
1

Indexing: Part II

CPS 216

Advanced Database Systems

2

Announcements

Homework #2 due in two weeks (February 26)

No recitation session this Friday (February 14)

Guest lecture next Monday (February 17)
Jennifer Widom on stream data processing

4-5PM 130 North

No regular lecture on that day

3

R-trees

B-tree: balanced hierarchy of 1-d ranges

R-tree: balanced hierarchy of n-d ranges

30

10
0

12
0

15
0

18
0

(–∞, 100)[100, ∞)

(–∞, 30)[30, 100) [100, 120)[120, 150)[150, 180)[180, ∞)

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5

2

4

R-tree lookup

Where am I?

Problem:

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5

5

R-tree insertion

Insert R9 into R-tree

Start from the root

Pick a region containing R9 and follow the child pointer
If none contains R9, pick one and grow it to contain R9

Pick the one that requires the least enlargement (why?)

R7

R1

R2

R3

R4

R5
R6

R8

R6 R7

R8 …

R1 R2 R3 R4 R5

R9

R9

R7’
R7’

6

R-tree insertion: split
If a node is too full, split
Try to minimize the total area of bounding boxes

Exhaustive: try all possible splits
Quadratic: “seed” with the most wasteful pair; iteratively assign
regions with strongest “preference”
Linear: “seed” with distant regions; iteratively assign others as
Quadratic

R7’

R1

R2

R3

R4

R5
R6

R8

R6 R7’

R8 …

R1 R2 R3 R4 R5

R9

R9

3

7

R-tree insertion: split (cont’d)

Split could propagate all the way up to the root (not
shown in this example)

R7’’
R1

R2

R3

R4

R5
R6

R8

R9
R6 R7’’

R8 …

R1 R2 R9R3 R4 R5

R9’

R9’

8

R*-tree

R-tree
Always tries to minimize the area of bounding boxes
Quadratic splitting algorithm encourages small seeds
and possibly long and narrow bounding boxes

R*-tree (Beckmann et al., SIGMOD 1990)
Consider other criteria, e.g.

• Minimize overlap between bounding boxes
• Minimize the margin (perimeter length) of a bounding box

Forced reinserts
• When a node overflows, reinsert “outer” entries
• They may be picked up by other nodes, thus saving a split

9

R+-tree

Problem with R-tree
Regions may overlap

Search may go down many paths

R+-tree (Sellis et al., VLDB 1987)
Regions in non-leaf nodes do not overlap

Search only goes down one path

But an insertion must now go down many paths!
•R must be inserted into all R+-tree leaves whose bounding

boxes overlap with R

Duplicate items in leaves, resulting in a bigger tree

4

10

Review

Tree-structured indexes
ISAM

B-tree and variants

R-tree and variants

Can we generalize? GiST!

11

Indexing user-defined data types

Specialized indexes (ABCDEFG trees…)
Redundant code: most trees are very similar

Concurrency control and recovery especially tricky to get right

Extensible B-trees and R-trees
Examples: B-trees in Berkeley DB, B- and R-trees in Informix
User-defined compare() function

GiST (Generalized Search Trees)
General (covers B-trees, R-trees, etc.)

Easy to extend

Built-in concurrency control and recovery

12

Structure of GiST

Balanced tree of hp, ptri pairs

p is a key predicate that holds for all objects found
below ptr

Every node has between kM and M index entries…
k must be no more than ½ (why?)

Except root, which only needs at least two children

All leaves are on the same level

User only needs to define what key predicates are

5

13

Defining key predicates

boolean Consistent(entry entry, predicate query)
Return true if an object satisfying query might be found under entry

predicate Union(set<entry> entries)
Return a predicate that holds for all objects found under entries

real Penalty(entry entry1, entry entry2)
Return a penalty for inserting entry2 into the subtree rooted at
entry1

(set<entry>, set<entry>) PickSplit(set<entry> entries)
Given M+1 entries, split it into two sets, each of size at least kM

14

Index operations
Search

Just follow pointer whenever Consistent() is true

Insert
Descent tree along least increase in Penalty()
If there is room in leaf, insert there; otherwise split according to
PickSplit()
Propagate changes up using Union()

Delete
Search for entry and delete it
Propagate changes up using Union()
On underflow

• If keys are ordered, can borrow/coalesce in B-tree style
• Otherwise, reinsert stuff in the node and delete the node

15

GiST over R (B+-tree)
Logically, keys represent ranges [x, y)
Query: find keys that overlap with [a, b)
Consistent(entry, [a, b)): say entry has key [x, y)

x < b and y > a, i.e., overlap

Union(entries): say entries = {[xi, yi)}
[min({xi}), max({yi}))

Penalty(entry1, entry2): say they have keys [x1, y1) and [x2, y2)
max(y2 – y1, 0) + max(x1 – x2, 0), except boundary cases

PickSplit(entries)
Sort entries and split evenly

Plus a special Compare(entry, entry) for ordered keys

6

16

Key compression

Without compression, GiST would need to store a
range instead of a single key value in order to
support B+-tree

Two extra methods: Compress/Decompress

For B+-tree
Compress(entry): say entry has key [x, y)

• x, assuming next entry starts with y, except boundary cases

Decompress(hx, ptri)
• [x, y), assuming next entry starts with y, except boundary cases

This compression is lossless: Decompress(Compress(e)) = e

17

GiST over R2 (R-tree)
Logically, keys represent bounding boxes
Query: find stuff that overlaps with a given box

Abusing notation a bit below…

Consistent(key_box, query_box)

Union(boxes)

Penalty(box1, box2)

PickSplit(boxes)

Compare(box, box)?

18

GiST over P(Z) (RD-tree)
Logically, keys represent sets
Queries: find all sets that intersect with a given set
Consistent(key_set, query_set)

Union(sets)

Penalty(set1, set2)

PickSplit(sets)

Compare(set, set)?
Compress/Decompress: bloomfilters, rangesets, etc.

Decompress(Compress(set)) ? set

7

19

Next

Hash-based indexing

Text indexing

