whenz; = 1
for every 7. Intuitively, strictness means that the aggregation function is representing some notion of
conjunction.

Theorem 4.4: Let ¢ be an arbitrary monotone, strict aggregation function with m arguments. Let D be
the classof all databases. Let A be the class of all algorithmsthat correctly find the top & answersfor ¢
for every database and that do not make wild guesses. Then TA isinstance optimal over A and D, with
optimality ratiom + m(m — 1)cg/cs. No deterministic algorithmhas a lower optimality ratio.

Proof: In the proof of Theorem 4.3, it is shown that TA has an optimality ratio of at most m + m(m —
1)cr/cs for an arbitrary monotone aggregation function, The lower bound follows from Theorem 7.1.

g

We cannot drop the assumption of strictness in Theorem 4.4. For example, let the aggregation
function be max (which is not strict). It is easy to see that TA halts after £ rounds of sorted access, and
its optimality ratio is m (which, we might add, is best possible for max). 10

What if we were to consider only the sorted access cost? This correspondsto taking cg = 0. Then
we see from Theorem 4.4 that the optimality ratio of TA ism. Furthermore, it follows easily from the
proof of Theorem 7.1 that if the aggregation function is strict, and if cg = 0, then thisis best possible:
no deterministic algorithm has alower optimality ratio than m.*

What if we were to consider only the random access cost? This corresponds to taking cg = 0. In
thiscase, TA isfar from instance optimal. The naive algorithm, which does sorted accessto every object
in every list, does no random accesses, and so has a sorted access cost of 0.

We now show that making a lucky wild guess can help.

Example 4.5: Assume that there are 2n + 1 objects, which we will call simply 1,2,...,2n + 1, and
therearetwollists L; and L,. Assumethatinlist L1, the objectsareintheorder 1,2, ..., 2n+ 1, where
thetopn+1 objects1, 2,...,n+1 dl havegrade 1, and theremaining » objectsn+2,n+3,...,2n+1

ONote that the instance optimality of TA, as given by Theorem 4.3, holds whether or not the aggregation function is strict.
For example, the instance optimality of TA as given by Theorem 4.3 holds even when the aggregation function ismax. Thisis
in contrast to the situation with FA, where high-probability worst-case optimality fails when the aggregation function is max.
Theorem 4.4 makes use of the assumption of strictness only in order to show that the optimality ratio of TA is then precisely
m + m(m — 1)cr/cs, and that thisis best possible.

MWe are assuming in this paper that cg and cs are both strictly positive. However, Theorem 4.4 and the proof of Theo-
rem 7.1 would still hold if we wereto allow cg to beO.
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al have grade 0. Assumethatinlist Lo, the objectsarein thereverse order 2n+ 1, 2n, ..., 1, wherethe
bottom » objects 1, ..., n al have grade O, and theremaining n + 1 objectsn + 1,n+ 2,...,2n 4+ 1
al have grade 1. Assume that the aggregation function is min, and that we are interested in finding the
top answer (i.e., £ = 1). Itisclear that the top answer isobject » + 1 with overall grade 1 (every object
except object n + 1 hasoverall grade 0).

An algorithm that makes a wild guess and asks for the grade of object » + 1 in both lists would
determine the correct answer and be able to halt safely after two random accesses and no sorted ac-
cesses.?> However, let A be any algorithm (such as TA) that does not make wild guesses. Since the
winning object » + 1 isin the middle of both sorted lists, it follows that at least » + 1 sorted accesses
would be required before algorithm .A would even see the winning object. O

What if we were to enlarge the class A of algorithmsto allow queries of the form “Which object has
the ¢th largest grade in list 7, and what isitsgradein list ;7° We then see from Example 4.5, where we
replace the wild guess by the query that asks for the object with the (n + 1)st largest grade in each list,
that TA is not instance optimal. Effectively, these new queriesare “just as bad” aswild guesses.

Example 4.5 shows that TA is not instance optimal over the class A of all agorithmsthat find the
top answer for min (with two arguments) and the class D of all databases. The next theorem says that
under these circumstances, not only is TA not instance optimal, but neither is any agorithm.

Theorem 4.6 Let D betheclassof all databases. Let A be the class of all algorithmsthat correctly find
the top answer for min (with two arguments) for every database. There is no deterministic algorithm
(or even praobabilistic algorithmthat never makes a mistake) that isinstance optimal over A and D.

Proof: Let us modify Example 4.5 to obtain a family of databases, each with two sorted lists. Thefirst
list has the objects 1,2, ..., 2n + 1 in some order, with the top n + 1 objects having grade 1, and the
remaining » objects having grade 0. The second list has the objects in the reverse order, again with
the top n + 1 objects having grade 1, and the remaining » objects having grade 0. As before, there
is a unique object with overall grade 1 (namely, the object in the middle of both orderings), and every
remaining object has overal grade 0.

Let A bean arbitrary deterministicalgorithmin A. Consider the following distribution on databases:
each member is as above, and the ordering of the first list is chosen uniformly at random (with the
ordering of the second list the reverse of the ordering of thefirst list). It is easy to see that the expected
number of accesses (sorted and random together) of algorithm .4 under thisdistributionin order to even
seethewinning objectisat least n+ 1. Sincethere must be some database where the number of accesses
is at least equal to the expected number of accesses, the number of accesses on this database is at |east
n + 1. However, asin Example 4.5, there is an algorithm that makes only 2 random accesses and no
sorted accesses. Therefore, the optimality ratio can be arbitrarily large. The theorem follows (in the
deterministic case).

For probabilistic algorithms that never make a mistake, we appeal to Yao's Minimax Principle
[Yao77] (see also [MR95, Section 2.2], and see [FMRW85, Lemma 4] for a simple proof), which says

2The algorithm could halt safely, since it “knows” that it has found an object with the maximal possible grade of 1 (this
grade is maximal, since we are assuming that all gradeslie between 0 and 1). Even if we did not assumethat all gradeslie
between 0 and 1, one additional sorted accesswould provide the information that each overall grade in the databaseis at most
1
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that the expected cost of the optimal deterministic algorithm for an arbitrary input distributionisalower
bound on the expected cost of the optimal probabilistic algorithm that never makes amistake. [

Although, as we noted earlier, algorithms that make wild guesses would not normally be imple-
mented in practice, it is still interesting to consider them. This is because of our interpretation of
instance optimality of an agorithm A as saying that its cost is essentially the same as the cost of the
shortest proof for that database that these are redlly the top & answers. If we consider algorithms that
allow wild guesses, then we are allowing a larger class of proofs. Thus, in Example 4.5, the fact that
object n + 1 has (overall) grade 1 isaproof that it isthe top answer.

We say that an aggregation function ¢ is strictly monotone® if ¢(z,...,z,) < t(z},...,z!,)
whenever z; < z! for every 7. Although average and min are strictly monotone, there are aggregation
functions suggested in the literature for representing conjunction and digunction that are monotone
but not strictly monotone (see [Fag99] and [Zim96] for examples). We say that a database D satisfies
the distinctness property if for each 7, no two objectsin D have the same grade inlist L ;, that is, if the
gradesinlist L; are distinct. We now show that these conditionsguarantee optimality of TA even among

algorithmsthat make wild guesses.

Theorem 4.7: Assume that the aggregation function ¢ is strictly monotone. Let D be the class of all
databases that satisfy the distinctness property. Let A be the class of all algorithmsthat correctly find
the top & answersfor ¢ for every databasein D. Then TA isinstance optimal over A and D.

Proof: Assumethat A € A, and that algorithm A isrun over database D € D. Assume that A sees
a distinct objects (some possibly multiple times). We shall show that TA halts on D by depth a + &.
Hence, TA makesat most m?(a+ k) accesses, whichism?a plusan additive constant of m2k. It follows
easily that the optimality ratio of TA isat most cm?, where ¢ = max {cg/cs, cs/cr}-

If there are at most & objects that .A does not see, then TA halts by depth a + & (after having seen
every object), and we are done. So assumethat there are at least k£ + 1 objectsthat .4 does not see. Since
Y isof size k, thereis some object V' that .A does not see and that isnot in Y. We shall show that TA
haltson D by deptha + 1.

Let 7 be the threshold value of TA at depth a + 1. Thus, if z; isthe grade of the (a + 1)th highest
object inlist ¢, then 7 = t(zy,...,2,,). Let uscal an object R bigif t(R) > 7, and otherwise call
object R small. (Note that these definitionsof “big” and “small” are different from thosein the proof of
Theorem 4.3.)

We now show that every member R of Y isbig. Let z; be somegradeinthetopa + 1 gradesin list
1 that is not the grade in list  of any object seen by .A. Thereis such agrade, since al gradesin list ¢
are distinct, and .A sees at most a objects. Let D’ agree with D on all objects seen by A, and let object
V havegrade z. inthesthlistof D/, for 1 < 1 < m. Hence, thegradeof V in D' ist(z},...,z,,) > 7.
Since V was unseen, and since V isassigned gradesin each listin D’ below the level that .A reached by
sorted access, it follows that algorithm A performs exactly the same, and in particular gives the same
output, for databases D and D’. Therefore, agorithm A has R, but not V, in its output for database D’.

By correctness of 4, it followsthat R isbig, asdesired.

We claim that every member R of Y is one of thetop a + 1 members of somelist: (and soisseen
by TA by depth e + 1). Assume by way of contradiction that R is not one of the top ¢ + 1 members

3This should not be confused with the aggregation function being both strict and monotone. We apologize for the clashin
terminology, which existsfor historical reasons.
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of listz, for 1 < ¢ < m. By our assumptionsthat the aggregation function ¢ is strictly monotone. and
that D satisfiesthe distinctnessproperty, it followseasily that R issmall. We already showed that every
member of Y isbig. This contradiction proves the claim. It follows that TA halts by depth ¢ + 1, as
desired. O

In the proof of Theorem 4.7, we showed that under the assumptions of Theorem 4.7 (strict mono-
tonicity and the distinctnessproperty) the optimality ratio of TA isat most cm 2, wherec = max {cg/cg, cs/cr}.
In Theorem 7.2, we give an aggregation function that is strictly monotone such that no deterministic al-
gorithm can have an optimality ratio of less than ’”T‘22—1; So in our case of greatest interest, where
cr > cg, thereisagap of around a factor of 2m in the upper and lower bounds.

