

Batch Mode Update For View Maintenance Over
Semi-structured Data

Dazhi Wang, Junyi Xie

{wangdz, junyi}@cs.duke.edu

Advisor: Dr. Jun Yang
junyang@cs.duke.edu

Abstract

Unlike the structured data organization in traditional relational database management
system, the semi-structured data can be irregular and incomplete which is associated with
schemas contained in the data itself. The materialized view for semi-structured data
needs to be maintained in response to changes of base data. This report addresses the
batch-mode updating problem in view maintenance over semi-structured data. We extend
the base view maintenance algorithm from [1]. We propose a batch mode update
algorithms that does not incur dependence problem when view is updated out of the order
of base data updates. Our initial experiments show that when the number of updates is
small, overhead of batch mode update as block I/O is on the same level of B+ tree index
and hash index. And it takes around two orders of magnitude less access time than these
two index structures when number of updates increase to more than 100,000.
Additionally, it does not require special index structure if the semi-structured data is
stored using relational database which saves the graph structured data by edge.

Introduction
The fact that most data source from web does not conform to traditional relational data
model leads to aggressive research work on semi-structured data. Currently most research
in this area is aimed at extending database management techniques to semi-structured
data. One of these is the incremental view maintenance problem over semistructured data.
View over base data can be used to filter the data and restructure it. And views are often
materialized to speed up the response time of queries from users when underlying data is
remote or response time is crucial. The key problem of view maintenance is that how to
keep data in view consistent with the base data. That means when the base data updated,
how to update view accordingly. View recomputation from scratch is the simplest way
but the most expensive way so it is not realistic to re-compute view in reality. Many viw
maintenance techniques have been explored in relational database. The main idea is that
by only computing the incremental updates to the view based on the updates to the
database, the view maintenance work will become much cheaper than re-computation

from scratch. However, unlike the mature incremental view maintenance algorithms for
relational database, the incremental view maintenance algorithms for semi-structured data
are far from perfect and optimality. There are several reasons. First, the semi-structured
data is “schema-less” data, which means it does not have any fixed schema and well-
defined key constraints for the stored data. Without schema, the view maintenance
algorithms in relational database, which heavily depend on referential integrity do not
hold any longer in scenario of semi-structured data. Second, there is no uniform data
model for semi-structured data so far. Each model puts some kind of constraint over the
data stored, for example, WHAX data model regulates that every edge from a node can
be identified by a key value called local identifier. Therefore view maintenance
algorithms over one semi-structured data model does not hold on other semi-structured
data model in general. And, there is no uniform query language defined for semi-
structured data. In contrast to the case of relational database in which SQL is the
standard query langue, there are many different and incompatible query languages in
semi-structured data, such as XML-QL, Lorel, XQL, XSLT, etc. In 1998, Abiteboul el
proposes a simple view specification mechanism and an algorithm for incremental view
maintenance over semi-structured data. The data model used is Objective Exchange
Model(OEM). However, the algorithms proposed in that paper has some weaknesses that
the author left for future work. One of these weaknesses is that it does not support batch-
mode view update. As consequence, each update to base data will trigger at lease one
view update query evaluation and view is updated in sequence of base update order. In
this project, we are aimed at, first to propose an alternative algorithm which supports
view update for a set of base data updates, second, it can reduce update cost in batch
mode and we discuss the dependence problem to make sure it will not jeopardize the
consistency between view and base data since the order of view update is not consistent
with order of base data update. The report organizes as following, we first introduce the
data model, query language in lorel system. Then we introduce how view is
incrementally maintained using the base algorithm introduced in [1]. In next section we
introduce the batch-mode update algorithm and discuss the update dependence problem.
We then presents the simulation results we have so far to compare the performance
between non-batch mode update and batch-mode update. At last, we conclude this report
by some observations from this project and some future work.

Base View Maintenance Algorithms

OEM Data Model
 In semi-structed data, the database can be described as a labeled, directed graph(OEM,
Object Exchange Model) in which each vertex in the graphs represents an object and each
object has a unique object identifier (oid). The object can be either atomic object or
complex object. OEM is designed to handle the incompleteness as well as the structural
and type heterogeneity of data. Figure 1 is a simple example of OEM database, in which
semantic information is included in the labels as part of the data and can be exchanged
dynamically. In this respect, this OEM graph is self-describing. Figure 1 describes a
simple bibliographic database. It is easy to see that there is no schema in database and
except the unique object identifier (oid) there is no way to globally identify the objects in
graph.

