
1

SQL: Part I

CPS 216

Advanced Database Systems

2

Announcements

Reading assignment for this week: “A History and 
Evaluation of System R,” by Chamberlin et al.

Homework #1 assigned today
Due February 10 (in 2-½ weeks)

Course project assigned today
Milestone 1 (proposal): March 5 (after midterm and 
before spring break)

Milestone 2 (status report): April 14

Demo period (final report): April 28 – May 3

No recitation session this Friday (January 24)

3

SQL

SQL: Structured Query Language
Pronounced “S-Q-L” or “sequel”

The standard query language support by most 
commercial DBMS

A brief history
IBM System R

ANSI SQL89

ANSI SQL92 (SQL2)

SQL3 (still under construction after years!)

4

Creating and dropping tables
CREATE TABLE table_name
(…, column_namei column_typei, …);
DROP TABLE table_name;
Examples
create table Student (SID integer,

name varchar(30), email varchar(30),
age integer, GPA float);

create table Course (CID char(10), title varchar(100));
create table Enroll (SID integer, CID char(10));
drop table Student;
drop table Course;
drop table Enroll;
-- everything from -- to the end of the line is ignored.
-- SQL is insensitive to white space.
-- SQL is case insensitive (e.g., ...Course... is equivalent to
-- ...COURSE...)

5

Basic queries: SFW statement

SELECT A1, A2, …, An

FROM R1, R2, …, Rm

WHERE condition;

Also called an SPJ (select-project-join) query

Equivalent (not really!) to relational algebra query
πA1, A2, …, An

( σcondition (R1 × R2 × … × Rm))

6

Example: reading a table

SELECT * FROM Student;
Single-table query, so no cross product here

WHERE clause is optional

* is a short hand for “all columns”



2

7

Example: selection and projection

Name of students under 18
SELECT name FROM Student WHERE age < 18;

When was Lisa born?
SELECT 2003 – age
FROM Student
WHERE name = ’Lisa’;
SELECT list can contain expressions

• Can also use built-in functions such as SUBSTR, ABS, etc.

String literals (case sensitive) are enclosed in single 
quotes

8

Example: join

SID’s and name’s of students taking courses with 
the word “Database” in their titles

SELECT Student.SID, Student.name
FROM Student, Enroll, Course
WHERE Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND title LIKE ’%Database%’;
LIKE matches a string against a pattern
• % matches any sequence of 0 or more characters

Okay to omit table_name in table_name.column_name if 
column_name is unique

9

Example: rename

SID’s of students who take at least two courses
Relational algebra query:
πe1.SID
( (ρe1 Enroll) e1.SID = e2.SID ∧ e1.CID ≠ e2.CID (ρe2 Enroll) )

SQL:
SELECT e1.SID AS SID
FROM Enroll AS e1, Enroll AS e2
WHERE e1.SID = e2.SID
AND e1.CID <> e2.CID;
AS keyword is completely optional

10

A more complicated example

Titles of all courses that Bart and Lisa are taking 
together

FROM Student sb, Student sl, Enroll eb, Enroll el, Course c

WHERE sb.name = ’Bart’ AND sl.name = ’Lisa’

AND eb.SID = sb.SID AND el.SID = el.SID

AND eb.CID = el.CID

SELECT c.title

Tip: Write the FROM clause first, then WHERE, and then SELECT

AND eb.CID = c.CID;

11

Why SFW statements?

Out of many possible ways of structuring SQL 
statements, why did the designers choose SELECT-
FROM-WHERE?

A large number of queries can be written using only 
selection, projection, and cross product (or join)

Any query that uses only these operators can be written 
in a canonical form: πL (σp (R1 ×… × Rm))

• Example: πR.A, S.B (R p1 S) p2 (πT.C σp3 T) =

πR.A, S.B, T.C σp1 ∧ p2 ∧ p3 ( R × S × T )

SELECT-FROM-WHERE captures this canonical form

12

Set versus bag semantics

Set
No duplicates

Relational model and algebra use set semantics

Bag
Duplicates allowed

Number of duplicates is significant

SQL uses bag semantics by default



3

13

Set versus bag example

SID CID
142 CPS216
142 CPS214
123 CPS216
857 CPS216
857 CPS230
456 CPS214
... ...

SID
142
123
857
456
...

πSID Enroll

Enroll

SELECT SID
FROM Enroll;

SID
142
142
123
857
857
456
...

14

A case for bag semantics

Efficiency
Saves time of eliminating duplicates

Which one is more useful?
πGPA Student
SELECT GPA FROM Student;
The first query just returns all possible GPA’s

The second query returns the actual GPA distribution

Besides, SQL provides the option of set semantics 
with DISTINCT keyword

15

Operational semantics of SFW

SELECT [DISTINCT] E1, E2, …, En
FROM R1, R2, …, Rm
WHERE condition;
For each t1 in R1:

For each t2 in R2: … …
For each tm in Rm:

If condition is true over t1, t2, …, tm:
Compute and output E1, E2, …, En

If DISTINCT is present
Eliminate duplicate rows in output

t1, t2, …, tm are often called tuple variables

16

Example: forcing set semantics

SID’s of students who take at least two courses
SELECT e1.SID AS SID
FROM Enroll AS e1, Enroll AS e2
WHERE e1.SID = e2.SID
AND e1.CID <> e2.CID;

• What if Bart takes CPS216 and CPS214?
• Changing <> to > may help in this case

• But what if Bart takes CPS216, CPS214, and CPS230?
SELECT DISTINCT e1.SID AS SID
...