The proofs of Theorems 4.3 and 4.7 have several nice properties:

e The proofs would still go through if we were in a scenario where, whenever a random access of
object R inlist s takes place, we learn not only the grade of R inlist ¢, but also the relative rank.
Thus, TA is instance optimal even when we alow A to include also agorithms that learn and
make use of such relative rank information.

e Aswe shall see, we can prove the instance optimality among approximation algorithms of an
approximation version of TA, under the assumptions of Theorem 4.3, with only a small change to
the proof (such a theorem does not hold under the assumptions of Theorem 4.7).

4.2 Treating k and m as Constants

In Theorems 4.3 and 4.7 about the instance optimality of TA, we are treating & (where we are trying
to find the top k& answers) and m (the number of sorted lists) as constants. We now discuss these
assumptions.

We begin first with the assumption that & is constant. As in the proofs of Theorems 4.3 and 4.7,
let a be the number of accesses by an algorithm A € A. If ¢ > k, then there is no need to treat & as
aconstant. Thus, if we were to restrict the class A of algorithms to contain only algorithms that make
at least & accesses to find the top k& answers, then there would be no need to assume that & is constant.
How can it arise that an algorithm .A can find the top & answers without making at least & accesses,
and in particular without accessing at least k& objects? It must then happen that either there are at most
k objectsin the database, or else every object R that .A has not seen has the same overall grade t(R).
The latter will occur, for example, if ¢ isa constant function. Even under these circumstances, it is still
not reasonable in some contexts (such as certain database contexts) to allow an algorithm A to output
an object as a member of the top & objects without ever having seen it: how would the algorithm even
know the name of the object? Thisissimilar to an issue we raised earlier about wild guesses.

What about the assumption that m is constant? As we noted earlier, thisis certainly a reasonable
assumption, since m is the number of arguments of the aggregation function, which we are of course
taking to be fixed. In the case of the assumptions of Theorem 4.3 (no wild guesses), Theorem 4.4 tells
usthat at least for strict aggregation functions, this dependence on m isinevitable. Similarly, in the case
of the assumptionsof Theorem 4.7 (strict monotonicity and the distinctnessproperty), Theorem 7.2 tells
usthat at least for certain aggregation functions, this dependence on m isinevitable.
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4.3 Turning TA intoan Approximation Algorithm, and Allowing Early Stopping

TA can easily be modified to be an approximation algorithm. It can then be used in situationswhere we
care only about the approximately top & answers. Thus, let § > 1 be given. Define a #-approximation
to the top k& answers (for ¢ over database D) to be a collection of k£ objects (and their grades) such that
for each y among these k objects and each z not among these & objects, 8¢(y) > t(z). We can modify
TA to find a #-approximation to the top & answers by modifying the stopping rule in Part 2 to say “As
soon as at least k objects have been seen whose grade is at least equal to 7/6, then halt.” Let uscall this
approximation algorithm TA.

Theorem 4.8 Assumethat # > 1 and that the aggregation function ¢ is monotone. Then TAg4 correctly
finds a 8-approximation to the top & answersfor ¢.

Proof: Thisfollowsfrom a straightforward modification of the proof of Theorem 4.1. O
The next theorem says that if no wild guesses are allowed, then TA 4 isinstance optimal .

Theorem 4.9 Assumethat # > 1 and that the aggregationfunction¢ is monotone. Let D be the class of
all databases. Let A be the class of all algorithmsthat find a §-approximation to the top k& answers for
t for every database and that do not make wild guesses. Then TA4 isinstance optimal over A and D.

Proof: The proof of Theorem 4.3 carries over verbatim provided we modify the definition of an object
R being “big” to bethat 8¢(R) > 7.4. 0O

Theorem 4.9 shows that the analog of Theorem 4.3 holds for TAy. The next example, which is
a modification of Example 4.5, shows that the analog of Theorem 4.7 does not hold for TAg. One
interpretation of theseresultsisthat Theorem 4.3 is sufficiently robust that it can survivethe perturbation
of allowing approximations, whereas Theorem 4.7 is not.

Example 4.10 Assumethat 6 > 1, that thereare 2n-+1 objects, whichwewill call smply 1,2, ..., 2n+
1, and that therearetwo lists L.; and L. Assumethat inlist L, the grades are assigned so that al grades
are different, the ordering of the objectsby gradeis1,2,...,2n+1, object n+ 1 hasthegrade 1/6, and
object n 4 2 hasthe grade 1/(26%). Assumethat inlist L, the grades are assigned so that all grades are
different, the ordering of the objectsby gradeis2n + 1,2n, ..., 1 (the reverse of the ordering in L1),
object n + 1 hasthe grade 1/6, and object n + 2 has the grade 1/(26?). Assume that the aggregation
functionismin, andthat & = 1 (sothat we areinterested in finding a #-approximation to the top answer).
The (overall) grade of each object other than object n + 1 isat most o = 1/(26?). Since o = 1/(26),
which islessthan the grade 1/6 of object n + 1, it followsthat the unique object that can be returned by
an algorithm such as TA4 that correctly finds a §-approximation to the top answer isthe object n + 1.

An algorithm that makes a wild guess and asks for the grade of object » + 1 in both lists would
determinethe correct answer and be ableto halt safely after two random accesses and no sorted accesses.
The algorithm could halt safely, since it “knows’ that it has found an object R such that 6t(R) = 1,
and so #t(R) is at least as big as every possible grade. However, under sorted access for list L1, TAg
would see the objectsintheorder 1,2, ...,2n + 1, and under sorted access for list Lo, TAg would see
the objectsin the reverse order. Since the winning object » + 1 isin the middle of both sorted lists, it
follows that at least n + 1 sorted accesses would be required before TA 4 would even see the winning
object. O
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Just aswe converted Example 4.5 into Theorem 4.6, we can convert Example 4.10 into the following
theorem.

Theorem 4.11: Assumethat § > 1. Let D be the class of all databases that satisfy the distinctness
property. Let A be the class of all algorithmsthat find a #-approximation to the top answer for min for
every database in D. There is no deterministic algorithm (or even probabilistic algorithm that never
makes a mistake) that isinstance optimal over A and D.

Early stopping of TA: It is straightforward to modify TA into an interactive process where at any
time the system can show the user the current top % list along with a guarantee about the degree of
approximation to the correct answer. The user can then decide whether he would like to stop the process
at that point. Thus, let 5 be the grade of the kth (bottom) object in the current top & lit, let + be the
current threshold value, and let § = /. If the algorithm is stopped early, we have 6 > 1. Itiseasy to
see that similarly to the situation of Theorem 4.8, the current top & list is then a #-approximation to the
top & answers. Thus, the user can be given the current top % list and the number 6, and be told that heis
being given a #-approximation to the top & answers.

5 Restricting Sorted Access

Bruno, Gravano, and Marian [BGMO02] discuss a scenario where it is not possible to access certain of
the lists under sorted access. They give a nice example where the user wants to get information about
restaurants. The user has an aggregation function that gives a score to each restaurant based on how good
itis, how inexpensiveit is, and how closeit is. In thisexample, the Zagat-Review web site givesratings
of restaurants, the NY T-Review web site gives prices, and the MapQuest web site gives distances. Only
the Zagat-Review web site can be accessed under sorted access (with the best restaurants at the top of
thelist).

Let Z be the set of indices< of those lists L ; that can be accessed under sorted access. We assume
that Z isnonempty, that is, that at least one of the lists can be accessed under sorted access. We take m/
to be the cardinality | Z| of Z (and as before, take m to be the total number of sorted lists). Define TA z
to be the following natural modification of TA, that dealswith the restriction on sorted access.

1. Do sorted access in parallel to each of the m/ sorted lists L; with7 € Z. Asan object R isseen
under sorted access in some list, do random access to the other liststo find the grade z; of object
R in every list L,. Then compute the grade ¢(R) = t(z1, ..., z) Of object R. If thisgrade is
one of the & highest we have seen, then remember object R and its grade ¢(R) (ties are broken
arbitrarily, so that only % objects and their grades need to be remembered at any time).

2. For each list L, with: € Z, let 2, be the grade of the last object seen under sorted access. For
esch list L; withs ¢ Z, let z; = 1. Define thethreshold value r to be ¢(z4, . . ., z,, ). ASsoon as
at least k objects have been seen whose grade is at least equal to 7, then halt. 14

14Aswe shall seein Example 5.3, even though there are at least k objects, it is possible that after seeing the grade of every
object in every list, and thus having done sorted accessto every object in every list L; with: € Z, there are not at least &
objectswith agradethat is at least equal to thefinal threshold value =. In this situation, we say that TA z halts after it has seen
the grade of every object in every list. This situation cannot happenwith TA.
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3. LetY beaset containing the & objectsthat have been seen with the highest grades. The output is
then the graded set {(R, ¢(R)) | R € Y }.

In the case where | Z| = 1, agorithm TAz is essentialy the same as the algorithm TA-Adapt in
[BGMO2].

In footnote 6, we noted that each of the algorithms in this paper where there is “ sorted access in
parallel” remain correct even when sorted accessis not in lockstep. Algorithm TA 7 provides an extreme
example, where only some of the sorted lists are accessed under sorted access, and the remaining sorted
lists are accessed under random access only.

We now show that Theorem 4.3, which says that TA is instance optimal when no wild guesses
are allowed, and Theorem 4.4, which says that the optimality ratio of TA when no wild guesses are
allowed is best possible, both generalize to hold for TA z. What about our other theorem about instance
optimality of TA (Theorem 4.7), which saysthat if the aggregation function ¢ is strictly monotone, and if
the class of legal databases satisfiesthe distinctness property, then TA isinstance optimal ? Interestingly
enough, we shall show (Example 5.3) that thislatter theorem does not generalizeto TA 5.

