SQL: Part II

CPS 216

Advanced Database Systems

Announcements

< Reminder: Homework #1 due in two weeks

% Reading assignment (optional for those of you who
are new to SQL): “A Critique of the SQL Database
Language,” by Date in SIGMOD Record, 14(3), 1983

= Beware that it is for a rather old version of SQL

% Recitation session this Friday (January 31) on SQL

Aggregates

+ Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

< Example: number of students under 18, and their
average GPA
= SELECT COUNT(*), AVG(GPA)
FROM Student
WHERE age < 18;

= COUNT (*) counts the number of rows

Aggregates with DISTINCT

< Example: How many students are taking classes?

= SELECT COUNT(DISTINCT SID)
FROM Enroll;

is equivalent to:
= SELECT COUNT(*)

FROM (SELECT DISTINCT SID,
FROM Enrol1);

GROUP BY

< SELECT ... FROM ... WHERE ...
GROUP BY /ist_of columns;

< Example: find the average GPA for each age group
= SELECT age, AVG(GPA)
FROM Student
GROUP BY age;

Operational semantics of GROUP BY

SELECT ... FROM ... WHERE ... GROUP BY ...;
% Compute FROM (x)
< Compute WHERE (o)

< Compute GROUP BY: group rows according to the
values of GROUP BY columns

% Compute SELECT for each group ()

=" One output row per group in the final output

Example of computing GROUP BY

SELECT age, AVG(GPA) FROM Student GROUP BY age;

ﬁg ;Z’:i de gf";‘ Compute GROUP BY: group
857 |Lisa 8 4.3 rows according to the values
123 |Milhouse|10 3.1 of GROUP BY columns
456 [Ralph |8 |2.3 - -
.. SID [name age |GPA
|:> 142 |Bart 10 |2.3
123 [Milhouse|10 (3.1
Compute SELECT for each group 857 |Lisa 8 4.3
456 [Ralph |8 |2.3
age [AVG_GPA <:| .
10 (2.7

8 3.3

Aggregates with no GROUP BY

% An aggregate query with no GROUP BY clause
represent a special case where all rows go into one
group
SELECT AVG(GPA) FROM Student;

Group all rows Compute aggregate
into one group over the group

SID [name age [GPA SID [name age [GPA |:>|AVG GPA |

142 [Bart 10 [2.3 142 [Bart 10 [2.3 3 |

857 |Lisa 8
123 |Milhouse |10
456 |Ralph 8

:>857 Lisa 8 (4.3
123 |Milhouse |10 [3.1

456 |Ralph 8 2.3

NS
W[

Restriction on SELECT

< If a query uses aggregation/group by, then every
column referenced in SELECT must be either
= Aggregated, or
= A GROUP BY column
@ This restriction ensure that any SELECT expression
produces only one value for each group

10

Examples of invalid queries

+ SELECT SKZ, age FROM Student GROUP BY age;
= Recall there is one output row per group
= There can be multiple SID values per group

< SELECT SKI, MAX(GPA) FROM Student;

= Recall there is only one group for an aggregate query
with no GROUP BY clause

® There can be multiple SID values

= Wishful thinking (that the output SID value is the one
associated with the highest GPA) does NOT work

HAVING

% Used to filter groups based on the group properties (e.g.,
aggregate values, GROUP BY column values)

< SELECT ... FROM ... WHERE ... GROUP BY ...
HAVING condition
= Compute FROM (x)
= Compute WHERE (o)

= Compute GROUP BY: group rows according to the values of GROUP
BY columns

= Compute HAVING (another o over the groups)
= Compute SELECT () for each group that passes HAVING
= ORDER BY and (SELECT) DISTINCT, if any, are applied last

HAVING examples

< Find the average GPA for each age group over 10
= SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING age > 10;

= Can be written using WHERE without table expressions

% List the average GPA for each age group with more than a
hundred students
= SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING COUNT(*) > 100;

= Can be written using WHERE and table expressions

Summary of SQL features covered so far

« SELECT-FROM-WHERE statements
< Set and bag operations

< Table expressions, subqueries

< Ordering

< Aggregation and grouping

= More expressive power than relational algebra

@ Next: NULL’s

Incomplete information

< Example: Student (SID, name, age, GPA)
< Value unknown

= We do not know Nelson’s age
< Value not applicable

= Nelson has not taken any classes yet; what is his GPA?