Figure 1 Sample OEM Data Model

Lorel Query Language
The Lorel query language uses the familiar select-from-where syntax of SQL and can be
considered as extension to OQL that provides powerful path expression for traversing the
data and extensive coercion rules for a more forgiving type system. Following example
is a query that returns all Entrée sub-objects of a resteraunt named “China Hunan” and
one of its ingredients has the value “Mushroom”
Exmaple 1
Select e
From Guide.Restaurant r, r.Entrée e
Where r.Name = “China Hunan”
and e.Ingredient = “Mushroom”
The path expression in lorel query language is composed of a set of one step path which
has the form x.L y where x and y are variables bound to object ids and L is variable
bound to edge label.

View Definition in Lorel
The view definition in Lorel can import objects and edges from a source database into a
view and new objects and edges can be created in the view. Additionally the view
specification extends select-from-where statement with a with clause. Each object and
edge along a path in the with clause is included in the view. In other words, select-from-
where can only return a set of objects and with clause imports some structure into view.
Example 2 defines a view as a result of example 1.

Exmaple 2
Define view favoriteEntrees as Entrees = Select e
From Guide.Restaurant r, r.Entrée e
Where exists x in r.Name: x = “China Hunan”
and exists y in e.Ingredient: y = “Mushroom”
With e.Name n, e.Ingredient i;

Incremental View Maintenance Algorithms
In brief, the basic view maintenance algorithm can be divided into three steps. First of all,
it checks for relevance of update U to the view instance V defined by the view
specification S. In this step, an auxiliary data structure named RelevantOIDs is used to
check whether a base data update is relevant to the view. The RelevantOIDs is a set of all
object oids which are touched in the course of view evaluation. Any object touched in
view evaluation, no matter whether its binding can produce an object into view, is
recorded with the variable bound to it. The second step is to generate view maintenance
statements. The key idea is to bind the update objects to the view definition and the
evaluate it. Since this update is relevant and from set RelevantOIDs the variable bound to
this object is already known. We can evaluate the statement efficiently than original view
specification since some variables in where clause are already bound to objects. In the
course of evaluating view update statements, deletion should require additional attention.
This is because when a view update statement generates an object which should be
deleted from view, this object should not be deleted from before checking whether there
exists another path in base data that can make this object remain in the view. This extra
step does not hold if the base data model is a tree rather than a graph. Example 3 shows
how view maintenance statement is generated given an update to base data.
Example 3
Assume an insertion:
<Ins, &10, Ingredient, &15>.
Generated update query:
Select e
From Guide.Restaurant r, r.Entree e
Where exists x in r.Name:x = “China Hunan”
and exists &15 in &10.Ingredient: &15 = “Mushroom”
and e=&10
In above example, an edge insertion <Ins, &10, Ingredient, &15> is performed on the
base data. Obviously &10 and &15 should be bound to variable e and y respectively in
the view definition in example 2. Now we get the view update statement in example 3. It
is easy to see the statement in example 3 can be more efficiently evaluated than that in
example since it does not need to search the base data graph to bound variable e and y.
The last step is to simply install the objects generated from view update statement
evaluation

Weakness of Base Algorithms
The main problem in the above base algorithms we would like to address in this project is
that it is not able to support batch-mode view update. Actually, every update to the base
data, no matter to what extent it will effect the view, will trigger at least one view

statement evaluation. Next we introduce the batch-mode update algorithms that are able
to support batch-mode update to views without tree-like structure generated in WHAX
data model. Our main object is to update view for a set of base data updates rather than
for single base data update, and we want to see whether it will reduce the update cost in
batch mode and we discuss the dependence problems.

