SQL: Part III

CPS 216

Advanced Database Systems

Announcements

+ Reminder: Homework #1 due in 12 days
< Reminder: reading assignment posted on Web

< Reminder: recitation session this Friday (January 31)
on SQL

Constraints

% Restrictions on allowable data in a database

= In addition to the simple structure and type restrictions
imposed by the table definitions

= Declared as part of the schema

= Enforced automatically by the DBMS
< Why use constraints?

= Protect data integrity (catch errors)

= Tell the DBMS about the data (so it can optimize better)

Types of SQL constraints

< NOT NULL

< Key

< Referential integrity (foreign key)
< General assertion

% Tuple- and attribute-based CHECK’s

NOT NULL constraint examples

% CREATE TABLE Student
(SID INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
email VARCHAR(30),
age INTEGER,
GPA FLOAT);
< CREATE TABLE Course
(CID CHAR(10) NOT NULL,
title VARCHAR(100) NOT NULL);
% CREATE TABLE Enrol]
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL);

Key declaration

< At most one PRIMARY KEY per table
= Typically implies a primary index

= Rows are stored inside the index, typically sorted by the
primary key value

< Any number of UNIQUE keys per table
= Typically implies a secondary index

= Pointers to rows are stored inside the index

Key declaration examples

< CREATE TABLE Student
(SID INTEGER NOT NULL PRIMARY KEY,

name VARCHAR(30) NOT NULL, Works on Oracle
email VARCHAR(30) UNIQUE, but not DB2:

age INTEGER, DB2 ires UNIQUE
GPA FLOAT); S

key columns

+ CREATE TABLE Course
(CID CHAR(10) NOT NULL PRIMARY key, ©P¢NOTNULL
title VARCHAR(100) NOT NULL);

+ CREATE TABLE Enroll
(SID INTEGER NOT NULL,

CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID));

This form is required for multi-attribute keys

Referential integrity example

< Enroll SID references Student SID

= If an SID appears in Enroll, it must appear in Student
% Enroll.CID references Course.CID

= If a CID appears in Enrol/, it must appear in Course

@ That is, no “dangling pointers”

Student Enroll Course
SID |name age [GPA SID |CID CID title
142 10 142 |CPS216 CPS216 |Advanced Database Systems

123 gMilhouse |10
857 =k

8
456 Ralph 8~

——|857 |CPS216
857 |CPS230
456 |CPS214

3
3.1 (142 |CPS214 CPS230 [Analysis of Algorithms
(7.3 T—[123 [CPS216 CPS214 |Computer Networks
e

Referential integrity in SQL

% Referenced column(s) must be PRIMARY KEY
% Referencing column(s) form a FOREIGN KEY
< Example
» CREATE TABLE Enrol]
(SID INTEGER NOT NULL
REFERENCES Student(SID),
CID CHAR(10) NOT NULL,

PRIMARY KEY(SID, CID),
FOREIGN KEY CID REFERENCES Course(CID));

10

Enforcing referential integrity

Example: Enroll.SID references Student.SID

< Insert/update an Enroll row so it refers to a non-existent SID
® Reject

RS
oo

= Reject
= Cascade: ripple changes to all referring rows
= Set NULL: set all references to NULL
% Deferred constraint checking (e.g., only at the end of a
transaction)
® Good for
= Required when

General assertion

< CREATE ASSERTION assertion_name
CHECK' assertion_condition

% assertion_condition is checked for each modification
that could potentially violate it

< Example: Enroll.SID references Student.SID

= CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (NOT EXISTS
(SELECT * FROM Enroll
WHERE SID NOT IN
(SELECT SID FROM Student)));

@ In SQL3, but not all (perhaps no) DBMS support it

Tuple- and attribute-based CHECK’s

% Associated with a single table

< Only checked when a tuple or an attribute is
inserted or updated
< Example:
= CREATE TABLE Enroll
(SID INTEGER NOT NULL

CHECK (SID IN (SELECT SID FROM Student)),
CId ...);

® Is it a referential integrity constraint?

Summary of SQL features covered so far

< Query
= SELECT-FROM-WHERE statements
= Set and bag operations
= Table expressions, subqueries
= Ordering
= Aggregation and grouping
< Modification
= INSERT/DELETE/UPDATE

< Constraints

= Next: triggers, views, indexes

“Active” data

% Constraint enforcement: When a transaction
violates a constraint, abort the transaction or try to
“fix” the data

= Example: enforcing referential integrity constraints
® Generalize to arbitrary constraints?

< Data monitoring: When something happens to the
data, automatically execute some action

= Example: When price rises above $20 per share, sell

= Example: When enrollment is at the limit and more
students try to register, email the instructor

Triggers

% A trigger is an event-condition-action rule
= When event occurs, test condition; if condition is
satisfied, execute action
< Example:
= Event: whenever there comes a new student...
= Condition: with GPA higher than 3.0...
= Action: then make him/her take CPS216!

