
1

Online, Adaptive Query Processing

CPS 216

Advanced Database Systems

2

Announcements

Homework #3 due today (Wednesday, April 9)

Homework #4 due in 14 days (Wednesday, April 23)

Project milestone #2 due in 5 days (Monday, April 14)

3

Online query processing

Traditional query processing offers:
Complete, exact results

Long processing times for large inputs

Users wants:
Real-time interaction

Iterative querying with progressive refinement

Not necessarily complete, exact answers
Satisfaction

Time

100%

0%

Online
Traditional

4

Online aggregation example

SELECT AVG(temp) FROM R GROUP BY site;

330K rows in table

Exact answer:

5

Online aggregation example (cont’d)

Online aggregation, after 74 rows

6

Online aggregation example (cont’d)

Online aggregation, after 834 rows

2

7

Online aggregation example (cont’d)

Additional features:
Terminate/show down/speed up a group

8

Goals

Usability
Continuous observation

Control of time/precision

Control of fairness/partiality

Performance
Minimum time to accuracy: produce an acceptable estimate
A.S.A.P.

Minimum time to completion: only a secondary goal, assuming
user will terminate processing long before the final answer is
produced

Pacing: provide a smooth and continuously improving display

9

Random access to data
Needed to produce statistically meaningful estimates
Example: random R.temp values wanted

Heap scan
Make sure R is not sorted by temp!
Ideally, sort R by rand()

Index scan
Use an index on an uncorrelated column, say R.A

Sampling from indices
Probe random index blocks; less efficient

Extent-map sampling
Pick a random block, then a random row within a block
Use acceptance/rejection sampling if block has variable number of
rows

10

GROUP BY

Choice: sorting or hashing

Sorting is bad
Blocking: no answer until input is completely sorted

Unfair: answers are produced one group at a time

Hashing is non-blocking
Good performance if hash table fits in memory

Hybrid Cache is a good alternative otherwise

DISTINCT processing is similar

11

Index striding

Hashing alone still may be unfair
Random stream of input rows → updates to small
groups will be infrequent

Round-robin to support predictable progress across all
groups, while still providing randomness within each
group

• Round-robin can be weighted to support equal-width
confidence intervals or partiality

Use a B+-tree index on the grouping column

g1 g2 g3 gn
…

12

Join algorithms

Sort-merge join is unacceptable
Sorting is blocking

Output is sorted by join column; problematic if it happens to be
(or correlated with) grouping or aggregated column

Traditional hash join also blocks (until a hash table has been
constructed)

Pipelined hash join should be used instead

Nested-loop join is safest but slow; index nested-loop join
fares better

There are newer algorithms specifically designed for online
aggregation: ripple join (SIGMOD 1999)

3

13

Pipelined hash join

Non-blocking and symmetric

Only works for equijoins

Hash table for R Hash table for S

Row from R Row from S

Insert
Probe Probe

Insert

Output Output

14

Ripple join (block-based)

R

S
→

Block-based nested-loop join

→
→
… R

S
→

→

→

→

→

→

→

Block-based ripple join

…

Non-blocking and symmetric

Works for non-equality joins

15

Optimization issues
Avoid sorting completely
Interesting orders → interestingly bad orders (desirable for
grouping and aggregated columns)
Divide cost metric in two parts

Time td spent in blocking operations
Time to spend in producing output
Use combined cost function f(to) + g(td), where f is linear and g is
super-linear, to “tax” operators with too much dead time

Prefer plans with more user control (e.g., index striding)
But how to quantify the degree of user control?

Output rate vs. time to completion trade-off
Fast, bursty plan or slow, steady plan?

16

Running confidence intervals

Suppose we have processed n random input rows
and computed a running aggregate value v
Given a confidence parameter p ∈ (0, 1)

Display a precision parameter ε such that
Current v is within ε away from the final answer vexact
with probability approximately equal to p

17

Types of confidence intervals
P = probability that v is

within ε from vexact

Conservative: P ≥ p
Better guarantee, but
too conservative
Requires knowledge of
bounds on input values

Large-sample: P ≈ p
Looks better, but no
guarantee!
Assumes that n is small
enough to behave like a
random sample with
replacement
Assumes that n is large
enough so Central Limit
Theorem applies

-0.0075

-0.0025

0.0025

0.0075

1 50 99

Sample Size (%)

CI
 E

nd
po

in
ts

Lg. Sample
Conserv.
Determ.

