Online, Adaptive Query Processing

CPS 216

Advanced Database Systems

Announcements

Homework #3 due today (Wednesday, April 9)
Homework #4 due in 14 days (Wednesday, April 23)

% Project milestone #2 due in 5 days (Monday, April 14)

Online query processing

% Traditional query processing offers:
= Complete, exact results
= Long processing times for large inputs
< Users wants:
= Real-time interaction
= Iterative querying with progressive refinement

® Not necessarily complete, exact answers

Satisfaction
100%

Online
Traditional

0% Time

Online aggregation example

SELECT AVG(temp) FROM R GROUP BY site;
% 330K rows in table

< Exact answer:

] 1 2] i
I | | | |

ZEEEIIRES

Online aggregation example (cont’d)

% Online aggregation, after 74 rows

Conf Levet [99 % Ouiputideraal | o hu:al Feset | Fows read: 74 Totalrows: 337206

[] 1] 1 1
| | | | |

ZETREZ
b |

Online aggregation example (cont’d)

% Online aggregation, after 834 rows

Gort Linat # % Oulpul nersal 1 onl Pt Rnaulmm:u-..n el Totalrows: 337296

] i F 3 [
| | | | |

"

%

T

17

b *

o8

%

& * -

62 » .

Online aggregation example (cont’d)

n
n
n
n
n
n
n
=«
n
n
n
n
n
n

{4]40afaafafa]alafalalaa]sf
oonoooooonooooon

Additional features:
Terminate/show down/speed up a group

ADDEHKLMNPORYZ
Cotege

Goals

% Usability

= Continuous observation

= Control of time/precision

= Control of fairness/partiality
% Performance

® Minimum time to accuracy: produce an acceptable estimate
AS.AP.

® Minimum time to completion: only a secondary goal, assuming
user will terminate processing long before the final answer is
produced

= Pacing: provide a smooth and continuously improving display

Random access to data

Needed to produce statistically meaningful estimates
Example: random R.zemp values wanted
< Heap scan
= Make sure R is not sorted by zemp!
® Ideally, sort R by rand()
< Index scan
= Use an index on an uncorrelated column, say R.A
% Sampling from indices
= Probe random index blocks; less efficient
% Extent-map sampling
= Pick a random block, then a random row within a block

= Use acceptance/rejection sampling if block has variable number of
rows

10

GROUP BY

Choice: sorting or hashing

< Sorting is bad
= Blocking: no answer until input is completely sorted
= Unfair: answers are produced one group at a time

< Hashing is non-blocking
= Good performance if hash table fits in memory

= Hybrid Cache is a good alternative otherwise

DISTINCT processing is similar

Index striding

< Hashing alone still may be unfair
® Random stream of input rows — updates to small
groups will be infrequent
= Round-robin to support predictable progress across all
groups, while still providing randomness within each
group

* Round-robin can be weighted to support equal-width
confidence intervals or partiality

% Use a B*-tree index on the grouping column

>> >> >> >>
£ & & AR ¥

Join algorithms

< Sort-merge join is unacceptable
= Sorting is blocking

= Qutput is sorted by join column; problematic if it happens to be
(or correlated with) grouping or aggregated column

< Traditional hash join also blocks (until a hash table has been
constructed)

< Pipelined hash join should be used instead

< Nested-loop join is safest but slow; index nested-loop join
fares better

@ There are newer algorithms specifically designed for online
aggregation: ripple join (SIGMOD 1999)

Pipelined hash join

< Non-blocking and symmetric

< Only works for equijoins

Hash table for R Hash table for §

Output Output

Insert Insert

Row from R Row from §

Ripple join (block-based)

< Non-blocking and symmetric

< Works for non-equality joins

S N
— —>|;;|
— 1
— =

R R —

Block-based nested-loop join Block-based ripple join

Optimization issues

% Avoid sorting completely
% Interesting orders — interestingly bad orders (desirable for
grouping and aggregated columns)
< Divide cost metric in two parts
= Time 7, spent in blocking operations
® Time 7, spend in producing output
= Use combined cost function fz,) + g(¢,), where fis linear and g is
super-linear, to “tax” operators with too much dead time

% Prefer plans with more user control (e.g., index striding)
= But how to quantify the degree of user control?
< Output rate vs. time to completion trade-off

= Fast, bursty plan or slow, steady plan?

16

Running confidence intervals

< Suppose we have processed # random input rows
and computed a running aggregate value v

< Given a confidence parameter p € (0, 1)

< Display a precision parameter & such that

= Current v is within &away from the final answer v
with probability approximately equal to p

exact

Types of confidence intervals

P = probability that v is 0.0075
within & from v,
o - 8]
< Conservative: P > p £ 00025 g sample
= Better guarantee, but § Conserv.
too conservative - -0.0025 4 — Determ.
. g™
= Requires knowledge of
bounds on input values
-0.0075
4 Large-sample: P ~ p 1 50 9%
= Looks better, but no Sample Size (%)
guarantee!
= Assumes that # is small < Deterministic: P = 1

enough to behave like a
random sample with
replacement

= Only useful when 7 is very large
= Requires knowledge of bounds
on input values

Assumes that » is large
enough so Central Limit
Theorem applies

Adaptive query processing

< Resources exhibit fluctuating characteristics

= Examples: networks with fluctuating performance,
sensors with fluctuating output rates, etc.