• Duplicate SID values are removed from the output

17

SQL set and bag operations

UNION, EXCEPT, INTERSECT
Set semantics

Exactly like set ∪, −, and ∩ in relational algebra

UNION ALL, EXCEPT ALL, INTERSECT ALL
Bag semantics

Think of each row as having an implicit count (the 
number of times it appears in the table)

Bag union: sum up the counts from two tables

Bag difference: proper-subtract the two counts

Bag intersection: take the minimum of the two counts

18

Examples of bag operations

fruit
apple
apple
orange

fruit
apple
orange
orange

Bag1 Bag2

Bag1 UNION ALL Bag2
fruit
apple
apple
orange
apple
orange
orange

Bag1 EXCEPT ALL Bag2
fruit
apple

Bag1 INTERSECT ALL Bag2
fruit
apple
orange



4

19

Examples of set versus bag operations

Enroll(SID, CID), ClubMember(club, SID)
(SELECT SID FROM ClubMember)
EXCEPT
(SELECT SID FROM Enroll);

• SID’s of students who are in clubs but not taking any classes

(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll);

• SID’s of students who are in more clubs than classes

20

Summary of SQL features covered so far

SELECT-FROM-WHERE statements (select-project-join 
queries)

Set and bag operations

Next: how to nest SQL queries

21

Table expression

Use query result as a table
In set and bag operations, FROM clauses, etc.

A way to “nest” queries

Example: names of students who are in more clubs 
than classes

(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)

SELECT DISTINCT name
FROM Student,

(

) AS S
WHERE Student.SID = S.SID;

22

Scalar subqueries
A query that returns a single row can be used as a value in 
WHERE, SELECT, etc.
Example: students at the same age as Bart

SELECT *
FROM Student
WHERE age = (

);

SELECT age
FROM Student
WHERE name = ’Bart’

What’s Bart’s age?

Runtime error if subquery returns more than one row

Under what condition can we be sure that this runtime 
error would not occur?

name is a key of Student

What if subquery returns no rows?

23

IN subqueries

x IN (subquery) checks if x is in the result of 
subquery

Example: students at the same age as (some) Bart
SELECT *
FROM Student
WHERE age IN (

);

SELECT age
FROM Student
WHERE name = ’Bart’

What’s Bart’s age?

24

EXISTS subqueries

EXISTS (subquery) checks if the result of subquery is 
non-empty

Example: students at the same age as (some) Bart
SELECT *
FROM Student AS s
WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’
AND age = s.age);

It is a correlated subquery—a subquery that references 
tuple variables in surrounding queries



5

25

Operational semantics of subqueries
SELECT *
FROM Student AS s
WHERE EXISTS (SELECT * FROM Student

WHERE name = ’Bart’
AND age = s.age);

For each row s in Student
Evaluate the subquery with the appropriate value of s.age
If the result of the subquery is not empty, output s.*

The DBMS query optimizer may choose to process the 
query in an equivalent, but more efficient way (example?)

26

Scoping rule of subqueries

To find out which table a column belongs to
Start with the immediately surrounding query

If not found, look in the one surrounding that; repeat if 
necessary

Use table_name.column_name notation and AS
(renaming) to avoid confusion

27

Another example

SELECT * FROM Student s
WHERE EXISTS

(SELECT * FROM Enroll e
WHERE SID = s.SID
AND EXISTS

(SELECT * FROM Enroll
WHERE SID = s.SID
AND CID <> e.CID));

Students who are taking at least two courses

28

Quantified subqueries

A quantified subquery can be used as a value in a WHERE
condition

Universal quantification (for all):
… WHERE x op ALL (subquery) …

True iff for all t in the result of subquery, x op t

Existential quantification (exists):
… WHERE x op ANY (subquery) …

True iff there exists some t in the result of subquery such that x op t

Beware
• In common parlance, “any” and “all” seem to be synonyms
• In SQL, ANY really means “some”

29

Examples of quantified subqueries

Which students have the highest GPA?
SELECT *
FROM Student
WHERE GPA >= ALL

(SELECT GPA FROM Student);
SELECT *
FROM Student
WHERE NOT

(GPA < ANY (SELECT GPA FROM Student);
Use NOT to negate a condition                

30

More ways of getting the highest GPA

Which students have the highest GPA?
SELECT *
FROM Student AS s
WHERE NOT EXISTS

(SELECT * FROM Student
WHERE GPA > s.GPA);

SELECT * FROM Student
WHERE SID NOT IN

(SELECT s1.SID
FROM Student AS s1, Student AS s2
WHERE s1.GPA < s2.GPA);



6

31

ORDER BY

SELECT [DISTINCT] ...
FROM … WHERE …
ORDER BY output_column [ASC | DESC], …;
ASC = ascending, DESC = descending

Operational semantics
After SELECT list has been computed and optional 
duplicate elimination has been carried out,
sort the output according to ORDER BY specification

32

ORDER BY example

List all students, sort them by GPA (descending) 
and then name (ascending)

SELECT SID, name, age, GPA
FROM Student
ORDER BY GPA DESC, name;
ASC is the default option

Strictly speaking, only output columns can appear in 
ORDER BY clause (although some DBMS support more)

Can use sequence numbers of output columns instead
ORDER BY 4 DESC, 2;

33

Summary of SQL features covered so far
SELECT-FROM-WHERE statements
Set and bag operations
Table expressions, subqueries

Subqueries allow queries to be written in more declarative ways 
(recall the highest GPA query)
But they do not add any expressive power

• Try translating other forms of subqueries into [NOT] EXISTS, which in turn 
can be translated into join (and difference)

Ordering
More expressive power than relational algebra

Next: aggregation and grouping, NULL’s, data modification, 
constraints, …


