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Indexing: Part II

CPS 216

Advanced Database Systems
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Announcements

Homework #2 due in two weeks (February 26)

No recitation session this Friday (February 14)

Guest lecture next Monday (February 17)
Jennifer Widom on stream data processing

4-5PM 130 North

No regular lecture on that day
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R-trees

B-tree: balanced hierarchy of 1-d ranges

R-tree: balanced hierarchy of n-d ranges
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R-tree lookup

Where am I?

Problem:
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R-tree insertion

Insert R9 into R-tree

Start from the root

Pick a region containing R9 and follow the child pointer
If none contains R9, pick one and grow it to contain R9

Pick the one that requires the least enlargement (why?)
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R-tree insertion: split
If a node is too full, split
Try to minimize the total area of bounding boxes

Exhaustive: try all possible splits
Quadratic: “seed” with the most wasteful pair; iteratively assign 
regions with strongest “preference”
Linear: “seed” with distant regions; iteratively assign others as 
Quadratic
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R-tree insertion: split (cont’d)

Split could propagate all the way up to the root (not 
shown in this example)
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R*-tree

R-tree
Always tries to minimize the area of bounding boxes
Quadratic splitting algorithm encourages small seeds 
and possibly long and narrow bounding boxes

R*-tree (Beckmann et al., SIGMOD 1990)
Consider other criteria, e.g.

• Minimize overlap between bounding boxes
• Minimize the margin (perimeter length) of a bounding box

Forced reinserts
• When a node overflows, reinsert “outer” entries
• They may be picked up by other nodes, thus saving a split
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R+-tree

Problem with R-tree
Regions may overlap

Search may go down many paths

R+-tree (Sellis et al., VLDB 1987)
Regions in non-leaf nodes do not overlap

Search only goes down one path

But an insertion must now go down many paths!
•R must be inserted into all R+-tree leaves whose bounding 

boxes overlap with R

Duplicate items in leaves, resulting in a bigger tree
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Review

Tree-structured indexes
ISAM

B-tree and variants

R-tree and variants

Can we generalize? GiST!
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Indexing user-defined data types

Specialized indexes (ABCDEFG trees…)
Redundant code: most trees are very similar

Concurrency control and recovery especially tricky to get right

Extensible B-trees and R-trees
Examples: B-trees in Berkeley DB, B- and R-trees in Informix
User-defined compare() function

GiST (Generalized Search Trees)
General (covers B-trees, R-trees, etc.)

Easy to extend

Built-in concurrency control and recovery
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Structure of GiST

Balanced tree of hp, ptri pairs

p is a key predicate that holds for all objects found 
below ptr

Every node has between kM and M index entries…
k must be no more than ½ (why?)

Except root, which only needs at least two children

All leaves are on the same level

User only needs to define what key predicates are
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Defining key predicates

boolean Consistent(entry entry, predicate query)
Return true if an object satisfying query might be found under entry

predicate Union(set<entry> entries)
Return a predicate that holds for all objects found under entries

real Penalty(entry entry1, entry entry2)
Return a penalty for inserting entry2 into the subtree rooted at 
entry1

(set<entry>, set<entry>) PickSplit(set<entry> entries)
Given M+1 entries, split it into two sets, each of size at least kM

14

Index operations
Search

Just follow pointer whenever Consistent( ) is true

Insert
Descent tree along least increase in Penalty( )
If there is room in leaf, insert there; otherwise split according to 
PickSplit( )
Propagate changes up using Union( )

Delete
Search for entry and delete it
Propagate changes up using Union( )
On underflow

• If keys are ordered, can borrow/coalesce in B-tree style
• Otherwise, reinsert stuff in the node and delete the node

15

GiST over R (B+-tree)
Logically, keys represent ranges [x, y)
Query: find keys that overlap with [a, b)
Consistent(entry, [a, b)): say entry has key [x, y)

x < b and y > a, i.e., overlap

Union(entries): say entries = {[xi, yi)}
[min({xi}), max({yi}))

Penalty(entry1, entry2): say they have keys [x1, y1) and [x2, y2)
max(y2 – y1, 0) + max(x1 – x2, 0), except boundary cases

PickSplit(entries)
Sort entries and split evenly

Plus a special Compare(entry, entry) for ordered keys
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Key compression

Without compression, GiST would need to store a 
range instead of a single key value in order to 
support B+-tree

Two extra methods: Compress/Decompress

For B+-tree
Compress(entry): say entry has key [x, y)

• x, assuming next entry starts with y, except boundary cases

Decompress(hx, ptri)
• [x, y), assuming next entry starts with y, except boundary cases

This compression is lossless: Decompress(Compress(e)) = e
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GiST over R2 (R-tree)
Logically, keys represent bounding boxes
Query: find stuff that overlaps with a given box

Abusing notation a bit below…

Consistent(key_box, query_box)

Union(boxes)

Penalty(box1, box2)

PickSplit(boxes)

Compare(box, box)?
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GiST over P(Z) (RD-tree)
Logically, keys represent sets
Queries: find all sets that intersect with a given set
Consistent(key_set, query_set)

Union(sets)

Penalty(set1, set2) 

PickSplit(sets)

Compare(set, set)?
Compress/Decompress: bloomfilters, rangesets, etc.

Decompress(Compress(set)) ? set
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Next

Hash-based indexing

Text indexing