Batch View Update without Tree/Graph Structure Generation
In WHAX data model, the view update can be done in batch mode. However, there is an
underlying assumption in WHAX model, that is, when update comes to base data, its
search path from root to the node updated is already known. Thus multiple updates can be
merged together through deep union operator. This is possible in WHAX model since
each node in WHAX model can be uniquely identified by the path from root to this node
itself. However, it does not hold in OEM model since there is no such presumed key-like
path for each update to base data. We can get this path by evaluating this update over and
merge paths into a graph structure for all view updates. But this will introduce the same
cost of view update in non-batch mode. Therefore, our objective is to do batch-model
update without any tree/graph structure generation. Our solution has following two
phrases: 1) Classify updates to base data 2) Batch mode view update.

Classify updates to base data
In the first phrase, we classify base updates into different categories. Actually in OEM
model, there are two kinds of base updates: edge insertion/deletion and node
insertion/deletion. For edge insertion/deletion, we classify updates by the type of edge
involved in update. Updates of edge insertion/deletion fall into the same class of updates
if the edges involved share the same label. Then we build a table for each class of
updates. The schema of this table is (startOID, endOID, op), where startOID and
endOID are the objects of starting and end points of edge, and op indicates which kind of
operation of updates: insertion or deletion. The value change for label can be seen as a
deletion followed by an insertion. For example, we have following set of updates:
Example 4
I(o1, Name, o2), D(o2, Rating, o3), I(o4, Name, o6), I(o1,Entree, o5), I(o7, Name, o9)
D(o11, Rating, o12)

We can classify above updates into three categories represented by following tables:

Each table represents a class of updates: (x.Name y) (x.Rating y) (x.Entree y)

For node insertion/deletion, actually we can convert it to a set of edge insertion/deletion
then classify the node updates as edge updates. Following example shows how to convert
a node update into a set of edge updates.

startOID endOID op
&o1 &o2 I
&o4 &o6 I
&o7 &o9 I

startOID endOID op
&o2 &o3 D

&o11 &o12 D

startOID endOID op
&o1 &o5 I

Example 5
Assume node &o in base data will be deleted, and there are two edges associated with
node &o, then when delete &o, we convert a node deletion into two edge deletion and
one deletion. Obviously, the two edge deletion can be classified into classes in the same
way as edge update. Similarly we can convert node insertion into a set of edge insertion
and a node update into a set of edge deletion followed by a set of edge insertion.

&o2

&o

la

lb

del(&o1.la &o)

del(&o1.la &o)

del(&o)

Figure 2 Convert Node Update to Edge Update

Algorithm Outline
We divide the algorithm into two phases. In the first phase, we construct the update table
for each view maintenance statement. When an update comes, we first check its
relevance to the view definition using the relevantOID set. If the oids in the update are
not in relevantOID, we just ignore this update; otherwise we classify the update by its
edge label and insert a tuple into the corresponding update table. If this update needs a
new maintenance routine to update the view, in this case there is no existing table in
which this update can be inserted into, we then create a new table for this kind of updates.

In the second phase, we evaluate each maintenance statement in batch mode. Because we
have grouped together the updates belonging to the same maintenance routine, it is
possible to batch process the maintenance statement on the whole table, instead of on a
per-update basis.

As an example of batch update, assume the semistructured data is represented by OEM
model and stored in relational database as an edge table, which has the form <pid, label,
cid>. For the class of updates which has the form x.A y, the view maintenance routine is
to first check if x has a parent z via an edge labeled B; then check whether z has a child
connected by an edge labeled C. If yes, we add z into the view. To batch process this
maintenance statement, we first join the update table corresponding to x.A y with the edge
table to find all x’s parents z connected by a B edge and create a temporary table , then
join this table with the edge table to find all z that has an edge labeled C, finally add the
results into the view.

Dependence Problems
One potential problem for batch update is the ordering of view updates. For the base data,
suppose update u1 is applied before update u2, but in the batch mode view update, u2 may

be applied before u1. If we assume the view update is monotone, there won’t be
dependence between insertions and insertions or deletions and deletions. But the update
dependence problem will arise if one insertion inserts an object into the view, while
another deletion will delete the same object in the view. In this case we have to apply the
edge insertion and deletion to the view in their original order. We discuss this potential
problem under the following 2 cases:

(1) The insertion and deletion involve the same edge. For this case we can simply
process it before applying the updates to the view. If an insertion comes, we check
the corresponding deletion table to see if a tuple with the same oid and edge label
exists. If yes, just remove that tuple. And for an edge deletion, the processing is
similar.

