
1

SQL: Part III

CPS 216

Advanced Database Systems

2

Announcements

Reminder: Homework #1 due in 12 days

Reminder: reading assignment posted on Web

Reminder: recitation session this Friday (January 31)
on SQL

3

Constraints

Restrictions on allowable data in a database
In addition to the simple structure and type restrictions
imposed by the table definitions

Declared as part of the schema

Enforced automatically by the DBMS

Why use constraints?
Protect data integrity (catch errors)

Tell the DBMS about the data (so it can optimize better)

2

4

Types of SQL constraints

NOT NULL

Key

Referential integrity (foreign key)

General assertion

Tuple- and attribute-based CHECK’s

5

NOT NULL constraint examples
CREATE TABLE Student
(SID INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
email VARCHAR(30),
age INTEGER,
GPA FLOAT);

CREATE TABLE Course
(CID CHAR(10) NOT NULL,
title VARCHAR(100) NOT NULL);

CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL);

6

Key declaration

At most one PRIMARY KEY per table
Typically implies a primary index

Rows are stored inside the index, typically sorted by the
primary key value

Any number of UNIQUE keys per table
Typically implies a secondary index

Pointers to rows are stored inside the index

3

7

Key declaration examples
CREATE TABLE Student
(SID INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
email VARCHAR(30) UNIQUE,
age INTEGER,
GPA FLOAT);

CREATE TABLE Course
(CID CHAR(10) NOT NULL PRIMARY KEY,
title VARCHAR(100) NOT NULL);

CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID));

Works on Oracle
but not DB2:
DB2 requires UNIQUE
key columns
to be NOT NULL

This form is required for multi-attribute keys

8

Referential integrity example

Enroll.SID references Student.SID
If an SID appears in Enroll, it must appear in Student

Enroll.CID references Course.CID
If a CID appears in Enroll, it must appear in Course

That is, no “dangling pointers”

Student CourseEnroll

SID name age GPA
142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
...

CID title
CPS216 Advanced Database Systems
CPS230 Analysis of Algorithms
CPS214 Computer Networks
... ...

SID CID
142 CPS216
142 CPS214
123 CPS216
857 CPS216
857 CPS230
456 CPS214
... ...

9

Referential integrity in SQL

Referenced column(s) must be PRIMARY KEY
Referencing column(s) form a FOREIGN KEY

Example
CREATE TABLE Enroll
(SID INTEGER NOT NULL
REFERENCES Student(SID),
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID),
FOREIGN KEY CID REFERENCES Course(CID));

4

10

Enforcing referential integrity
Example: Enroll.SID references Student.SID

Insert/update an Enroll row so it refers to a non-existent SID
Reject

Reject
Cascade: ripple changes to all referring rows
Set NULL: set all references to NULL

Deferred constraint checking (e.g., only at the end of a
transaction)

Good for
Required when

11

General assertion

CREATE ASSERTION assertion_name
CHECK assertion_condition;
assertion_condition is checked for each modification
that could potentially violate it

Example: Enroll.SID references Student.SID
CREATE ASSERTION EnrollStudentRefIntegrity
CHECK (NOT EXISTS

(SELECT * FROM Enroll
WHERE SID NOT IN
(SELECT SID FROM Student)));

In SQL3, but not all (perhaps no) DBMS support it

12

Tuple- and attribute-based CHECK’s

Associated with a single table

Only checked when a tuple or an attribute is
inserted or updated

Example:
CREATE TABLE Enroll
(SID INTEGER NOT NULL

CHECK (SID IN (SELECT SID FROM Student)),
CID ...);

Is it a referential integrity constraint?

5

13

Summary of SQL features covered so far

Query
SELECT-FROM-WHERE statements

Set and bag operations

Table expressions, subqueries

Ordering

Aggregation and grouping

Modification
INSERT/DELETE/UPDATE

Constraints

Next: triggers, views, indexes

14

“Active” data

Constraint enforcement: When a transaction
violates a constraint, abort the transaction or try to
“fix” the data

Example: enforcing referential integrity constraints

Generalize to arbitrary constraints?

Data monitoring: When something happens to the
data, automatically execute some action

Example: When price rises above $20 per share, sell

Example: When enrollment is at the limit and more
students try to register, email the instructor

15

Triggers

A trigger is an event-condition-action rule
When event occurs, test condition; if condition is
satisfied, execute action

Example:
Event: whenever there comes a new student…

Condition: with GPA higher than 3.0…

Action: then make him/her take CPS216!

