
1

Indexing: Part IV

CPS 216

Advanced Database Systems

2

Announcements
Homework #2 due in two days (February 26)

Typo corrected in Problem 5
You may work in groups of three, but then you must complete the
optional part of either 8(c) or 8(d)

Midterm next Monday (March 3)
Everything up to (including) today’s lecture
Open-book, open-notes

Course project proposal due in 9 days (March 5)
By email to junyang@cs.duke.edu

Reading assignment
Two papers on cache-sensitive indexing, by Rao and Ross, VLDB
1999 and SIGMOD 2000

3

Keyword search

Google…
Web | Images | Groups
| Directory
Google Search | I’m
Feeling Lucky
Advanced Search |
Preferences | Language
Tools…

Association for
Computing Machinery
Founded in 1947,
ACM is the world’s
first educational and
scientific computing
society. Today, our
members—…

CPS 216: Advanced
Database Systems
(Fall 2001)
Course Information
Course Description /
Time and Place /
Books
Resources: Staff…

The Internet Movie
Database (IMDb)…

… Search the Internet
Movie Database. For
more search options,
please visit Search
central…

database AND search Search

What are the documents containing both “database” and “search”?

4

Keywords × documents

Inverted lists: store the matrix by rows
Signature files: store the matrix by columns

With compression, of course!

1 1 1 … 1
1 1 0 … 0
0 0 1 … 0
0 1 0 … 1
0 0 1 … 0

… … … … …

Doc
um

en
t 1

Doc
um

en
t 2

Doc
um

en
t 3

Doc
um

en
t n

All documents

“a”

“database”
“cat”

“dog”
“search”

All keywords

1 means keyword appears in the document
0 means otherwise

5

Inverted lists

Store the matrix by rows
For each keyword, store an inverted list
hkeyword, doc-id-listi
h“database”, {3, 7, 142, 857, …}i
h“search”, {3, 9, 192, 512, …}i
It helps to sort doc-id-list (why?)

Vocabulary index on keywords
B+-tree or hash-based

How large is an inverted list index?

6

Using inverted lists

Documents containing “database”
Use the vocabulary index to find the inverted list for
“database”

Return documents in the inverted list

Documents containing “database” AND “search”
Return documents in the intersection of the two inverted
lists

OR? NOT?
Union and difference, respectively

2

7

What are “all” the keywords?

All sequences of letters (up to a given length)?
… that actually appear in documents!

All words in English?

Plus all phrases?
Alternative: approximate phrase search by proximity

Minus all stop words
They appear in nearly every document; not useful in search

Example: a, of, the, it

Combine words with common stems
They can be treated as the same for the purpose of search

Example: database, databases

8

Frequency and proximity

Frequency
hkeyword, { hdoc-id, number-of-occurrencesi,

hdoc-id, number-of-occurrencesi,
… }i

Proximity (and frequency)
hkeyword, { hdoc-id, hposition-of-occurrence1,

position-of-occurrence2, …i,
hdoc-id, hposition-of-occurrnece1, …ii,
… }i

When doing AND, check for positions that are near

9

Signature files

Store the matrix by columns and compress them
For each document, store a w-bit signature
Each word is hashed into a w-bit value, with only s
< w bits turned on
Signature is computed by taking the bit-wise OR of
the hash values of all words on the document

Some false positives; no false negatives

hash(“database”) = 0110
hash(“dog”) = 1100
hash(“cat”) = 0010

doc1 contains “database”: 0110
doc2 contains “dog”: 1100

doc3 contains “cat” and “dog”: 1110

Does doc3 contain
“database”?

10

Bit-sliced signature files
Motivation

To check if a document contains a
word, we only need to check the
bits that are set in the word’s hash
value
So why bother retrieving all w bits
of the signature?

Instead of storing n signature
files, store w bit slices
Only check the slices that
correspond to the set bits in the
word’s hash value
Start from the sparse slices

doc signature
1 0 0 0 0 1 0 0 0
2 0 0 0 0 1 0 0 0
3 0 0 0 1 1 0 1 0
4 0 1 1 0 1 1 0 0
… …
n 0 0 0 0 1 0 1 0

Bit-sliced signature files

Slice 0Slice 7 …

Starting to look like
an inverted list again!

11

Inverted lists versus signatures

Inverted lists are better for most purposes (TODS,
1998)
Problems of signature files

False positives
Hard to use because s, w, and the hash function need
tuning to work well
Long documents will likely have mostly 1’s in signatures
Common words will create mostly 1’s for their slices

Saving grace of signature files
Good for lots of search terms
Good for computing similarity of documents

12

Suffix arrays (SODA, 1990)

Another index for searching text

Conceptually, to construct a suffix array for string S
Enumerate all |S| suffixes of S

Sort these suffixes in lexicographical order

To search for occurrences of a substring
Do a binary search on the suffix array

3

13

Suffix array example

Suffixes:
mississippi

ississippi
ssissippi
sissippi
issippi
ssippi
sippi
ippi
ppi
pi
i

Sorted suffixes:
i
ippi
issippi
ississippi
mississippi
pi
ppi
sippi
sissippi
ssippi
ssissippi

No need to store
the suffix strings;
just store where
they start

Suffix array:
10
7
4
1
0
9
8
6
3
5
2

S = mississippi q = sip

O(|q| · log |S|)

14

One improvement

Remember how much of the query string has been
matched

q = sisterhood

…
sissipi…
…
sisterhood…
…
sistering…
…

Matched 3 characters

Matched 5 characters

Start checking from the 4th character

low:

middle:

high:

15

Another improvement

Pre-compute the longest common prefix
information between suffixes

For all (low, middle) and (middle, high) pairs that can come
up in a binary search

q = sisterhood
…
sissipi…
…
sisterhood…
…
sistering…
…

Matched 3 characters

Matched 5 characters

Start checking from the 6th character

low:

middle:

high:
Matched 5 characters (pre-computed)

O(|q| + log |S|)

16

Suffix arrays versus inverted lists

Suffix arrays are more powerful because they index
all substrings (not just words)

No problem with long phase searches

No problem if there is no word boundary

No problem with a huge vocabulary of words

Suffix arrays use more space than inverted lists?
Check out compressed suffix arrays (STOC 2000)