Theorem 5.1 Assume that the aggregation function ¢ is monotone. Let D be the class of all databases.
Let A be the class of all algorithmsthat correctly find the top & answers for ¢ for every database and
that do not make wild guesses, where the only liststhat may be accessed under sorted access are those
lists L, with: € Z. Then TAz isinstance optimal over A and D.

Proof: The proof is essentially the same as the proof of Theorem 4.3, except for the bookkeeping.
Assumethat A € A, and that algorithm A is run over database D. Assume that algorithm A halts at
depth d (that is, if d; isthe number of objects seen under sorted accessto list ¢, for 1 < ¢ < m, then
d = max; d;). Assumethat A sees a distinct objects (some possibly multipletimes). Since .A makes no
wild guesses, and sees ¢ distinct objects, it must make at least o sorted accesses, and so its middleware
costisat least acg. By the same proof as that of Theorem 4.3, it followsthat TA z halts on D by depth
a + k. Hence, the middleware cost of TAz isat most (a + k)m'cs + (a + k)m'(m — 1)cg, whichis
am’cg + am/(m — 1)cg plusan additive constant of km'cg 4+ km'(m — 1)cg. So the optimality ratio
of TAz isat most &mestam (m=ller — i o /(1 — 1)cg/cg. O

acg

The next theorem is analogousto Theorem 4.4.

Theorem 5.2 Let ¢ be an arbitrary monotone, strict aggregation function with m arguments. Assume
that | Z| = m'. Let D bethe class of all databases. Let A be the class of all algorithmsthat correctly
find the top & answersfor ¢ for every database, and that do not make wild guesses, where the only lists
that may be accessed under sorted access are those lists L; with : € Z. Then TAz isinstance optimal
over A and D, with optimality ratio m’ + m/(m — 1)cg/cs. No deterministic algorithm has a lower
optimality ratio.

Proof: In the proof of Theorem 5.1, it is shown that TA z has an optimality ratio of at most m' +
m!/(m — 1)cgr/cg for an arbitrary monotone aggregation function, The lower bound follows from a
simple variation of the proof of Theorem 7.1, wherewetake ¢y = (dm' — 1)cg + (dm' — 1)(m — 1)cp.
The simple details are | ft to the reader. O
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Theorem 4.7 says that if the aggregation function ¢ is strictly monotone, and if the class of legal
databases satisfies the distinctness property, then TA isinstance optimal. We now show by example that
the analogousresult failsfor TA z. In fact, we shall show that TA z need not be instance optimal even if
we assume not only that aggregation function ¢ is strictly monotone, and that the class of legal databases
satisfiesthe distinctnessproperty, but in addition we assume that the aggregation function ¢ isstrict, and
that no wild guesses are allowed.

Example 5.3 Assume that there are only three sorted lists L, Ly, and L3, and that Z = {1} (so that
only L; may be accessed under sorted access). Let ¢ be the aggregation function where t(z,y, z) =
min {z,y} if z = 1, and t(z,y,2) = (min{z,y,z})/2if z # 1. Itiseasy to seethat ¢ is strictly
monotone and strict. Assume that we are interested in finding the top answer (i.e., k£ = 1).

Assume that object R hasgrade 1 inlists L; and L3, and grade 0.6 in list L,. Hence t(R) = 0.6.
Note that for each object R’ other than R, necessarily the grade of R’ in Lz isnot 1 (by the distinctness
property), and so t(R') < 0.5. Therefore, R isthe unique top object.

Assume that the minimum grade in list L, is 0.7. It followsthat the threshold value is never less
than 0.7. Therefore, TAz does not halt until it has seen the grade of every object in every list. However,
let A be an algorithm that does sorted access to the top object R in list L ; and random accessto R in
lists L, and L3, and then haltsand announcesthat R isthe top object. Algorithm .4 doesonly one sorted
access and two random accesses on this database. It is safe for algorithm A to halt, since it “knows”
that object R has grade 0.7 and that no other object can have grade bigger than 0.5. Since there can be
an arbitrarily large number of objects, it followsthat TA 7z is not instance optimal. Hence, the analogue
of Theorem 4.7 failsfor TA .

It isinstructive to understand “what goeswrong” in this example and why this same problem does
not also cause Theorems 4.7 or 5.1 to fail. Intuitively, what goes wrong in this example is that the
threshold value is too conservative an estimate as an upper bound on the grade of unseen objects. By
contrast, in the case of Theorem 5.1, some unseen object may have an overall grade equal to thethreshold
value, so the threshold valueis not too conservative an estimate. In the case of Theorem 4.7, an analysis
of the proof shows that we consider the threshold value at depth a + 1 rather than depth a. Intuitively,
although the threshold value may be too conservative an estimate, the threshold value one extra level
downisnot. O

6 Minimizing Random Access

Thus far in this paper, we have not been especially concerned about the number of random accesses.
In our algorithms we have discussed so far (namely, FA and TA), for every sorted access, uptom — 1
random accesses take place. Recall that if s isthe number of sorted accesses, and r is the number of
random accesses, then the middleware cost is scg + rcg, for some positive constants cg and ¢g. Our
notion of optimality ignores constant factors like m and ¢ g (they are simply multiplicative factors in
the optimality ratio). Hence, there has been no motivation so far to concern ourself with the number of
random accesses.

There are, however, some scenarioswhere we must pay attention to the number of random accesses.
The first scenario is where random accesses are impossible (which correspondsto cg = o0). Aswe
discussed in Section 2, an example of this first scenario arises when the middieware system is a text

18



retrieval system, and the sorted lists correspond to the results of search engines. Another scenario is
where random accesses are not impossible, but simply expensive relative to sorted access. An example
of thissecond scenario arises when the costs correspond to disk access (sequential versus random). Then
we would like the optimality ratio to be independent of ¢ g/cs. That is, if instead of treating cg and cg
as constants, we alow them to vary, we would till like the optimality ratio to be bounded.

In this section we describe algorithms that do not use random access frivolously. We give two
algorithms. One uses no random accesses at al, and henceis called NRA (“No Random Access’). The
second algorithm takes into account the cost of a random access. It isa combination of NRA and TA,
and so wecall it CA (“Combined Algorithm”).

Both agorithms access the information in a natural way, and, in the spirit of the knowledge-based
programs of Section 4, halt when they know that no improvement can take place. In general, at each
point in an execution of these algorithms where a number of sorted and random accesses have taken
place, for each object R thereis a subset S(R) = {41,2,...,%} C {1,...,m} of the fields of R
where the algorithm has determined the values z;, , «;,, . . ., z;, of thesefields. Given thisinformation,
we define functions of this information that are lower and upper bounds on the value ¢(R) can obtain.
The algorithm proceeds until there are no more candidates whose current upper bound is better than the
current kth largest lower bound.

Lower Bound: Given an object R and subset S(R) = {i1,%2,...,%} C {1,...,m} of known
fields of R, with values z;,, z,,, ..., z;, for these known fields, we define Ws(R) (or W(R) if the
subset S = S(R) isclear) as the minimum (or worst) value the aggregation function ¢ can attain for
object R. When ¢ is monotone, this minimum value is obtained by substituting for each missing field
v € {1,...,m}\S the value 0, and applying ¢ to the result. For example, if S = {1,...,£}, then
Ws(R) = t(z1,22,...,2¢0,...,0). Thefollowing property isimmediate from the definition:

Proposition 6.1: If S isthe set of known fields of object R, thent(R) > Ws(R).

In other words, W (R) represents a lower bound on ¢(R). Isit the best possible? Yes, unlesswe have
additional information, such as that the value 0 does not appear in the lists. In general, as an algorithm
progresses and we learn more fields of an object R, its W value becomes larger (or at least not smaller).
For some aggregation functions ¢ the value W ( R) yields no knowledge until S includes all fields: for
instance if ¢ is min, then W(R) is 0 until al values are discovered. For other functions it is more
meaningful. For instance, when ¢ is the median of three fields, then as soon as two of them are known
W (R) isat least the smaller of the two.

Upper Bound: The best value an object can attain depends on other information we have. We
will use only the bottom values in each field, defined asin TA: z; isthe last (smallest) value obtained
via sorted access in list L;. Given an object R and subset S(R) = {i1,2,...,%} C {1,...,m} of
known fields of R, with values z;, , z,,, .. ., z;, for these known fields, we define Bs(R) (or B(R) if
the subset S is clear) as the maximum (or best) value the aggregation function ¢ can attain for object
R. When t is monotone, this maximum value is obtained by substituting for each missing field « €
{1,...,m}\S thevauez,, and applying ¢ to theresult. For example, if S = {1,...,4},then Bg(R) =
t(z1, 2, ..., %, Ty, - - -, 2,y ). Thefollowing property isimmediate from the definition:

Proposition 6.2 If S isthe set of known fields of object R, thent(R) < Bg(R).

In other words, B(R) represents an upper bound on the value ¢(R) (or the best value t(R) can
be), given the information we have so far. Isit the best upper bound? If the lists may each contain

19



equal values (which in general we assume they can), then given the information we have it is possible
that t(R) = Bg(R). If the distinctness property holds (equalities are not allowed in alist), then for
continuous aggregation functionst it is the case that B(R) is the best upper bound on the value ¢ can
have on R. In general, as an algorithm progresses and we learn more fields of an object R and the
bottom values z; decrease, B(R) can only decrease (or remain the same).

An important special caseis an object R that has not been encountered at al. Inthiscase B(R) =
t(zq, 29, ..., Z,,). Notethat thisisthe same as the threshold value in TA.

6.1 No Random Access Algorithm—NRA

As we have discussed, there are situations where random accesses are forbidden. We now consider
algorithms that make no random accesses. Since random accesses are forbidden, in this section we
change our criterion for the desired output. In earlier sections, we demanded that the output be the “top
k answers’, which consists of the top & objects, along with their (overall) grades. In this section, we
make the weaker requirement that the output consist of the top & objects, without their grades. The
reason is that, since random access is impossible, it may be much cheaper (that is, require many fewer
accesses) to find the top k& answerswithout their grades. Thisis because, as we now show by example,
we can sometimes obtain enough partial information about grades to know that an object isin thetop &
objects without knowing its exact grade.

