
1

Introduction

CPS 216

Advanced Database Systems

2

Course goals

Become a “power user” of commercial database
systems

Learn to apply database ideas/techniques to new
applications and other areas of computer science

Get a solid background for doing database research

3

CPS 216 vs. CPS 196.3

Undergraduate database courses (e.g., CPS 196.3 last
semester) tend to emphasize more on database design and
application programming

CPS 216 emphasizes more on the implementation
techniques of database systems

More advanced indexing, query processing, and optimization
techniques (e.g., R-trees, linear hashing, histograms, adaptive
query processing, distributed databases, XML indexing, etc.)

Those of you who took CPS 196.3 (or an equivalent
undergrad database course) before may get different
homework problems from the rest of the class

2

4

Course roadmap

The basics
Relational algebra, database design, SQL, application
programming

Materials overlap with CPS 196.3 and are covered at a faster pace

The internals
Storage, indexing, query processing and optimization, concurrency
control and recovery

Some fundamentals overlap with CPS 196.3, but the rest is new

The extras
XML and XML indexing

Introduction overlaps with CPS 196.3, but indexing is new

5

What is a database system?

From Oxford Dictionary:

Database: an organized body of related information

Database system, DataBase Management System
(DBMS): a software system that facilitates the
creation and maintenance and use of an electronic
database

6

What do you want from a DBMS?
Answer queries (questions) about data
Update data
And keep data around (persistent)

Example: a traditional banking application
Each account belongs to a branch, has a number, an owner, a
balance, …
Each branch has a location, a manager, …
Query: What’s the balance in Homer Simpson’s account?
Modification: Homer withdraws $100
Persistency: Homer will be pretty upset if his balance disappears
after a power outage

3

7

Sounds simple!

ASCII file

Accounts/branches separated by newlines

Fields separated by #’s

1001#Springfield#Mr. Morgan

... ...
00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00
... ...

8

Query

What’s the balance in Homer Simpson’s account?

A simple script
Scan through the accounts file

Look for the line containing “Homer Simpson”

Print out the balance

1001#Springfield#Mr. Morgan

... ...
00987-00654#Ned Flanders#2500.00
00123-00456#Homer Simpson#400.00
00142-00857#Montgomery Burns#1000000000.00
... ...

9

Query processing tricks
Tens of thousands of accounts are not Homer’s

Cluster accounts: Those owned by “A...” go into file A; those
owned by “B...” go into file B; etc.

• Change the script to decide which file to search

What happens when the query changes to: What’s the
balance in accounts 00142-00857?

4

10

Observations

Tons of tricks (not only in query processing, but also
in storage, concurrency control, recovery, etc.)

Different tricks may work better in different usage
scenarios

Same tricks get used over and over again in different
applications

We need a library, or better yet, a server (to support
sharing, backup, etc.)

11

The birth of DBMS – 1

(Pretty drawing stolen from Hans-J. Schek’s VLDB 2000 slides)

12

The birth of DBMS – 2

(Pretty drawing stolen from Hans-J. Schek’s VLDB 2000 slides)

5

13

The birth of DBMS – 3

(Pretty drawing stolen from Hans-J. Schek’s VLDB 2000 slides)

14

Early efforts

“Factoring out” data management functionalities
and from applications standardizing these
functionalities is an important first step

CODASYL standard (circa 1960’s)

Bachman got a Turing award for this in 1973

But getting the abstraction right (the API between
applications and the DBMS) is still tricky

15

CODASYL

Query: Who have accounts with 0 balance managed by a
branch in Springfield?

Pseudo-code of a CODASYL application:

Use index on account(balance) to get accounts with 0 balance;
For each account record:

Get the branch id of this account;
Use index on branch(id) to get the branch record;
If the branch record’s location field reads “Springfield”:

Output the owner field of the account record.

Programmer controls “navigation”: accounts → branches
How about branches → accounts?

6

16

What’s wrong?

When data/workload characteristics change
The best navigation strategy changes

The best way of organizing the data changes

With the CODASYL approach
To write correct code, application programmers need to
know how data is organized physically (e.g., which
indexes exist)

To write efficient code, application programmers also
need to worry about data/workload characteristics

Can’t cope with change!

17

The relational revolution (1970’s)

A simple data model: data is stored in relations (tables)

A declarative query language: SQL

SELECT Account.owner
FROM Account, Branch
WHERE Account.balance = 0
AND Branch.location = ’Springfield’
AND Account.branch_id = Branch.branch_id;

Programmer specifies what answers a query should return,
but not how the query is executed

DBMS picks the best execution strategy based on
availability of indexes, data/workload characteristics, etc.