(2) The insertion and the deletion involve different edges. In this case the two sets of
objects generated by these two updates are distinct. That is, there is no
dependence between these 2 updates. The intuition behind this is that we apply
the updates to the view after we have already updated the base data, therefore the
evaluation of the maintenance statement over the base data always generate the
correct result.

Based on the discussion above, the dependence problem in our batch update algorithm
can be easily eliminated.

Experiments and Results
To evaluate our batch update algorithm, we make a simulation program that calculates
the number of disk I/Os as well as the disk access time. We assume that the OEM model
that represents the XML files are stored as edge tables. The database may contain many
kinds of indices, but only Vindex and Lindex are used by the view maintenance
statements to get the objects that should be inserted/deleted to/from the XML views.The
Vindex supports finding all atomic objects with a given incoming edge label and
satisfying a given predicate. The Lindex supports finding all parents of a given object via
an edge with a given label. Since the view maintenance statement has already contained
much variable-binding information, it is a reasonable that only Vindex and Lindex are
used to evaluate the maintenance statement. Some of the parameters in our simulated
environment are as follows:
Number of update classes 10
Related probability 0.1
Disk block size 4KB
Memory size 4MB
Number of blocks of edge table 6000
Vindex 4 level B+ tree
Lindex Extensible hash table
Disk seek time 100ms
Disk read time 0.5ms
Max/Min # of simple path expressions 6/2

Table 1 parameters in the simulation

In the table above the related probability represents the percentage of the base data
updates that is related to the view definition, the Vindex is stored as a 4-level B+ tree, and
the Lindex is stored as an extensible hash table. The disk seek time is the time for the
head to move to the right block and the disk read time is the time that the head reads one
block. The last parameter is the max/min number of simple path expressions in a single
view maintenance statement.

In our simulation, we considered 4 methods of evaluating path expressions in a
maintenance statement:

(1) Batch mode, which joins the update table with the edge table to get the objects
that should be inserted into or deleted from the XML view;

(2) Non-batch mode, this method assumes no index structure exists in the database.
For each update, given the variable-binding information, this method will evaluate
the path expression by looking through the edge table;

(3) Lindex operator, which evaluates path expressions using Lindex given the binding
information of the child and a labeled edge;

(4) Vindex operator, which evaluates path expressions using Vindex given the binding
information of the parent, a labeled edge and a predicate.

Disk I/O Comparison

0
1
2
3
4
5
6
7

Clas
s 0

:

Clas
s 1

:

Clas
s 2

:

Clas
s 3

:

Clas
s 4

:

Clas
s 5

:

Clas
s 6

:

Clas
s 7

:

Clas
s 8

:

Clas
s 9

:

Classes of Updates

10
-b

as
ed

 L
og

ar
ith

m
 o

f
D

is
k

I/O

Batch Mode Update Non-batch Mode Update

Figure 3 Disk I/O comparison for various classes of updates

Figure 5 shows the disk I/O comparison of batch mode update and non-batch mode
update for different classes of updates, in which the number of updates is 10000. From
this figure we can see that the batch mode update saves a lot more I/O operations, about 2
order of magnitude, than the non-batch mode update. The reason is that for batch mode
update, we read the tuples in the update table as much as possible into main memory, and
sequentially scan the edge table to join with the update table. In most cases 4MB main
memory is enough to hold the entire update table, therefore we only need to scan the edge
table once. But for non-batch mode update, the edge table has to be scanned for each
single update.

Figure 4 shows the disk access time of batch mode update and non-batch mode update for
different classes of updates. We get the similar result as Figure 3. That’s because most of
the disk I/Os in both batch mode update and non-batch mode update are sequential scans
of the edge table, the time to read one disk block is the same for these 2 methods.
Therefore the disk access time is proportional to number of disk I/Os.