Example 6.3 Consider thefollowing scenario, where the aggregation functionisthe average, and where
k = 1 (so that we are interested only in the top object). There are only two sorted lists ; and L-, and
the grade of every object in both L; and L, is1/3, except that object R hasgrade1in L; and grade O in
L,. After two sorted accesses to L; and one sorted access to L», there is enough information to know
that object R isthetop object (itsaverage grade is at least 1/2, and every other object has average grade
at most 1/3). If we wished to find the grade of object R, we would need to do sorted accessto all of L.
]

Note that we are requiring only that the output consist of the top & objects, with no information being
given about the sorted order (sorted by grade). If we wish to know the sorted order, this can easily
be determined by finding the top object, the top 2 abjects, etc. Let C; be the cost of finding the top ¢
objects. It isinteresting to note that there is no necessary relationship between C'; and C; for 7 < j. For
example, in Example 6.3, we have C; < C,. If we were to modify Example 6.3 so that there are two
objects R and R’ withgrade 1in L, wherethegrade of R in L, is0, and the grade of R’ in L, is1/4
(and so that, as before, all remaining grades of all objectsin both listsis 1/3), thenC'» < Cj.

The cost of finding the top & objectsin sorted order is at most £ max; C;. Since we are treating k&
as a constant, it follows easily that we can convert our instance optimal algorithm (which we shall give
shortly) for finding the top & objectsinto an instance optimal algorithm for finding the top & objectsin
sorted order. In practice, it is usually good enough to know the top & objects in sorted order, without
knowing the grades. In fact, the mgjor search engines on the web no longer give grades (possibly to
prevent reverse engineering).

The agorithm NRA isasfollows.

1. Do sorted accessin parallel to each of the m sorted lists L ;. At each depth d (when d objects have
been accessed under sorted access in each list):
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e Maintain the bottom values g(ld) , ggd), .. .,gﬁff) encountered in thelists.

o For every object R with discovered fields S = S (R) C {1,...,m}, compute the values
WA (R) = Ws(R) and B4 (R) = Bs(R). (For objects R that have not been seen, these
valuesarevirtually computed as W (@ (R) = (0, ...,0),and B(R) = t(z1, z3, . . ., Zoy),
which isthe threshold value.)

o Let T\?, the current top  list, contain the & objects with the largest W (@) values seen so

far (and their grades); if two objects have the same W (%) value, then ties are broken using
the B(4) values, such that the object with the highest B(4) value wins (and arbitrarily among

objectsthat tiefor the highest B(@ value). Let M(? be the kth largest W@ valuein T,?.

2. Call an object R viableif B@(R) > M\¥. Halt when (a) at least k distinct objects have been
seen (so that in particular T,Ed) contains & objects) and (b) there are no viable objects |eft outside
T,Ed), that is, when B(¥)(R) < M,Ed) foral R ¢ T,Ed). Return the objectsin T,Ed).

We now show that NRA is correct for each monotone aggregation function .

Theorem 6.4: If the aggregation function ¢ is monotone, then NRA correctly finds the top & objects.

Proof: Assume that NRA halts after d sorted accesses to each list, and that T,Ed) ={R1,Ry,..., Rk}
Thus, the objects output by NRA are R1, Ro, ..., Ri. Let R be an object not among R1, Rs, . . ., Rg.
We must show that t(R) < ¢(R;) for each:.

Since the algorithm halts at depth d, we know that R is nonviable at depth d, that is, B(¥(R) <
MY, Now t(R) < B@(R) (Proposition 6.2). Also for each of the & objects R; we have M? <
W@ (R;) < t(R;) (from Proposition 6.1 and the definition of 2%). Combining the inequalities we
have shown, we have

HR) < BO(R) < M < W (R,) < (R)

for each 7, as desired. [

Note that the tie-breaking mechanism was not needed for correctness (but will be used for instance
optimality). We claim instance optimality of NRA over all algorithmsthat do not use random access:

Theorem 6.5: Assume that the aggregation function ¢ is monotone. Let D be the class of all databases.
Let A bethe classof all algorithmsthat correctly find the top & objectsfor ¢ for every database and that
do not make random accesses. Then NRA isinstance optimal over A and D.

Proof: Assume A € A. If agorithm NRA halts at depth d, and NRA saw at least & distinct objects for
the first time by depth d, then NRA makes only a constant number of accesses (at most km?) on that
database. So suppose that on some database D, algorithm NRA halts at depth d, and that NRA saw at
least & distinct objectsby depth d — 1. We claim that .A must get to depth d in at least one of the lists. It
then follows that the optimality ratio of NRA is at most m, and the theorem follows. Suppose the claim
fails; then from the fact that algorithm NRA did not halt at depth d — 1 thereisan object R ¢ T,Ed_l)

such that BE-1(R) > M*™V). We know that W-1(R) < M\* ™V since R ¢ T~ Further, we

know from the tie-breaking mechanism that if W1 (R) = M), thenfor each R; € T*™) such

that W@(R;) = M\? necessarily B@-1)(R;) > BE-1(R).
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There are now two cases, depending on whether or not algorithm .4 outputs R as one of the top &
objects. In either case, we construct a database on which A errs.

Case 1: Algorithm A outputs R as one of the top & objects. We construct a database D’ where
A errs as follows. Database D’ is identical to D up to depth d — 1 (that is, for each : thetop d — 1
objects and their grades are the same inlist L, for D’ asfor D). For each R; and for each missing field
j e {l,...,mP\SE1(R;) assign value z{*~"). For the object R assign all of the missing fields in
{1,...,mN\SEY(R) thevalue 0. We now show that t(R) < t(R;) for each j with1 < j < k. Hence,
R isnot one of thetop & objects, and so algorithm A erred. First, we have

o(R) = WE(R) < ") 2
Also, for al s with1 < ¢ < k we have
MY < wéN(R,) < BE-V(R,) = t(Ry). ®

If WE-D(R) < MV, then we have from (2) and (3) that t(R) < t(R;) for each i, as desired.

So assume that W=D (R) = M*™V). Again, we wish to show that t(R) < t(R;) for each i. We
consider separately in two subcases those i where 17{%™) = W(@-1)(R,) and those where M%)
WE-1(R,).

Subcase 1: MY = wE-U(R,). Thent(R) < M*™V) < BE-1U(R) < BE-1(R;) = t(Ry),
as desired, where the last inequality follows from the tie-breaking mechanism.

Subcase 2: MY % wE-1(R;), and so M{*™V < W@-1(R,). From the inequalitiesin (3),
weseethat M%) < ¢(R;). Soby (2), we havet(R) < t(R;), as desired.

Case 2: Algorithm A does not output R as one of the top k& objects. We construct a database
D" where A errs as follows. Database D" is identical to D up to depth d — 1. At depth d it gives
each missing field i € {1,...,m}\SE@D(R) of R thevalue z!*™"). For all remaining missing fields,
includingmissingfields of Ry, . . ., Ry, assignthevalue0. Now t(R) = BE-1(R) > M* V), whereas
(a) for at least one R; (namely, that R; where W@ (R;) = M(Y) we have t(R;) = M*™V, and (b)
for each object R’ not among R, Ry, ..., R or R we havethat t(R') < M,Ed_l). Hence, algorithm A
erred in not outputting R as one of thetop k& objects. O

Note that the issue of “wild guesses’ is not relevant here, since we are restricting our attention to
algorithms that make no random accesses (and hence no wild guesses).

In the proof of Theorem 6.4, we showed that the optimality ratio of NRA is at most m. We now
show that if the aggregation function is strict, then the optimality ratio is precisely m, and thisis best
possible.

Theorem 6.6: Let ¢ be an arbitrary monotone, strict aggregation function with m arguments. Let D be
the class of all databases. Let A be the class of all algorithmsthat correctly find the top % objects for
t for every database and that do not make random accesses. Then NRA is instance optimal over A and
D, with optimality ratio m. No deterministic algorithmhas a lower optimality ratio.

Proof: In the proof of Theorem 6.4, it is shown that NRA has an optimality ratio of at most m for an
arbitrary monotone aggregation function, The lower bound followsfrom Theorem 7.5. O
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Remark 6.7 Unfortunately, the execution of NRA may require alot of bookkeeping at each step, since
when NRA does sorted access at depth £ (for 1 < £ < d), thevalueof B(®) (R) must be updated for every
object R seen so far. This may be up to #m updates for each depth ¢, which yields a total of (d?m)
updates by depth d. Furthermore, unlike TA, it no longer suffices to have bounded buffers. However,
for a specific function like min it is possible that by using appropriate data structures the computation
can be greatly simplified. Thisisan issuefor further investigation. OJ

6.2 Takinginto Account the Random Access Cost

We now present the combined algorithm CA that does use random accesses, but takestheir cost (relative
to sorted access) into account. As before, let cg be the cost of a sorted access and ¢ be the cost of a
random access. The middleware cost of an algorithm that makes s sorted accesses and » random ones
isscg + reg. We know that TA isinstance optimal; however, the optimality ratio is a function of the
relative cost of arandom access to a sorted access, that is cg/cg. Our goal in this sectionisto find an
algorithm that is instance optimal and where the optimality ratio isindependent of ¢ g/cs. One can view
CA as amerge between TA and NRA. Let b = |cg/cg|. We assume in this sectionthat cg > cg, SO
that » > 1. Theideaof CA istorun NRA, but every h steps to run a random access phase and update
the information (the upper and lower bounds B and W) accordingly. Asin Section 6.1, in this section
we require only that the output consist of the top & objects, without their grades. 1f we wish to obtain
the grades, this requires only a constant number of additional random accesses, and so has no effect on
instance optimality.
The agorithm CA isasfollows.

