Indexing: Part IV

CPS 216

Advanced Database Systems

Announcements

< Homework #2 due in two days (February 26)
= Typo corrected in Problem 5

® You may work in groups of three, but then you must complete the
optional part of either 8(c) or 8(d)

< Midterm next Monday (March 3)
= Everything up to (including) today’s lecture
® Open-book, open-notes

% Course project proposal due in 9 days (March 5)
= By email to junyang@cs.duke.edu

< Reading assignment

= Two papers on cache-sensitive indexing, by Rao and Ross, VLDB
1999 and SIGMOD 2000

Keyword search

Google.... —. iation for
The Internet Movie | tmages | G| CPS 216: Advanced pputing Machinery
Database (IMDb)... ry Database Systems hded in 1947,

carch | I'ff (Fall 2001) Lis the world’s
.. Search the Internet Jucky Course Information educational and
Movie Database. For d Search | | Course Description / tific computing
more search options es | Langy Time and Place / ty. Today, our
please visit Search Books bers—...
central .. = Resources: Staff... T
[database AND search | [Search]|

What are the documents containing both “database” and “search”?

Keywords x documents

All documents

N Vv h 2
& & & &
S & 5
S
All keywords <% <% <° QF
“a” 1 1 1 aoo 1
“cat” 1 1 0 0
“database” 0 0 1 0
“dog” 0 1 0 . 1
“search” 0 0 1 0

1 means keyword appears in the document
0 means otherwise

% Inverted lists: store the matrix by rows
% Signature files: store the matrix by columns

With compression, of course!

Inverted lists

+ Store the matrix by rows
% For each keyword, store an inverted list
» (keyword, doc-id-list)
= (“database”, {3, 7, 142, 857, ...})
= (“search”, {3,9, 192,512, ...})
= It helps to sort doc-id-list (why?)
% Vocabulary index on keywords
= B*-tree or hash-based

< How large is an inverted list index?

Using inverted lists

< Documents containing “database”

= Use the vocabulary index to find the inverted list for
“database”

= Return documents in the inverted list
< Documents containing “database” AND “search”

= Return documents in the intersection of the two inverted
lists

<+ OR? NOT?

= Union and difference, respectively

What are “all” the keywords?

< All sequences of letters (up to a given length)?
= .. that actually appear in documents!
< All words in English?
+ Plus all phrases?
= Alternative: approximate phrase search by proximity
< Minus all stop words
® They appear in nearly every document; not useful in search
= Example: a, of, the, it
< Combine words with common stems
® They can be treated as the same for the purpose of search

= Example: database, databases

Frequency and proximity

% Frequency
w (keyword, { {doc-id, number-of-occurrences),
(doc-id, number-of-occurrences),
)
< Proximity (and frequency)
» (keyword, { (doc-id, {position-of-occurrence,,
position-gf-occurrences, ...),
(doc-id, (position-of-occurrnece,, ...)),
N
® When doing AND, check for positions that are near

Signature files

« Store the matrix by columns and compress them

< For each document, store a w-bit signature

< Each word is hashed into a w-bit value, with only s
< w bits turned on

< Signature is computed by taking the bit-wise OR of
the hash values of all words on the document

Does diocy contain

hash(“database™) = 0110 doc, contains “database”: 0110 “database”?
hash(“dog”) = 1100 doc, contains “dog”: 1100
hash(“cat”) = 0010 docy contains “cat” and “dog”: 1110

= Some false positives; no false negatives

10

Bit-sliced signature files

< Motivation

.) .) .
To check if a document contains a o T
word, we only need to check the T | oolollbbb
bits that are set in the word’s hash 2 | dololol bbb
value 3 | oojolihbhb

= So why bother retrieving all w bits 4 L oiponhibp
of the signature? : 1

» | dololohbhb

< Instead of storing 7 signature

T T
. . Slice 7 ... Slice 0
files, store w bit slices

% Only check the slices that Bic-sliced signature files
correspond to the set bits in the Starting to look like
word’s hash value an inverted list again!

% Start from the sparse slices

Inverted lists versus signatures

< Inverted lists are better for most purposes (T0DS,
1998)
< Problems of signature files
= False positives
® Hard to use because s, w, and the hash function need
tuning to work well
= Long documents will likely have mostly 1’s in signatures
® Common words will create mostly 1’s for their slices
% Saving grace of signature files
= Good for lots of search terms
® Good for computing similarity of documents

Suffix arrays (SODA, 1990)

< Another index for searching text

% Conceptually, to construct a suffix array for string §
®* Enumerate all | S| suffixes of §
= Sort these suffixes in lexicographical order

% To search for occurrences of a substring

® Do a binary search on the suffix array

Suffix array example

§ = mississippi q = sip

Suffixes: Sorted suffixes: Suffix array:
mississippi i 10
ississippi ippi 7
ssissippi issippi 4 No need to store
sissippi ississippi 1 the suffix strings;
issippi mississippi 0 just store where
ssippi D pi 9 they start
sippi ppi 8
2 e 6 0ql -log |SD
ppi sissippi 3
pi ssippi 5
i ssissippi 2

One improvement

< Remember how much of the query string has been
matched

g = sisterhood

low: L sissipi. .. Matched 3 characters
middle: T ;i-s-terhoodA | Start checking from the 4™ character

bigh: D sistering. .. Matched 5 characters

Another improvement

% Pre-compute the longest common prefix
information between suffixes

® For all (Jow, middle) and (middle, high) pairs that can come
up in a binary search

g = sisterhood 0(|q| + log |S]
low: L sissipi... Matched 3 characters
middle: T ;i-s-terhood. .. Start checking from the 6™ character

...) Matched 5 characters (pre-computed)
high: D sistering. .. Matched 5 characters

16

Suffix arrays versus inverted lists

% Suffix arrays are more powerful because they index
all substrings (not just words)
® No problem with long phase searches
® No problem if there is no word boundary
= No problem with a huge vocabulary of words
% Suffix arrays use more space than inverted lists?
= Check out compressed suffix arrays (§TOC 2000)