Figure 5 compares the overall performance of all 4 path evaluation methods: batch mode,
non-batch mode, Lindex and Vindex. When evaluating path expressions using index,
some of the path expressions in a maintenance statement are evaluated using Lindex and
some are evaluated by Vindex, but for simplicity in our simulation we assume that the
path expressions in a statement are evaluated either all by Lindex or all by Vindex.

From Figure 5 we can see that when the number of updates is small, the index-based path
expression evaluation methods perform better than the batch mode update. However as
the number of updates increases, the batch mode update outperforms the index-based

Access Time Comparison(ms)

0
1
2
3
4
5
6
7

Clas
s 0

:

Clas
s 1

:

Clas
s 2

:

Clas
s 3

:

Clas
s 4

:

Clas
s 5

:

Clas
s 6

:

Clas
s 7

:

Clas
s 8

:

Clas
s 9

:

Classes of Updates

10
-b

as
ed

 L
og

ar
ith

m
 o

f
Ac

ce
ss

 T
im

e

Batch Mode Update Non-batch Mode Update

Figure 4 Disk access time comparison for various classes of updates

methods. The reason is that the index update methods are on a per-tuple basis, when a
new update comes, several random disk I/Os are needed to search the index structure,
which cost much more time than sequential disk I/Os. Therefore the disk access time for
index-based updates grow linearly with the number of updates. On the other hand, for the
batch mode update the disk access time will have a remarkable increase only when the
main memory can’t hold the entire update table. As long as the main memory can hold
the update table, the whole edge table only needs to be scaned once, and the disk access
time won’t change much. What’s more, the entire disk I/Os in batch mode update are
sequential I/Os, which can save much access time.

Conclusion and Future Work
In this project we proposed the batch mode update method to update the materialized
view of semistructured data. Compared with the approach of recomputing the view from
scratch, this method can use the binding information in the view maintenance statement,
therefore saving much time compared to executing the view definition query without any
binding information; on the other hand, it also saves disk I/Os and disk accessing time by
grouping updates that can be processed by the same maintenance statement together into
one table, and then evaluating the statement on that table. From our simulation result we
can see that when the number of base data updates is large, the batch-mode view update
method greatly reduce the disk access time.

For our future work, our idea of grouping updates together only has the potential to do
view updates in batch mode, but how to do it really depends on the real systems, for
example how the semistructured data is stored, and what kind of index structure it
contains, etc. If the semistructured data is stored using a different data structure from
edge table, we need to find other ways to do batch updates on that data structure, or

0

2

4

6

8

10

1000 10000 100000

Number of Updates

10
-b

as
ed

 L
og

ar
ith

m
 o

f
A

cc
es

s
Ti

m
e Batch Mode Update

Non-batch Mode
Lindex
Vindex

Figure 5 Overall performance comparison

design efficient method to construct an edge table from that data structure. And how to
cluster the updates to do batch update using some index structures is also an interesting
topic.

In our project we only considered the update that has the form <oid1, label, oid2>.
Because currently there are many ways to store semistructured data, the form for
semistructured data update is also different. We need to find ways to group the updates
together and batch process them given different update forms.

All simulations so far are based on an assumed environment, to measure the precise
performance of batch mode update, we need to test the algorithm using real benchmarks
or system simulation.

Reference
[1] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. Wiener. Incremental
Maintenance for Materialized Views over Semistructured Data. Proceedings of the
Twenty-Fourth International Conference on Very Large Databases, New York, August
1998.
[2] J. McHugh and J. Widom. Query Optimization for XML. Proceedings of the Twenty-
Fifth International Conference on Very Large Data Bases, pages 315-326, Edinburgh,
Scotland, September 1999.
[3] Yannis Papakonstantinou, Vasilis Vassalos, Query Rewriting for Semistructured Data.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
Philadelphia, Pennsylvania, June 1999.
[4]Shanmugasundaram, Kiernan, Shekita, Fan, Funderburk: Querying XML views of
relational data , VLDB 2001
[5] Yue Zhuge and Hector Garcia-Molina, Self-Maintainability of Graph Structured
Views, Technical report, Department of Computer Science, Stanford University,
September 1998.
[6] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. Wiener. Incremental
Maintenance for Materialized Views over Semistructured Data. Proceedings of the
Twenty-Fourth International Conference on Very Large Databases, New York, August
1998.