1. Do sorted accessin parallel to each of the m sorted lists L ;. At each depth d (when d objects have
been accessed under sorted access in each list):

e Maintain the bottom values g(ld) , ggd) Yo gﬁ,‘f) encountered inthelists.

o For every object R with discovered fields S = S (R) C {1,...,m}, compute the values
WA (R) = Ws(R) and B4 (R) = Bs(R). (For objects R that have not been seen, these
valuesarevirtually computed as W (@ (R) = (0, ...,0),and B(R) = t(z1, 23, . . ., Zoy),
which isthe threshold value.)

o Let T\¥, the current top & list, contain the & objects with the largest W (¢) values seen so
far (and their grades); if two objects have the same W (9 value, then ties are broken using
the B(4) values, such that the object with the highest B(%) value wins (and arbitrarily among
objectsthat tiefor the highest B(@ value). Let M(? bethe kth largest W@ valueinT,?.

2. Call an object R viableif B (R) > M. Every h steps (that is, every time the depth of sorted
accessincreases by k), do the following: pick the viable object that has been seen for which not al
fields are known and whose B(? valueis as big as possible (ties are broken arbitrarily). Perform
random accesses for all of its (at most m — 1) missing fields. If there is no such object, then do
not do arandom access on this step™®.

®The reason for this escape clauseis so that CA does not make awild guess. We now give an example where this escape
clausemay beinvoked. Assumethat & = 2 andc r = ¢s. Assumethat on thefirst round of sorted accessin parallel, the same
object appearsin al of thelists. Then on the first opportunity to do a random access, the escape clause must beinvoked, since
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3. Hat when (a) at least k& distinct objects have been seen (so that in particular T,Ed) contains k
objects) and (b) there are no viable objects left outside T.?), that is, when B@(R) < M for
alR ¢ T,Ed). Return the objectsin T,Ed).

Note that if A isvery large (say larger than the number of objectsin the database), then algorithm
CA isthe same as NRA, since no random accessis performed. If »~ = 1, then algorithm CA is similar
to TA, but different in intriguing ways. For each step of doing sorted access in parallel, CA performs
random accessesfor all of the missing fields of some object. Instead of performing random accesses for
al of the missing fields of some object, TA performs random accesses for all of the missing fields of
every object seen in sorted access. Later (Section 6.4), we discuss further CA versus TA. For moderate
values of A it isnot the case that CA is equivalent to the intermittent algorithm that executes i steps of
NRA and then one step of TA. We show later (Section 6.4) an example where the intermittent algorithm
performs much worse than CA. The difference between the algorithms is that CA picks “wisely” on
which objects to perform the random access, namely, according to their B(9) values. Thus, it is not
enough to consider the knowledge-based program of Section 4 to design the instance optimal algorithm
CA; we need also aprinciple asto which objectsto perform the random access on. Thiswas not an issue
in designing TA, sincein that context, random accesses increase the cost by only a constant multiple.

Correctness of CA is essentially the same as for NRA, since the same upper and lower bounds are
maintai ned:

Theorem 6.8 If the aggregation function ¢ is monotone, then CA correctly finds the top & objects.

In the next section, we consider scenarios under which CA isinstance optimal, with the optimality
ratio independent of cg/cg.

6.3 Instance Optimality of CA

In Section 4, we gave two scenarios under which TA isinstance optimal over A and D. In thefirst sce-
nario (from Theorem 4.3), (1) the aggregation function ¢ is monotone; (2) D isthe classof al databases,
and (c) A isthe class of al algorithmsthat correctly find the top & objectsfor ¢ for every database and
that do not make wild guesses. In the second scenario (from Theorem 4.7), (1) the aggregation function
t isstrictly monotone; (2) D isthe class of all databasesthat satisfy the distinctness property; and (3) A
isthe class of all algorithmsthat correctly find the top k& objectsfor ¢ for every databasein D. We might
hope that under either of these two scenarios, CA isinstance optimal, with optimality ratio independent
of cr/cs. Unfortunately, this hope is false, in both scenarios. In fact, our theorems say that not only
does CA fail to fulfill thishope, but so does every algorithm. In other words, neither of these scenarios
is enough to guarantee the existence of an algorithm with optimality ratio independent of ¢ g/cg. Inthe
case of the first scenario, we obtain this negative result from Theorem 7.1. In the case of the second
scenario, we obtain this negative result from Theorem 7.2.

However, we shall show that by dlightly strengthening the assumption on ¢ in the second scenario,
CA becomes instance optimal, with optimality ratio independent of cr/cg. Let us say that the aggrega-
tion functiont¢ is strictly monotone in each argument if whenever one argument is strictly increased and

every field is known for the only object that has been seen. In the proof of Theorem 6.9, we show that if the escape clauseis
invoked after depth & (that is, after there has been at least k& rounds of sorted accessin parallel), then CA halts immediately
after.
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the remaining arguments are held fixed, then the value of the aggregation function is strictly increased.
That is, ¢ isstrictly monotonein each argument if z; < z, impliesthat

7f($1a cey Ti—1, Tgy Loty - - 'azm)

!
< (@1, ey Tim1, Ty Tigdy - ey Tim)-

The average (or sum) isstrictly monotonein each argument, whereas min is not.

We now show (Theorem 6.9) that in the second scenario above, if we replace “ The aggregation
function ¢ isstrictly monotone” by “The aggregation function ¢ is strictly monotone in each argument”,
then CA isinstance optimal, with optimality ratio independent of ¢g/cg. We shall aso show (Theo-
rem 6.10) that the same result holdsif instead, we simply taket to be min, even though minisnot strictly
monotone in each argument.

Theorem 6.9: Assume that the aggregation function ¢ is strictly monotone in each argument. Let D be
the class of all databasesthat satisfy the distinctness property. Let A be the class of all algorithmsthat
correctly find the top & objects for ¢ for every databasein D. Then CA isinstance optimal over A and
D, with optimality ratio independent of c g /cs.

Proof: Assume D € D. Assume that when CA runs on D, it halts after doing sorted access to depth
d. Thus, CA makes md sorted accesses and r random accesses, where r < md/h. Notethat in CA the
two components (mdcg and rcg) of the cost mdcg + rcg are roughly equal, and their sum is at most
2mdcg. Assume A € A, and that A makes d’ sorted accesses and ' random accesses. The cost that A
incursistherefore d'cs + r'crg.

Suppose that algorithm .4 announces that the objects R}, R5, . . ., R}, arethetop k. First, we claim
that each R appearsinthetop d’ + ' 4+ 1 objectsof at least onelist L ;. Supposenot. Then thereisan
object R output by .4 such that in each list thereis avacancy above R! that has not been accessed either
by sorted or random access. There is a database D’ identical to D in al locations accessed by A but
with an object R’ ¢ {R!, R, ..., R, } whose values reside in these vacancies. From the distinctness
property, for each field the value for R’ is strictly larger than that for R., and from strict monotonicity
of t wehavet(R') > t(R}), making R’ a mandatory member of the output. (Note: we used only strict
monotonicity of ¢ rather than the stronger property of being strictly monotone in each variable.) Thisis
acontradiction. Hence, each R; appearsinthetop d’ + ' 4+ 1 objectsof at least onelist L ;.

Let S, = min{¢t(R}),t(RY),...,t(R})}. Define the set C' of objects not output by .A whose B
valueat stepd’ + ' + 1 of CA (that is, after d’ + r' + 1 parallel sorted accesses) is more than Si, that is,

C={R ¢ {Ry,R},...,R.}BE+ *(R) > ).

We claim that for each object R € C, algorithm .4 must use a random access (to determine R's
value in some list). Suppose not. Then we show adatabase D’ on which algorithm .4 performs the same
ason D but wheret(R) > S;. Thisisa contradiction, since then R would have to be in the output
of A. For each field < of R that is not accessed by .4, we assign in D’ the highest value from the top
d'+7'+1 locationsof L; that had not been accessed by .4; such “free” locationsexist by the pigeonhole
principal, since A “touched” at most d' + ' objects. Now each field < of R that isaccessed by .A isone
of thetop d’ valuesin L;, since by assumption R was accessed only under sorted access by .A. Also, by
construction, in D’ each remaining field : of R isone of thetopd’ + r' + 1 valuesin L;. SoinD’, every
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field 7 of R isone of thetop d’ + »' + 1 valuesin L;. Also, by construction, the value of every field 4
of Risat least ashighin D’ asin D. It follows by monotonicity of ¢ that the value of ¢(R) in D' isat
least B(¢'+'+1) (R) (wedo not need the stronger fact that ¢ is strictly monotone in each argument). But
BW@+'+1)(R) > Sy, since R € C. Hence, t(R) > Sg. Thisisthe contradiction that was to be shown.
So indeed, for each object R € C agorithm .4 must use arandom access. Hence, ' > |C].

Setd" = h(|C| + k) + d' + r' + 1. We now show that CA halts by depth d". There are two cases,
depending on whether or not the escape clause in Part 2 of CA (which says“If there s no such object,
then do not do arandom access on this step”) isinvoked at some depth d withd' +r' +1 < d < d".

Case 1: The escape clause of CA isinvoked at some depth d withd’ + ' + 1 < d < d". There are
two subcases, depending on whether or not d’ + r' + 1 > k.

Subcasel: d' +r'+1 > k. Thend > d' + ' + 1 > k. Just asin the second paragraph of the proof
of Theorem 4.3, we know that the algorithm CA has seen at least d objects by depth d (thisis because
by depth d it has made md sorted accesses, and each object is accessed at most m times under sorted
access). If CA had seen strictly more than d objects by depth d, then the escape clause would not be
invoked. Since the escape clause was invoked, it follows that CA must have seen exactly d objects by
depth d. By depth d, the algorithm CA has made exactly dm sorted accesses. Since CA has seen exactly
d objects by depth d, and since each object is accessed at most m times under sorted access, it follows
that each of the d objectsthat CA has seen has been seen under sorted accessin every one of them lists,
Sinced > k, by depth d there are at least k objectsthat have been seen under sorted accessin every one
of thelists. (This situation should sound familiar: it is the stopping rule for FA.) For every object that
has been seen, there is no uncertainty about its overall grade (since it has been seen in every list), and
S0 no object that has been seen and is not inthe top & list isviable. Since each object that has not been

seen has B@ value at most equal to the threshold value at depth d, and each member of the top & list
has grade at |east equal to the threshold value, it follows that no object that has not been seenis viable.
So there are no more viabl e objects outside of thetop & list, and CA haltsby depth d < d", as desired.