Solution 1

% A dedicated special value for each domain (type)

® GPA cannot be —1, so use —1 as a special value to
indicate a missing or invalid GPA
® Jeads to incorrect answers if not careful
e SELECT AVG(GPA) FROM Student;

® Complicates applications

* SELECT AVG(GPA) FROM Student
WHERE GPA <> -1;

= Remember the pre-Y2K bug?

* 09/09/99 was used as a missing or invalid date value

Solution 2

< A valid-bit for every column
= Student (SID, name, name_is_valid,
age, age_1s_valid,
GPA, GPA _is_valid)
= Still complicates applications

o SELECT AVG(GPA) FROM Student
WHERE GPA_is valid;

SQL’s solution

% A special value NULL

= Same for every domain

= Special rules for dealing with NULL’s

< Example: Student (SID, name, age, GPA)
= (789, “Nelson”, NULL, NULL)

Rules for NULL’s

< When we operate on a NULL and another value
(including another NULL) using +, —, etc., the result
is NULL

+ Aggregate functions ignore NULL, except COUNT (*)
(since it counts rows)

< A scalar subquery that return no answer is treated as
returning NULL

Three-valued logic

< When we compare a NULL with another value
(including another NULL) using =, >, etc., the
result is UNKNOWN

< TRUE = 1, FALSE = 0, UNKNOWN = 0.5

< x AND y = min(x,)

< x ORy = max(x, y)

#NOTx =1—-x

<» WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
= UNKNOWN is insufficient

20

Unfortunate consequences

< SELECT AVG(GPA) FROM Student;
SELECT SUM(GPA)/COUNT(*) FROM Student;
= Not equivalent
= Although AVG(GPA) = SUM(GPA) /COUNT (GPA) still
< SELECT * FROM Student;
SELECT * FROM Student WHERE GPA = GPA;
= Not equivalent

= Be careful: NULL breaks many equivalences

Another problem

< Example: Who has NULL GPA values?

= SELECT * FROM Student WHERE GPA = NULL;
¢ Does not work; never returns anything

= (SELECT * FROM Student)
EXCEPT ALL
(SELECT * FROM Student WHERE GPA = GPA)
* Works, but ugly

= Introduced built-in predicates IS NULL and IS NOT NULL
¢ SELECT * FROM Student WHERE GPA IS NULL;

Summary of SQL features covered so far

< SELECT-FROM-WHERE statements
< Set and bag operations

< Table expressions, subqueries

% Ordering

< Aggregation and grouping

< NULL’s

+ Next: data modification statements

23

INSERT

< Insert one row

= INSERT INTO Enroll VALUES (456, 'CPS216');
* Student 456 takes CPS216

< Insert the result of a query
= INSERT INTO Enroll
(SELECT SID, 'CPS216' FROM Student
WHERE SID NOT IN (SELECT SID FROM Enroll
WHERE CID = 'CPS216'));
® Force everybody to take CPS216

DELETE

% Delete everything
= DELETE FROM Enroll;

% Delete according to a WHERE condition

Example: Student 456 drops CPS216

= DELETE FROM Enroll
WHERE SID = 456 AND CID = 'CPS216';

Example: Drop students with GPA lower than 1.0 from all
CPS classes

= DELETE FROM Enroll
WHERE SID IN (SELECT SID FROM Student
WHERE GPA < 1.0)
AND CID LIKE 'CPS%';

UPDATE

< Example: Student 142 changes name to “Barney”
and GPA to 3.0
= UPDATE Student
SET name = 'Barney', GPA = 3.0
WHERE SID = 142;

< Example: Let’s be “fair”?
= UPDATE Student
SET GPA = (SELECT AVG(GPA) FROM Student);

* But update of every row causes average GPA to change!

® Average GPA is computed over the old Student table

Summary of SQL features covered so far

% Query
= SELECT-FROM-WHERE statements
= Set and bag operations
= Table expressions, subqueries
® Ordering
= Aggregation and grouping
< Modification
= INSERT/DELETE/UPDATE

= Next: constraints, triggers, views, indexes, ...