Trigger example

CREATE TRIGGER CPS216AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW ROW AS newStudent
FOR EACH ROW
WHEN (newStudent.GPA > 3.0)
INSERT INTO Enroll
VALUES (newStudent.SID, 'CPS216');

Trigger options

% Possible events include:

= INSERT ON table

= DELETE ON table

= UPDATE [OF column} ON table
< Trigger can be activated:

= FOR EACH ROW modified

= FOR EACH STATEMENT that performs modification
< Action can be executed:

= AFTER or BEFORE the triggering event

Transition variables

< OLD ROW: the modified row before the triggering event
< NEW ROW: the modified row after the triggering event

< OLD TABLE: a hypothetical read-only table containing all
modified rows before the triggering event
< NEW TABLE: a hypothetical table containing all modified
rows after the triggering event
< Not all of them make sense all the time, e.g.
= AFTER INSERT statement-level triggers
* Can use only NEW TABLE
= BEFORE DELETE row-level triggers

" etc.

Statement-level trigger example

CREATE TRIGGER CPS216AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll
(SELECT SID, 'CPS216'
FROM newStudents
WHERE GPA > 3.0);

BEFORE trigger example

< Never give faculty more than 50% raise in one update
CREATE TRIGGER NotTooGreedy
BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;

@ BEFORE triggers are often used to “condition” data

@ Another option is to raise an error in the trigger body to
abort the transaction that caused the trigger to fire

Statement- vs. row-level triggers

Why are both needed?

22

System issues

% Recursive firing of triggers
= Action of one trigger causes another trigger to fire
= Can get into an infinite loop
* Some DBMS restrict trigger actions
* Most DBMS set a maximum level of recursion (16 in DB2)
< Interaction with constraints (very tricky to get right!)
® When do we check if a triggering event violates constraints?
* After a BEFORE trigger (so the trigger can fix a potential violation)
* Before an AFTER trigger
= AFTER triggers also see the effects of, say, cascaded deletes caused
by referential integrity constraint violations

(Based on DB2; other DBMS may implement a different policy!)

Views

% A view is like a “virtual” table

® Defined by a query, which describes how to compute the
view contents on the fly

= DBMS stores the view definition query instead of view
contents

® Can be used in queries just like a regular table

Creating and dropping views

< Example: CPS216 roster

= CREATE VIEW CPS216Roster AS
SELECT SID, name, age, GPA _Called “base tables”

FROM Student«——

WHERE SID IN (SELECT SID FROM Enroll
WHERE CID = 'CPS216');

< To drop a view
= DROP VIEW view name;

Using views in queries

< Example: find the average GPA of CPS216 students
= SELECT AVG(GPA) FROM CPS216Roster;

= To process the query, replace the reference to the view by
its definition
= SELECT AVG(GPA)
FROM (SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID
FROM Enroll
WHERE CID = 'CPS216'));

Why use views?

% To hide data from users
< To hide complexity from users
< Logical data independence

= If applications deal with views, we can change the
underlying schema without affecting applications

= Recall physical data independence: change the physical
organization of data without affecting applications

@ Real database applications use tons of views

Indexes

% An index is an auxiliary persistent data structure
= Search tree (e.g., B*-tree), lookup table (e.g., hash table), etc.
= More on indexes in following weeks!
< An index on R.4 can speed up accesses of the form
* RA = value
= R.A > value (sometimes; depending on the index type)
% Anindexon { RA,, ..., R.A, } can speed up
* RA, = wvalue, \ ... N\R.A, = value,

= Is an index on { R.A, R.B } equivalent to an index on R.A
plus another index on R.B?

28

Examples of using indexes

< SELECT * FROM Student WHERE name = 'Bart'
= Without an index on Student.name: must scan the entire table if
we store Student as a flat file of unordered rows
= With index: go “directly” to rows with name = 'Bart'
< SELECT * FROM Student, Enroll
WHERE Student.SID = Enrol1.SID;
= Without any index: for each Student row, scan the entire Enroll
table for matching SID
* Sorting could help

= With an index on Enroll.SID: for each Student row, directly look up
Enroll rows with matching SID

29

Creating and dropping indexes in SQL
< CREATE INDEX index name ON

table_name (column_name,, ..., column_name,) ;

< DROP INDEX index name;

< Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint

declarations

Choosing indexes to create

More indexes = better performance?
% Indexes take space
< Indexes need to be maintained when data is updated

% Indexes have one more level of indirection
= Maybe not a problem for main memory, but can be
really bad on disk
= Optimal index selection depends on both query and
update workload and the size of tables

= Automatic index selection is still an area of active
research

Summary of SQL features covered so far

< Query

% Modification
< Constraints
< Triggers
 Views

% Indexes

= Next: transactions, application programming, and
then we will dive into DBMS implementation!