Subcase2: d' + ' + 1 < k. So agorithm A sees less than k& objects before it halts. If database D
contains more than & objects, then there are two objects R and R’ that algorithm .A does not see such
that algorithm A outputs R but not R’ as part of the top k. But then, since algorithm .4 does not have
information to distinguish R and R’, it must make a mistake on some database (either the database D or
the database obtained from D by reversing theroles of R and R’). So database D cannot contain more
than & objects. Since we are assuming throughout this paper that the number of objectsin the database
isat least k, it followsthat D contains exactly & objects. Therefore, at depth & of algorithm CA, al &
objects have been seen under sorted accessin every list. Similarly to the proof in Subcase 1, it follows
that CA haltsat depth k. Since k£ < d"”, we know that CA halts by depth d”, as desired.

Case 2: The escape clause of CA is not invoked at any depth d withd’ + ' + 1 < d < d”. Recall
that CA performs random access on viable objectsbased on their B values. Until they receive arandom
access after step d’' + r' 4+ 1 of CA, the members of C have the highest B values. Therefore, within
h|C| steps after reaching depth d’ + r' 4 1 (that is, by step d’ + r' + 1 + h|C|), al members of C will
be randomly accessed. We now argue that the next objects to be accessed in CA will be the R!’s that
are output by A (unless they have been randomly accessed already.) Here we will appeal to the strict
monotonicity in each argument of the aggregation function ¢. For afunction¢ that is strictly monotone
in each argument, at each step of CA on a database that satisfies the distinctness property and for every
object R, if S(R) ismissing some fields, then Bg(R) > t(R). Therefore at step d' + r' + 1 + h|C|
of CA, for al R! whoset value has not been determined we have B(¢'+'+1+RICD (RL) > ¢(RL) > S.
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Since no other object with B(¢'+7'+1+RIC1) valye larger than Sy is left, after at most 2k more stepsin
CA, dl of {R}, RY, ..., R} with missing fields will be randomly accessed and their ¢ value will be
knownto CA.

(d")

We claim that at step d” of CA there are no more viable objects left: first, M,” ' = S, sinceall
of {R}, R}, ..., R,} have been accessed (in every field) and each of their W(@") values equals their ¢
values. Since al other objects R with B(¢")(R) > S}, have been accessed, there are more viable objects
left, so CA halts.

We have shown that in both cases, the algorithm CA haltsby depth d”. Recall that when CA getsto
depth d itincursacost of at most 2mdcg. We showed that CA hatsby depthd” = A(|C| + k) + d' +
'+ 1 < h(r'+ k) +d'+ r' + 1. Hence, the cost CA incursisat most 2m(h(r’ + k) + d' + r' 4+ 1)cg,
whichis2m(h(r' 4+ k) 4+ d' + r)cg plusan additive constant of 2mcg. Now

2m(h(r' + k) +d' +r)es < 2m(2(r' + k)es + (d' + r')es)
s

C
!
!

(cr+cs) +d'cs + keg)

(2¢g) + d'cg + keg) since by assumptioncg > cg
2m(r'(2¢cg) + d’'cg + kr'cg) sincer’ > 1 (see below)
2md'cs + (4m + k:)r'cR

(4m + k) (d'cs + r'cr)

(c
2m(r
2m(r
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Since d'cs + r'cg isthe middleware cost of A, we get that the optimality ratio of CA isat most 4m + k.

So we need only show that we may assumer’ > 1. Assumenot. Then .4 makes no random accesses.
Now by Theorem 6.5, NRA isinstance optimal compared with algorithmsthat make no random access,
and of course the optimality ratio isindependent of c¢r/cg. Further, the cost of CA isat most twice that
of NRA. So CA isinstance optimal compared with algorithmsthat make no random access, such as A,
with optimality ratio independent of cg/cs. O

In the proof of Theorem 6.9, we showed that under the assumptions of Theorem 6.9 (strict mono-
tonicity in each argument and the distinctness property), the optimality ratio of CA isat most 4m + k.
In Theorem 7.2, we give alower bound that is linear in m, at least for one aggregation function that is
strictly monotone in each argument.

The next theorem says that for the function min (which is not strictly monotone in each argument),
algorithm CA isinstance optimal.

Theorem 6.10: Let D be the class of all databasesthat satisfy the distinctness property. Let A be the
classof all algorithmsthat correctly find the top & objectsfor min for every databasein D. Then CAis
instance optimal over A and D, with optimality ratio independent of ¢ g/cs.

Proof (Sketch): The proof is similar to the proof of Theorem 6.9, where the key point is that for the
function min at every step d of CA there can be at most m different R’s with the same B(9) (R) value,
since B4 (R) equals one of the fields of R and the distinctness property assures that there are at most
m different fieldsin all lists with the same value (this replaces the use of strict monotonicity in each
argument). Therefore at step d' + ' + 1 + h|C| there are at most m objects with B value that equals
Sk, and there are no objects outside of {R}, R, ..., R} } whose B value exceeds Si. Since the B
value of each member of {R}, RY,... R} is at least S, it follows that after ~m more steps all of
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{R}, RS, ..., Ry} will be randomly accessed, so there will be no viable objects left and CA will halt.
The rest of the analysisis similar to the proof of Theorem 6.9, except that ik isreplaced by hm. The
net result is an optimality ratio of at most 5m. O

In the proof of Theorem 6.10, we showed that under the assumptions of Theorem 6.10 (the dis-
tinctness property with min as the aggregation function), the optimality ratio of CA isat most 5m. In
Theorem 7.4, we give alower bound that is linear in m.

6.4 CA Versus Other Algorithms

In this section, we compare CA against two other algorithms. The first algorithm we compare it against
iswhat we could call the “intermittent algorithm”, which is composed by running NRA with delayed
TA every h steps. That is, the intermittent algorithm does random accesses in the same time order as
TA does, but simply delays them, so that it does random accesses every h = |cgr/cs | steps. The second
algorithm we compare CA againstis TA.

CA versus the intermittent algorithm: We now consider the choice we made in CA of doing
random access to find the fields of the viable object R whose B(4) value is the maximum. We com-
pare its performance with the intermittent algorithm, which we just described. We show a database
where the intermittent algorithm does much worse than CA. Consider the aggregation function ¢ where
t(z1, 22, 23) = 21 + z2 + z3. Let cg/cg be alarge integer. Let D be a database where thetop A — 2
locationsin Ly and L, have grades of theform 1/2 4 ¢/(8h), for 1 < i < h — 2, and where none are
matched with each other. Location ~ — 1 in the two lists belong to same object R, with grade 1/2 in
both of them. Location % in the two lists both have the grade 1/8. In L 3 thetop 22 — 1 locations have
gradesof theform 1/2 4+ i/(8A?), for 1 < 1 < h? — 1, and inlocation 2, object R hasgrade 1/2. Note
that the maximum overall grade (which occursfor the object R) is 1% and that all objectsthat appear in
one of thetop h — 2 locationsinlists ; and L, have overal gradesthat are at most 1% (thisisbecause
each objectinthetop A — 2 locationsin L; has grade at most 5/8 in Ly, grade at most 1/8 in L,, and
grade at most 5/8 in L3.) Atstep h in CA we have that B(®)(R) > 11, whereas for all other objects
their B(® value is at most 1%. Therefore on this database, CA performs ~ sorted accesses in parallel
and a single random access on R and then halts. Its middleware cost istherefore heg + ¢cg = 2¢cg. The
intermittent algorithm, on the other hand, does not give priority to checking R, and will first do two
random accesses for each of the 4 — 2 objects at the top of each of the three lists. Since we take all of
these objects to be distinct, thisis 6(~ — 2) random accesses, with a middleware cost of 6(h — 2)crg.
So the ratio of the middlieware cost of the intermittent algorithm to the middleware cost of CA on this
databaseisat least 3(h — 2), which can be arbitrarily large.

In particular, Theorem 6.9 would be false if we were to replace CA by the intermittent algorithm,
since this example shows that the optimality ratio of the intermittent algorithm can be arbitrarily large
for h arbitrarily large.

CA versus TA: It isintriguing to consider the differences between CA and TA, even when cg/cs
isnot large. Intuitively, TA beats CA in terms of sorted accesses, and CA beats TA in terms of random
accesses. More precisely, TA never makes more sorted accesses than CA, since TA gathers as much
information as it can about every object it encounters under sorted access. On the other hand, if we
focus on random accesses, then we see that TA does random access to every field of every object that
it sees under sorted access. But CA is more selective about its random accesses. It “stores up” objects
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that it has seen under sorted access, and then does random access only for the object in its stored-up
collection with the best potential.

We now consider other advantages of CA over TA. In the database we presented in comparing CA
with the intermittent algorithm, the random access cost of TA is the same as that of the intermittent
algorithm. So for this database, the ratio of the middleware cost of TA to the middleware cost of CA is
at least 3(h — 2). Thisisamanifestation of the dependence of the optimality ratio of TA oncr/cs and
the independence of the optimality ratio of CA on cg/cg. Furthermore, thefact that at |east under certain
assumptions, TA has an optimality ratio that is quadratic in m, whereas under certain assumptions, CA
has an optimality ratio that is only linear in m, is also an indicator of the possible superiority of CA
over TA in certain circumstances. Thisrequires further investigation. As an example where it might be
interestingto compare CA and TA, let the aggregation function be min, let D bethe classof all databases
that satisfy the distinctness property, and let A be the class of all algorithms that correctly find the top
k objects for min for every database in D. We know that TA and CA are both instance optimal in this
scenario (Theorems 4.7 and 6.9), and we know that the optimality ratio of CA isindependent of cr/cg
(Theorem 6.9). What are the precise optimality ratiosof TA and CA in this scenario? Which has a better
optimality ratio when, say, cg = cg?

TA has an important advantage over CA. Namely, TA requires very little bookkeeping, whereas,
on the face of it, CA requires a great deal of bookkeeping. Thus, in CA, for every sorted access it is
necessary to update the B value (the upper bound on the overall grade) for every object where not all of
its fields are known. Aswe discussed in Remark 6.7 for NRA, it would be interesting to develop data
structures for CA that would lead to a reasonable amount of bookkeeping. We could then compare CA
versus TA in realistic scenarios (both by analysis and simulations).