Deterministic: P = 1
Only useful when n is very large
Requires knowledge of bounds
on input values

18

Adaptive query processing

Resources exhibit fluctuating characteristics
Examples: networks with fluctuating performance,
sensors with fluctuating output rates, etc.

Traditional DBMS
Recompute statistics daily/weekly and use them in query
optimization in next day/week

Adaptivity at daily/weekly basis

What if characteristics change during execution?

Eddies: continuous adaptivity at execution time
Adaptivity at a per-tuple basis!

4

19

Adaptable joins, issue 1

Synchronization barriers
One input frozen, waiting for the other

Example: merging two sorted streams slow-low and fast-
high; fast-high waits for slow-low to catch up

Cannot adapt while waiting for barrier

Favor joins that have fewer barriers

20

Adaptable joins: issue 2

Would like to reorder joins on the fly

Base case: swap inputs to a join
What about per-input state?

NLJA block of R

SCAN(R) SCAN(S)
Moment of symmetry

Inputs can be swapped without state management
Nested-loop join: at the end of each inner loop
Merge join: any time
Traditional hash join: never

More moments of symmetry → more opportunities
for adaptation

21

Adaptable join algorithms

Pipelined hash join
Synchronization barriers: none

Moments of symmetry: continuously symmetric

Good for equijoins

Block-based ripple join
Synchronization barriers: at “corners”

Moments of symmetry: at “corners”

Good for non-equality joins

22

Example of adaptation

R

S
→

→

→

→

→

→

→

Block-based ripple join

…

→
→

S tuples are arriving
faster now

→

S tuples are arriving
at a slow rate

23

Reordering beyond two-table joins

Think of swapping “inners”
Can be done at a global moment of symmetry

Intuition: like an n-way join operator
Except that each pair of inputs can be joined by a
different algorithm

⇒

24

Eddies

An iterator for tuple-routing
Essentially merges multiple participating operators into
one n-ary operator implementing an adaptive query plan

Controls processing order dynamically within this plan

EddyInputs

Output

σ

5

25

Some details

Operators run as independent threads

All edges are finite message queues

Each tuple has a descriptor
A vector of ready bits

• 1 if the corresponding operator is eligible to process the tuple

• Eddy can turn on ready bits together (more flexible) or in order
(more control)

A vector of done bits
• 1 if the tuple has been processed by (returned from) the

corresponding operator

• Eddy returns the tuple if all done bits are set

26

Naïve scheduling

Tuples enter the eddy with low priority and receive
high priority when they return from operators

Ensures that tuples flow completely through the eddy
before new input tuples are admitted

Operators fetch high-priority tuples as fast as they
could

27

Experiment
Two expensive selections with 50% selectivity each

Cost of s2 = 5; vary cost of s1
Naïve scheduling favors the faster operator

Eddy

σs1 σs2

Note: For “fair” comparison, static plans are implemented
as eddies that set ready bits in order

28

Naïve is not enough

Two expensive selections with identical cost
Selectivity of s2 = 50%; vary selectivity of s1

29

Eddies with lottery scheduling

Operator gets 1 ticket when it takes a tuple
Favor operators that run fast (low cost)

Operator loses a ticket when it returns a tuple
Favor operators with low selectivity

When two operators compete for the same tuple,
hold a lottery

To improve adaptivity, use a window scheme that
favors recent history

30

Performance

Two expensive selections with identical cost
Selectivity of s2 = 50%; vary selectivity of s1

6

31

Performance in a volatile environment
Two index joins

Slow: 5 seconds delay per lookup
Fast: no delay
Swap speeds after 30 seconds

32

Related work

Query scrambling
Change execution order to avoid problems incurred by
initial delays in receiving first tuples from remote sources

Runtime re-optimization
Execute, monitor statistics, and re-optimize on the fly

References
“Adaptive Query Processing: Technology in Evolution,”
by Hellerstein et al. Data Engineering Bulletin, 2000

“Adaptive Query Processing: A Survey,” by Gounaris
et al. BNCOD 2002