Provides physical data independence

18

Physical data independence

Applications should not need to worry about how
data is physically structured and stored

Applications should work with a logical data model
and declarative query language

Leave the implementation details and optimization
to DBMS

The single most important reason behind the success
of DBMS today

And a Turing Award for E. F. Codd

7

19

Major DBMS today

Oracle

IBM DB2 (from System R, System R*, Starburst)

Microsoft SQL Server

NCR Teradata

Sybase

Informix (acquired by IBM)

PostgreSQL (from UC Berkeley’s Ingres, Postgres)

Tandem NonStop (acquired by Compaq, now HP)

MySQL and Microsoft Access?

relational

inside

20

Modern DBMS features

Persistent storage of data

Logical data model; declarative queries and updates
→ physical data independence

Relational model is the dominating technology today

XML is a hot wanna-be

What else?

21

DBMS is multi-user

Example
get account balance from database;
if balance > amount of withdrawal then

balance = balance - amount of withdrawal;
dispense cash;
store new balance into database;

Homer at ATM1 withdraws $100

Marge at ATM2 withdraws $50

Initial balance = $400, final balance = ?

8

22

Final balance =

read balance;

if balance > amount then
balance = balance - amount;
write balance;

read balance;
if balance > amount then

balance = balance - amount;
write balance;

Homer withdraws $100: Marge withdraws $50:

23

Final balance =

read balance;

if balance > amount then
balance = balance - amount;
write balance;

read balance;

if balance > amount then
balance = balance - amount;
write balance;

Homer withdraws $100: Marge withdraws $50:

24

Concurrency control in DBMS

Appears similar to concurrent programming
problems?

But data not main-memory variables

Appears similar to file system concurrent access?
Approach taken by MySQL initially
(fun reading: http://openacs.org/philosophy/why-not-mysql.html)

But want to control at much finer granularity
• Or else one withdrawal would lock up all accounts!

9

25

Recovery in DBMS

Example: balance transfer
decrement the balance of account X by $100;
increment the balance of account Y by $100;

Scenario 1: Power goes out after the first instruction

Scenario 2: DBMS buffers and updates data in
memory (for efficiency); before they are written back
to disk, power goes out

Log updates; undo/redo during recovery

26

Summary of modern DBMS features

Persistent storage of data
Logical data model; declarative queries and updates
→ physical data independence
Multi-user concurrent access
Safety from system failures
Performance, performance, performance

Massive amounts of data (terabytes ~ petabytes)
High throughput (thousands ~ millions transactions per
minute)
High availability (≥ 99.999% uptime)

27

Modern DBMS architecture

Disk(s)

Applications

OS

Parser

Query Optimizer

Query Executor

Storage Manager

Logical query plan

Physical query plan

Access method API calls

SQL

File system API callsStorage system API calls

DBMS

10

28

People working with databases

End users: query/update databases through application user
interfaces (e.g., Amazon.com, 1-800-DISCOVER, etc.)

Database designers: design database “schema” to model
aspects of the real world

Database application developers: build applications that
interface with databases

Database administrators (a.k.a. DBA’s): load, back up, and
restore data, fine-tune databases for performance

DBMS implementors: develop the DBMS or specialized
data management software, implement new techniques for
query processing and optimization inside DBMS

29

Course information

Books
Required: Readings in Database Systems (a.k.a. the red book), 3rd
Ed., edited by M. Stonebraker and J. M. Hellerstein.

Recommended: Database Systems: The Complete Book, by H. Garcia-
Molina, J. D. Ullman, and J. Widom.

Web site: http://www.cs.duke.edu/courses/spr02/cps216/
Course info, office hours, syllabus, reference sections in GMUW

Lecture slides, assignments, programming notes

Blackboard: for posting grades only

Newsgroup: duke.cs.cps216

30

Course load

4 homework assignments (30%)
Programming included

Open-ended course project (30%)
Details to be given in the third week of class

Midterm (20%)

Final (20%)
Comprehensive, but with emphasis on the second half of
the course

11

31

Reading assignment for next week

In the red book:
A Relational Model of Data for Large Shared Data
Banks, by E. F. Codd

Note: If you are new to relational model and algebra, do
not read this paper until we cover these topics in lecture
on Monday