6

16

Trigger example

CREATE TRIGGER CPS216AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW ROW AS newStudent
FOR EACH ROW
WHEN (newStudent.GPA > 3.0)
INSERT INTO Enroll

VALUES(newStudent.SID, ’CPS216’);

17

Trigger options

Possible events include:
INSERT ON table
DELETE ON table
UPDATE [OF column] ON table

Trigger can be activated:
FOR EACH ROW modified

FOR EACH STATEMENT that performs modification

Action can be executed:
AFTER or BEFORE the triggering event

18

Transition variables
OLD ROW: the modified row before the triggering event
NEW ROW: the modified row after the triggering event
OLD TABLE: a hypothetical read-only table containing all
modified rows before the triggering event
NEW TABLE: a hypothetical table containing all modified
rows after the triggering event
Not all of them make sense all the time, e.g.

AFTER INSERT statement-level triggers
• Can use only NEW TABLE

BEFORE DELETE row-level triggers

etc.

7

19

Statement-level trigger example

CREATE TRIGGER CPS216AutoRecruit
AFTER INSERT ON Student
REFERENCING NEW TABLE AS newStudents
FOR EACH STATEMENT
INSERT INTO Enroll
(SELECT SID, ’CPS216’
FROM newStudents
WHERE GPA > 3.0);

20

BEFORE trigger example

Never give faculty more than 50% raise in one update

CREATE TRIGGER NotTooGreedy
BEFORE UPDATE OF salary ON Faculty
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
WHEN (n.salary > 1.5 * o.salary)
SET n.salary = 1.5 * o.salary;
BEFORE triggers are often used to “condition” data

Another option is to raise an error in the trigger body to
abort the transaction that caused the trigger to fire

21

Statement- vs. row-level triggers

Why are both needed?

8

22

System issues

Recursive firing of triggers
Action of one trigger causes another trigger to fire

Can get into an infinite loop
• Some DBMS restrict trigger actions

• Most DBMS set a maximum level of recursion (16 in DB2)

Interaction with constraints (very tricky to get right!)
When do we check if a triggering event violates constraints?

• After a BEFORE trigger (so the trigger can fix a potential violation)

• Before an AFTER trigger

AFTER triggers also see the effects of, say, cascaded deletes caused
by referential integrity constraint violations

(Based on DB2; other DBMS may implement a different policy!)

23

Views

A view is like a “virtual” table
Defined by a query, which describes how to compute the
view contents on the fly

DBMS stores the view definition query instead of view
contents

Can be used in queries just like a regular table

24

Creating and dropping views

Example: CPS216 roster
CREATE VIEW CPS216Roster AS
SELECT SID, name, age, GPA
FROM Student
WHERE SID IN (SELECT SID FROM Enroll

WHERE CID = ’CPS216’);

To drop a view
DROP VIEW view_name;

Called “base tables”

9

25

Using views in queries

Example: find the average GPA of CPS216 students
SELECT AVG(GPA) FROM CPS216Roster;
To process the query, replace the reference to the view by
its definition

SELECT AVG(GPA)
FROM (SELECT SID, name, age, GPA

FROM Student
WHERE SID IN (SELECT SID

FROM Enroll
WHERE CID = ’CPS216’));

26

Why use views?

To hide data from users

To hide complexity from users

Logical data independence
If applications deal with views, we can change the
underlying schema without affecting applications

Recall physical data independence: change the physical
organization of data without affecting applications

Real database applications use tons of views

27

Indexes

An index is an auxiliary persistent data structure
Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.

More on indexes in following weeks!

An index on R.A can speed up accesses of the form
R.A = value

R.A > value (sometimes; depending on the index type)

An index on { R.A1, …, R.An } can speed up
R.A1 = value1 ∧ … ∧ R.An = valuen

Is an index on { R.A, R.B } equivalent to an index on R.A
plus another index on R.B?

10

28

Examples of using indexes

SELECT * FROM Student WHERE name = ’Bart’
Without an index on Student.name: must scan the entire table if
we store Student as a flat file of unordered rows

With index: go “directly” to rows with name = ’Bart’

SELECT * FROM Student, Enroll
WHERE Student.SID = Enroll.SID;

Without any index: for each Student row, scan the entire Enroll
table for matching SID

• Sorting could help

With an index on Enroll.SID: for each Student row, directly look up
Enroll rows with matching SID

29

Creating and dropping indexes in SQL

CREATE INDEX index_name ON
table_name(column_name1, …, column_namen);
DROP INDEX index_name;

Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint
declarations

30

Choosing indexes to create

More indexes = better performance?

Indexes take space

Indexes need to be maintained when data is updated

Indexes have one more level of indirection
Maybe not a problem for main memory, but can be
really bad on disk

Optimal index selection depends on both query and
update workload and the size of tables

Automatic index selection is still an area of active
research

11

31

Summary of SQL features covered so far

Query

Modification

Constraints

Triggers

Views

Indexes

Next: transactions, application programming, and
then we will dive into DBMS implementation!

