Indexing: Part V

CPS 216

Advanced Database Systems

Announcement

< Homework #2 due today (February 26)
= Clarification on linear hashing capacity
< Midterm next Monday (March 3)
= Everything up to (including) Monday’s lecture
= Open-book, open-notes
% No class next Wednesday (March 5)
% Course project proposal due in 7 days (March 5)
= By email to junyang@cs.duke.edu
< Recitation session this Friday
= Homework #2 sample solution

= Midterm review

MMDB

+ Traditional DBMS

= Data resides on disk

= Data may be cached in main memory for access
< Main-memory database system (MMDB)

= Memory capacity doubles every 18 months

® Many databases can now fit in main memory

® Data permanently resides in main memory

® Backup on disk

Disk versus main-memory indexing

% Primary goals for disk-oriented index design
< Primary goals for main-memory index design

< Design choices revisited
= Make each index node fit on exactly one block?
= Make fan-out as large as possible?

= Store index key values in the index?

Classic index structures

% Arrays (a.k.a. “inverted” tables)
= A list of tuple pointers, sorted by the index key
® Pros:
= Cons:
< AVL trees
= Binary search tree balanced by rotations
" Pros:

= Cons:

Classic index structures (cont’d)

% B-trees (why not BT -trees for main memory?)
= Use a smaller index node size to avoid waste in space

" Pros:

< Hash-based indexing
= Pros:

= Cons:

T-tree

< A balanced binary tree (like AVL)

< Many elements in each node; nodes do not need to
be full (like B-tree)

< Rebalancing is done using rotations (like AVL, but
much less frequently)

% Much data movement happens within a single node
(like B-tree)

T-tree node

T parent node pointer

|daltal|daltf:12|dalta3 datanl/l/l

control

left subtree pointer right subtree pointer

« data,, data,, ..., data, are sorted (they can be pointers to
actual records)

< Not all entries need to be occupied (significantly reducing
reorganization cost)

% Everything found in the left subtree < data,
< Everything found in the right subtree > data,
< Heights of left and right subtrees differ at most by 1

Insert

Insert x
 Search for the “bounding” node such that data, <x<data,
= If the node has enough space, insert x here
= Otherwise, remove data, from the node and insert it into the
rightmost node in the left subtree
% If search exhausts the tree and no bounding node is found

= Insert x into the last node on the search path if the node has
enough space

® Otherwise, create a new leaf with x

< Balance the tree if necessary when a new leaf is created

10

Delete

% Search for the element and remove it

% If the node underflows, borrow the smallest value
from the leftmost node of the right subtree

 If the node is a half leaf (one subtree is empty and
the other is a leaf), merge the leaf into it if possible

< If the node is empty, delete it and balance the tree if
necessary

@ Note: T-tree leaf nodes can be nearly empty

Example rotation for tree balancing

{ A] Denotes a single node m Denotes a subtree
_" of depth three

m Dienotes a subtree .
. of depth two I
1 X! Dcnotes alevel of a subtree
“7 about to be added

Experiment results

< Keep in mind these results were for 1986 systems. ..
= CPU/memory speed gap was not as large back then

@ Binary search is expensive because of address calculation
= Following stored pointers is faster

< Array
% AVL
< B-tree

< T-tree

13
Cache-sensitive main-memory indexing
< CPU speed doubles every 18 months
< Memory performance merely grows 10% per year

@ Cache behavior becomes crucial for main-memory
indexes

= Store search key values back inside indexes again!

Index structures revisited

< Array
< T-tree

< B*-tree

= Make a node fit in a cache line

= Overall misses: log,, 7, where m is the number of keys per
node, and 7 is the total number of keys

& Back to the old game: make » as large as possible for a
cache line!

CSS-tree (VLDB 1999)

% Cache-sensitive search tree
% Similar to B*-tree
< Eliminate child pointers to make space for more
keys (thus larger m)
= Assume fixed-size table and fan-out (like ISAM)
® Nodes are stored level by level from left to right

= Position of a child can be calculated

@ Disadvantage:

CSB*-tree (SIGMOD 2000)

% Start with a CSS-tree and add some pointers back to
deal with updates
= For each node, put its all child nodes into a node group
¢ Within a node group, nodes are stored consecutively

= Only a pointer to the node group is needed

% Example: a CSB*-tree
of a maximum fan-out
of 2

Conclusion

< Things change
= T-tree
® CPU was still slow: address calculation was expensive
* Ditched calculated addresses in favor of stored pointers
= CSS-, CSBt-trees
® CPU and cache are now much, much faster than memory

* Ditched stored pointers in favor of calculated addresses
% Then they don’t
= It is all about optimizing for speed gaps at various levels

of storage hierarchy

¢ Cache vs. memory, memory vs. disk