% Traditional DBMS

= Recompute statistics daily/weekly and use them in query
optimization in next day/week

& Adaptivity at daily/weekly basis
= What if characteristics change during execution?
< Eddies: continuous adaptivity at execution time

& Adaptivity at a per-tuple basis!

Adaptable joins, issue 1

+ Synchronization barriers
= One input frozen, waiting for the other

= Example: merging two sorted streams slow-low and fast-
high; fast-high waits for slow-low to catch up

= Cannot adapt while waiting for barrier

® Favor joins that have fewer barriers

20

Adaptable joins: issue 2

< Would like to reorder joins on the fly
. - Ablock of R 1y
< Base case: swap inputs to a join

= What about per-input state?
SCAN(R) SCAN(S)

< Moment of symmetry
= Inputs can be swapped without state management
= Nested-loop join: at the end of each inner loop
® Merge join: any time
® Traditional hash join: never
< More moments of symmetry — more opportunities
for adaptation

Adaptable join algorithms

% Pipelined hash join
= Synchronization barriers: none
= Moments of symmetry: continuously symmetric
= Good for equijoins
< Block-based ripple join
= Synchronization barriers: at “corners”
= Moments of symmetry: at “corners”

® Good for non-equality joins

22

Example of adaptation

| S tuples are arriving
at a slow rate

=il
-

—
—
—

|

Block-based ripple join

| S tuples are arriving

faster now

Reordering beyond two-table joins

< Think of swapping “inners”

= Can be done at a global moment of symmetry

> B>
AR
« Intuition: like an 7-way join operator
= Except that each pair of inputs can be joined by a

different algorithm

/N

Eddies

|
)

Inputs ———»

:

Output

% An iterator for tuple-routing

= Essentially merges multiple participating operators into
one z-ary operator implementing an adaptive query plan

= Controls processing order dynamically within this plan

Some details

< Operators run as independent threads
< All edges are finite message queues

< Each tuple has a descriptor
= A vector of ready bits
* 1 if the corresponding operator is eligible to process the tuple

¢ Eddy can turn on ready bits together (more flexible) or in order
(more control)

= A vector of done bits

* 1 if the tuple has been processed by (returned from) the
corresponding operator

¢ Eddy returns the tuple if all done bits are set

Naive scheduling

< Tuples enter the eddy with low priority and receive
high priority when they return from operators
= Ensures that tuples flow completely through the eddy
before new input tuples are admitted
% Operators fetch high-priority tuples as fast as they
could

Experiment

% Two expensive selections with 50% selectivity each
= Cost of s2 = 5; vary cost of s1
= Naive scheduling favors the faster operator

|
AN

(1

&8 8

b bfiore 42
bt 41
o Maive

completion e (s
L3

i [i o
cont ot 1.

< Note: For “fair” comparison, static plans are implemented
as eddies that set ready bits in order

28

Naive is not enough

< Two expensive selections with identical cost

® Selectivity of s2 = 50%; vary selectivity of s1

Eddies with lottery scheduling

< Operator gets 1 ticket when it takes a tuple
= Favor operators that run fast (low cost)
< Operator loses a ticket when it returns a tuple
= Favor operators with low selectivity
< When two operators compete for the same tuple,

hold a lottery

% To improve adaptivity, use a window scheme that
favors recent history

@

gm.- . "

i * 51 before 52

E] Lok 111uuua|

e

“'0:0 0z o4 06 o8 10

webectivity of 1
30

Performance

< Two expensive selections with identical cost

= Selectivity of s2 = 50%; vary selectivity of s1

a0
H P ~-s1 before 57
4 = 52 before 51
3 . = Naive
i - -~ Lotiery
e :

¥4 - - - - - - ~ + ~ o

an o2 a4 3 a8 io

welectivity of 51

Performance in a volatile environment

< Two index joins
= Slow: 5 seconds delay per lookup
= Fast: no delay
= Swap speeds after 30 seconds

'g 50001
i
|
1
T 40004
i
5 20004 e |l il
] Eddy
2000 { wmcncn |_fs fiist

execution tme

31

Related work

% Query scrambling
= Change execution order to avoid problems incurred by
initial delays in receiving first tuples from remote sources

< Runtime re-optimization
= Execute, monitor statistics, and re-optimize on the fly
< References
= “Adaptive Query Processing: Technology in Evolution,”
by Hellerstein et al. Data Engineering Bulletin, 2000

= “Adaptive Query Processing: A Survey,” by Gounaris
et al. BNCOD 2002