7 Lower Bounds on the Optimality Ratio

In this section, we prove various|ower bounds on the optimality ratio, both for deterministic agorithms
and for probabilistic algorithms that never make a mistake. Each lower bound corresponds to at least
one theorem from earlier in the paper.

The next theorem gives a matching lower bound for the upper bound on the optimality ratio of TA
given in the proof of Theorem 4.3, provided the aggregation function is strict. Aswe noted earlier, this
lower bound need not hold if the aggregation function is not strict (for example, for the aggregation
function max).

Theorem 7.1: Let ¢ be an arbitrary monotone, strict aggregation function with m arguments. Let D
be the class of all databases. Let A be the class of all algorithmsthat correctly find the top & answers
for ¢ for every database and that do not make wild guesses. There is no deterministic algorithmthat is
instance optimal over A and D, with optimality ratio lessthan m + m(m — 1)c g/cs.

Proof: We assume first that & = 1; later, we shall remove this assumption. We restrict our attention to
asubfamily D’ of D, by making use of positive parameters d, ¢, k1, k2 where

1. d, k1, and k, areintegers.

2. Yp=(dm —1)cg+ (dm — 1)(m — 1)cg.
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3. kg > k1 > max(d,¥/cg).

The family D’ contains every database of the following form. In every list, the top &, grades are 1, and
the remaining grades are 0. No object isin the top k; of more than one list. There is only one object
T that has grade 1 in all of thelists, and it isin the top d of one list. Except for T', each object that is
inthe top &k, of any of the listshas grade 1 in all but one of the lists, and grade O in the remaining list.
It iseasy to see that we can pick k; and k- big enough to satisfy our conditions, for a sufficiently large
number N of objects.

Let A be an arbitrary deterministic algorithm in A. We now show, by an adversary argument, that
the adversary can force .A to have middleware cost at |east 1) on some databasein D’. Theideaisthat the
adversary dynamically adjusts the database as each query comesin from A, in such away as to evade
allowing A to determine the top element until as late as possible.

Let ussay that an objectishighinlistzif itisinthetop d of listz, and highif itishighin somelist.
Since no object is high in more than one list, there are dm high objects. Assume that A sees at most
dm — 2 high objects, and hence does not see at least two high objects S; and .S;. Then the adversary
can force the answersthat .4 receives to be consistent with either S; or .S, being the top object T'. This
isa contradiction, since .A does not have enough information to halt safely, since it does not know the
identity of the top object. So .4 must see at least dm — 1 high objects. Since .A does not make wild
guesses, its sorted access cost is at least (dm — 1)cg. There are two cases.

Case 1. Algorithm A sees some high object under sorted accessin alist 7 whereit is not high (and
hence below position &, inlist 7, since no abject can be in the top &£, positionsin more than one list).
Then A has sorted access cost more than k1cs > (v/cg)cs = 4, as desired.

Case 2: There is no high object that .A sees under sorted access in alist where it is not high. Let
us say that a high object 4 isfully randomly accessed if .A does random accessto A in each of thelists
whereit is not high. Whenever A does random access to a high object in alist whereit isnot high, then
the adversary assures that the first m — 2 such random accesses have grade 1, and only the final such
random access has grade O (thisis possiblefor the adversary to continue until it has done m — 1 random
accesses for al but one of the high objects). Assume that there are at least two high objects P; and P,
that are not fully randomly accessed. Then the adversary can force the answers that .A receives to be
consistent with either P, or P, being thetop object T'. Thisisa contradiction, since once again, .A does
not have enough information to halt safely. So thereis at most one high object that isnot fully randomly
accessed. Sincethereare dm high objects, it followsthat A must make at least (dm —1)(m —1) random
accesses, with arandom access cost of (dm — 1)(m — 1)cg. Hence, the middleware cost of A isat least
(dm — 1)cs + (dm — 1)(m — 1)cg = 1, asdesired.

So in either case, the middleware cost of algorithm .4 on the resulting databaseis at least 1. How-
ever, there is an agorithm in A that makes at most d sorted accesses and m — 1 random accesses,
and so has middleware cost at most deg + (m — 1)cg. By choosing d sufficiently large, the ratio
(d’”_1565;(&”__11))6(’”_1”" can be made as close as desired to m + m(m — 1)cg/cs. The theorem fol-
lowsin the case when k = 1.

We now describe how to modify the proof in the casewhen k& > 1. Theideaisthat we make k — 1
of the top k& objects easy to find. We modify the databases given in the proof above by creating £ — 1
new objects, each with a grade of 1 in every list, and putting them at the top of each of thelists. The
simple details are left to the reader. O

In the proof of Theorem 4.7 (which assumes strict monotonicity and the distinctness property), we
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showed that the optimality ratio of TA is at most em?, where ¢ = max{cg/cg,cs/cr}. Inthe next
theorem, we give an aggregation function that is strictly monotone such that no deterministic algorithm
can have an optimality ratio of less than -2 &. Soinour case of greatest interest, where cg > cs,
thereisagap of around afactor of 2m in the upper and lower bounds. The aggregation function we use
for thisresult isthe function ¢ given by

t(z1,22,. .., 2m) = min(z; + 22,3, .. ., Tm) 4

The reason we made use of the unusual aggregation function in (4) is that in the case of min (or an
aggregation function such as average that is strictly monotone in each argument), there is an algorithm
(algorithm CA of Section 6.2) with optimality ratio independent of ¢r/cs when werestrict our attention
to databases that satisfy the distinctnessproperty. Thus, the negative result of the next theorem does not
hold for min or average.

Theorem 7.2 Let the aggregation function ¢ be given by (4) above. Let D be the class of all databases
that satisfy the distinctness property. Let A be the class of all algorithmsthat correctly find the top &

objectsfor ¢ for every databasein D. Thereis no deterministic algorithmthat is instance optimal over

A and D, with optimality ratio lessthan =52 o

Proof: Asinthe proof of Theorem 7.1, we can assume without loss of generality that & = 1. Werestrict
our attention to a subfamily D’ of D, by making use of positive parameters d, N, and , where

1. dand N areintegers.

2. Yy =(d—1)(m— 2)cg.
3. N > max(d, 4 /cs), and N isamultiple of 4.

The family D’ contains each database of the following form. There are N objects. The top d gradesin
lists1 and 2 are of theform ¢/(2d + 2) for 1 < 7 < d, and the object with grade /(2d + 2) inlist 1is
the onewiththe grade (d + 1 — ¢)/(2d + 2) inlist 2. Hence, the z; + z, value of these d objectsis1/2.
The grades in the other listsare of theform ¢/N, for 1 < 7 < N. Oneof thetop d objectsin lists 1 and
2 has a grade in the half-closed interval [2, 4) in each of the other lists. All the rest of the top d objects
inlists1and 2 have agradelnthehalf -closedinterval [, 2) inall but one of the other lists, and a grade
in the open interval (0, ) in the remaining list. The top object, which we call T, is the unique object
whose overall grade is 1/2. Since T has grade lessthan 3/4 in lists 3, .. ., m, it occurs after the first
N/4 objectsin each of these m — 2 lists. Furthermore, simply based on the grades of the top d objects
inlists1and 2, itisclear that the top object has grade at most 1/2.

Let A be an arbitrary deterministic algorithm in A. We now show, by an adversary argument, that
the adversary can force .A to have middleware cost at least ¢» on some databasein D’. Theideaisthat the
adversary dynamically adjusts the database as each query comesin from .4, in such away as to evade
allowing A to determine the top element until as late as possible. There are two cases.

Case1: A doesat least V/4 sorted accesses. Then the sorted access cost of A isat least (N/4)cs >
(¥/cs)cs = 9, asdesired.

Case 2: A does lessthan N/4 sorted accesses. Let uscall thetop d objectsin lists 1 and 2 candi-
dates. Thus, .A does not see any candidate under sorted accessin any of thelists3, ..., m. Letuscal a
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grade that is at least 1/2 high, and a grade less than 1/2 low. Let us say that a candidate .S is fully ran-
domly accessed if .A does random accessto .S in each of thelists 3, ..., m. Whenever A does random
accesstoacandidatein at least one of lists3, . . ., m, then aslong as possible, the adversary assures that
thefirst m — 3 random accesses have a high grade, and that only thefinal random access hasalow grade
(it ispossiblefor the adversary to continue like thisuntil all but one of the candidatesisfully randomly
accessed). Assumethat there are at least two candidates P, and P, that are not fully randomly accessed.
Then the adversary can force the answersthat .A receives to be consistent with either P; or P, being the
top object T'. Thisisa contradiction, since .4 does not have enough information to halt safely. So there
isat most one candidate that is not fully randomly accessed.

Since there are at least d — 1 candidates that are fully randomly accessed, and hence each have at
least m — 2 random accesses, the random access cost of A is at least (d — 1)(m — 2)cg. Hence, the
middleware cost of A isat least (d — 1)(m — 2)cg = 9, as desired.

So in either case, the middleware cost of algorithm .4 on the resulting databaseis at least 1. How-
ever, thereisan algorithmin A that accesses the top d objectsin lists 1 and 2, and then makes arandom
access to object T in each of lists 3, ..., m. Its middleware cost is2dcg + (m — 2)cg. By choosing
d sufficiently large, the ratio %% can be made as close as desired to ’”T‘22—§ The theorem
follows.

The next theorem is somewhat redundant (except for the fact that it deals with probabilistic algo-
rithms), because of Theorem 7.1. We giveit because its proof is simple, and because we generalize the
proof in the theorem following it.

Theorem 7.3: Let ¢ be an arbitrary monotone, strict aggregation function with m arguments. Let D
be the class of all databases. Let A be the class of all algorithmsthat correctly find the top & answers
for t for every database and that do not make wild guesses. There is no deterministic algorithm (or
even probabilistic algorithm that never makes a mistake) that is instance optimal over A and D, with
optimality ratio lessthan m /2.

