
1

Indexing: Part V

CPS 216

Advanced Database Systems

2

Announcement

Homework #2 due today (February 26)
Clarification on linear hashing capacity

Midterm next Monday (March 3)
Everything up to (including) Monday’s lecture

Open-book, open-notes

No class next Wednesday (March 5)

Course project proposal due in 7 days (March 5)
By email to junyang@cs.duke.edu

Recitation session this Friday
Homework #2 sample solution

Midterm review

3

MMDB

Traditional DBMS
Data resides on disk

Data may be cached in main memory for access

Main-memory database system (MMDB)
Memory capacity doubles every 18 months

Many databases can now fit in main memory

Data permanently resides in main memory

Backup on disk



2

4

Disk versus main-memory indexing

Primary goals for disk-oriented index design

Primary goals for main-memory index design

Design choices revisited
Make each index node fit on exactly one block?
Make fan-out as large as possible?
Store index key values in the index?

5

Classic index structures

Arrays (a.k.a. “inverted” tables)
A list of tuple pointers, sorted by the index key

Pros:

Cons:

AVL trees
Binary search tree balanced by rotations

Pros:

Cons:

6

Classic index structures (cont’d)

B-trees (why not B+-trees for main memory?)
Use a smaller index node size to avoid waste in space

Pros:

Hash-based indexing
Pros:

Cons:



3

7

T-tree

A balanced binary tree (like AVL)

Many elements in each node; nodes do not need to 
be full (like B-tree)

Rebalancing is done using rotations (like AVL, but 
much less frequently)

Much data movement happens within a single node 
(like B-tree)

8

T-tree node

data1, data2, …, datan are sorted (they can be pointers to 
actual records)
Not all entries need to be occupied (significantly reducing 
reorganization cost)
Everything found in the left subtree < data1

Everything found in the right subtree > datan
Heights of left and right subtrees differ at most by 1

data1 data2 data3 … datan

parent node pointer

control

left subtree pointer right subtree pointer

9

Insert

Insert x
Search for the “bounding” node such that data1<x<datan

If the node has enough space, insert x here

Otherwise, remove data1 from the node and insert it into the 
rightmost node in the left subtree

If search exhausts the tree and no bounding node is found
Insert x into the last node on the search path if the node has 
enough space

Otherwise, create a new leaf with x

Balance the tree if necessary when a new leaf is created



4

10

Delete

Search for the element and remove it

If the node underflows, borrow the smallest value 
from the leftmost node of the right subtree

If the node is a half leaf (one subtree is empty and 
the other is a leaf), merge the leaf into it if possible

If the node is empty, delete it and balance the tree if 
necessary

Note: T-tree leaf nodes can be nearly empty

11

Example rotation for tree balancing

12

Experiment results
Keep in mind these results were for 1986 systems…

CPU/memory speed gap was not as large back then

Binary search is expensive because of address calculation
Following stored pointers is faster
Array

AVL

B-tree

T-tree



5

13

Cache-sensitive main-memory indexing

CPU speed doubles every 18 months

Memory performance merely grows 10% per year

Cache behavior becomes crucial for main-memory 
indexes

Store search key values back inside indexes again!

14

Index structures revisited

Array

T-tree

B+-tree
Make a node fit in a cache line

Overall misses: logm n, where m is the number of keys per 
node, and n is the total number of keys
Back to the old game: make m as large as possible for a 
cache line!

15

CSS-tree (VLDB 1999)

Cache-sensitive search tree

Similar to B+-tree

Eliminate child pointers to make space for more 
keys (thus larger m)

Assume fixed-size table and fan-out (like ISAM)

Nodes are stored level by level from left to right

Position of a child can be calculated

Disadvantage:



6

16

CSB+-tree (SIGMOD 2000)

Start with a CSS-tree and add some pointers back to 
deal with updates

For each node, put its all child nodes into a node group
• Within a node group, nodes are stored consecutively

Only a pointer to the node group is needed

Example: a CSB+-tree
of a maximum fan-out
of 2

17

Conclusion

Things change
T-tree

• CPU was still slow: address calculation was expensive

• Ditched calculated addresses in favor of stored pointers

CSS-, CSB+-trees
• CPU and cache are now much, much faster than memory

• Ditched stored pointers in favor of calculated addresses

Then they don’t
It is all about optimizing for speed gaps at various levels 
of storage hierarchy

• Cache vs. memory, memory vs. disk