Proof: Asin the proof of Theorem 7.1, we can assume without loss of generality that & = 1. We now
define a family of databases, each with m sorted lists. There is a parameter d. The top dm valuesin
each of thelistsis 1, and all remaining values are 0. There is only one object T that has a value of 1
in more than one of the lists, and this object 7" has value 1 in all of the lists. Therefore T' has overall
grade 1, and every other object has overall grade 0. Suppose that T' has position d in one of the lists,
and position dm in al of the other lists.

Let A bean arbitrary deterministicalgorithmin A. Consider the following distribution on databases:
each member is as above, and the list where T’ appears in position d is chosen uniformly at random. It
is easy to see that the expected number of sorted accesses under this distribution of algorithm A is at
least (dm + 1)/2. Since there must be some database where the number of sorted accessesis at least
equal to the expected number of sorted accesses, the number of sorted accesses on this database is at
least (dm + 1)/2, and so the middleware cost of .4 on the resulting database is at least (dm + 1)cg/2.
However, there is an algorithm in A that makes d sorted accesses and m — 1 random accesses, and so
has middleware cost dcs + (m — 1)cg. By choosing d sufficiently large, the ratio % can be
made as close as desired to m /2. The theorem follows (in the deterministic case).

In the case of probabilistic algorithmsthat never makes a mistake, we conclude as in the conclusion
of the proof of Theorem 4.6. O
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In the proof of Theorem 6.10, we showed that under the assumptions of Theorem 6.10 (the distinct-
ness property with min as the aggregation function), the optimality ratio of CA isat most 5m. The next
theorem gives alower bound that islinear in m.

Theorem 7.4: Let D be the class of all databases that satisfy the distinctness property. Let A be the
class of all algorithms that correctly find the top & answers for min for every database. There is no
deterministic algorithm (or even probabilistic algorithm that never makes a mistake) that is instance
optimal over A and D, with optimality ratio lessthan m /2.

Proof: The proof is obtained from the proof of Theorem 7.3 by modifying the construction slightly to
guarantee that we consider only databases that satisfy the distinctness property. The simple details are
left to the reader. O

The next theorem gives a matching lower bound for the upper bound on the optimality ratio of NRA
given in the proof of Theorem 6.4, provided the aggregation function is strict.

Theorem 7.5. Let ¢ be an arbitrary monotone, strict aggregation function with m arguments. Let D be
the class of all databases. Let A be the class of all algorithmsthat correctly find the top & objects for ¢
for every database and that do not make random accesses. There is no deterministic algorithmthat is
instance optimal over A and D, with optimality ratio less than m.

Proof: Asinthe proof of Theorem 7.1, we can assume without loss of generality that £ = 1. Werestrict
our attention to a subfamily D’ of D, by making use of a positive integer parameter d. The family D’
contains every database of the following form.

There are 2m special objects T, ..., T, Ty, . .., T}.. Thereisonly one object T in the database
with agrade of 1 in every list, and it is one of the 2m specia objects. Thus, the top object T' is one of
the special objects. For each ¢, let usrefer tolist ¢ asthe challengelist for the special objectsT'; and T7.
For each 4, the top 2m — 2 objectsin list : are precisely the special objects except for T; and T7/. Thus,
no specia object isin the top 2m — 2 of its challenge list, but all of the other special objects are. The
top d objectsin each list have grade 1, and every remaining object in each list hasgrade 0. If T = T; or
T =T/, then T isin position d in list . Thus, the unique top object isat position d in some list. Note
that each special object is at or below paositiond in itschallengelist, and exactly one special object (the
top object) isat position d in itschallengelist.

Let A be an arbitrary deterministic algorithm in A. We now show, by an adversary argument, that
the adversary can force A to have sorted access cost at least dm on some database in D’. Theideais
that the adversary dynamically adjusts the database as each query comesin from 4, in such away asto
evade allowing A to determine the top element until as late as possible.

Thefirst m—1 timesthat algorithm .4 reaches positiond in alist, the adversary forces.A to encounter
some object that is not special in position d. Thus, the first time that the adversary allows algorithm .4
to encounter a special object after position 2m — 2 isat position d of the last list 7 that it accesses to
depth d. Only at that time does the adversary allow the algorithm to discover which of T'; or T isthe
top object.

Itisclear that the sorted access cost of .A on thisresulting database is at |east dm. However, thereis
an algorithmin A that makes at most d sorted accessesto one list and 2m — 2 sorted accesses to each of
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access
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Table 1: Upper and Lower Bounds

the remaining lists, for atotal of at most d 4+ (m — 1)(2m — 2) sorted accesses. and so has middleware
cost at most (d 4+ (m — 1)(2m — 2))cg. By choosing d sufficiently large, the ratio @ _d{’)‘(cf =

. m m Ccs
can be made as close as desired to m. The theorem follows. [J

7.1 Summary of upper and lower bounds

Table 7.1 summarizes our upper and lower bounds. The rows correspond to the different restrictions
on the set A of algorithms, and the columns to the restrictions on the set D of databases and on the
aggregation function ¢. Note that SM means “ strictly monotone” and SMV means “ strictly monotone
in each variable’. Note also that ¢ = max { glgs, f}%}. For each such combination we provide our upper
and lower bounds, along with the theorem where these bounds are proven. (The upper bounds are
stated explicitly after the proofs of the referenced theorems.) The lower bounds may be deterministic or
probabilistic.

8 Related Work

Nepal and Ramakrishna [NR99] define an algorithm that is equivalent to TA. Their notion of optimality
is weaker than ours. Further, they make an assumption that is essentially equivalent to the aggregation
function being the min. 6

®The assumption that Nepal and Ramakrishnamake is that the aggregation function ¢ satisfies the lower bounding prop-
erty. This property saysthat whenever thereis somes suchthat z; < = for every 7, then t(z1, ..., zm) < t(z1,...,Tm).
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Guntzer, Balke, and Kiessing [GBKOO] also define an algorithm that is equivalent to TA. They
call this algorithm “ Quick-Combine (basic version)” to distinguish it from their algorithm of interest,
which they call “Quick-Combine”. The difference between these two algorithmsisthat Quick-Combine
provides a heuristic rule that determines which sorted list Z; to do the next sorted access on. The
intuitiveideais that they wish to speed up TA by taking advantage of skewed distributions of grades. 1’
They make no claims of optimality. Instead, they do extensive simulations to compare Quick-Combine
against FA (but they do not compare Quick-Combine against TA).

We fedl that it is an interesting problem to find good heuristics as to which list should be accessed
next under sorted access. Such heuristics can potentially lead to some speedup of TA (but the number
of sorted accesses can decrease by a factor of at most m, the number of lists). Unfortunately, there
are several problems with the heuristic used by Quick-Combine. The first problem is that it involves
a partial derivative, which is not defined for certain aggregation functions (such as min). Even more
serioudly, itiseasy to find afamily of examples that showsthat as aresult of using the heuristic, Quick-
Combine is not instance optimal. We note that heuristics that modify TA by deciding which list should
be accessed next under sorted access can be forced to be instance optimal simply by insuring that each
list is accessed under sorted access at least every u steps, for some constant «.

In another paper, Guntzer, Balke, and Kiessling [GBKO1] consider the situation where random
accesses are impossible. Once again, they define a basic algorithm, called “ Stream-Combine (basic ver-
sion)” and a modified agorithm (“ Stream-Combine”) that incorporates a heuristic rule that tellswhich
sorted list L; to do a sorted access on next. Neither version of Stream-Combine is instance optimal.
The reason that the basic version of Stream-Combine is not instance optimal is that it considers only
upper bounds on overall grades of abjects, unlike our algorithm NRA, which considers both upper and
lower bounds. They require that the top & objects be given with their grades (whereas as we discussed,
we do not require the grades to be given in the case where random accesses are impossible). Their
algorithm cannot say that an object isin the top & unless that object has been seen in every sorted list.
Note that there are monotone aggregation functions (such as max, or more interestingly, median) where
it ispossibleto determine the overall grade of an object without knowing its grade in each sorted list.

9 Conclusionsand Open Problems

We studied the el egant and remarkably simplealgorithm TA, aswell asalgorithmsfor the scenario where
random access is forbidden or expensive relative to sorted access (NRA and CA). To study these algo-
rithms, we introduced the instance optimality framework in the context of aggregation algorithms, and
provided both positive and negative results. Thisframework is appropriate for analyzing and comparing
the performance of algorithms, and provides a very strong notion of optimality. We also considered
approximation algorithms, and provided positive and negative results about instance optimality there as
well.

It is not hard to see that if an aggregation function ¢ satisfies the lower bounding property, then t(z1,...,zm) =
f(min{z,...,zm}), where f(z) = ¢(z, ..., z). Notein particular that under the natural assumptionthat ¢(z, ..., z) = =,
sothat f(z) = z, wehavet(zy,...,zm) =min{z1,...,zm}.

"They make the claim that the optimality results proven in [Fag99] about FA do not hold for a skewed distribution of
grades, but only for a uniform distribution. This claim is incorrect: the only probabilistic assumption in [Fag99] is that the
orderings given by the sorted lists are probabilistically independent.
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Open problems: Let us say that an algorithm is tightly instance optimal (over A and D) if it is
instance optimal (over A and D) and if its optimality ratio is best possible. Thus, Theorem 6.6 says
that NRA is tightly instance optimal, and Theorem 4.4 says that in the case of no wild guesses and a
strict aggregation function, TA istightly instance optimal. In the case of no wild guesses, for which
aggregation functionsis TA tightly instance optimal 218 What are the possible optimality ratios? For the
other cases where we showed instance optimality of one of our algorithms (as shown in Table 7.1), is
the algorithm in question in fact tightly instance optimal? For cases where our algorithms might turn
out not to be tightly instance optimal, what other algorithms are tightly instance optimal ?

There are several other interesting lines of investigation. One is to find other scenarios where in-
stance optimality can yield meaningful results. Another isto find other applications of our algorithms,
such asininformationretrieval. We already mentioned (Remark 6.7 and Section 6.4) theissue of finding
efficient data structuresfor NRA and CA in cases of interest, and of comparing CA versus TA.
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