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Announcements

Homework #3 due today (Wednesday, April 9)

Homework #4 due in 14 days (Wednesday, April 23)

Project milestone #2 due in 5 days (Monday, April 14)
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Online query processing

Traditional query processing offers:
Complete, exact results

Long processing times for large inputs

Users wants:
Real-time interaction

Iterative querying with progressive refinement

Not necessarily complete, exact answers
Satisfaction

Time

100%

0%

Online
Traditional
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Online aggregation example

SELECT AVG(temp) FROM R GROUP BY site;

330K rows in table

Exact answer:
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Online aggregation example (cont’d)

Online aggregation, after 74 rows
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Online aggregation example (cont’d)

Online aggregation, after 834 rows
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Online aggregation example (cont’d)

Additional features:
Terminate/show down/speed up a group
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Goals

Usability
Continuous observation

Control of time/precision

Control of fairness/partiality

Performance
Minimum time to accuracy: produce an acceptable estimate 
A.S.A.P.

Minimum time to completion: only a secondary goal, assuming 
user will terminate processing long before the final answer is 
produced

Pacing: provide a smooth and continuously improving display
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Random access to data
Needed to produce statistically meaningful estimates
Example: random R.temp values wanted

Heap scan
Make sure R is not sorted by temp!
Ideally, sort R by rand()

Index scan
Use an index on an uncorrelated column, say R.A

Sampling from indices
Probe random index blocks; less efficient

Extent-map sampling
Pick a random block, then a random row within a block
Use acceptance/rejection sampling if block has variable number of 
rows
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GROUP BY

Choice: sorting or hashing

Sorting is bad
Blocking: no answer until input is completely sorted

Unfair: answers are produced one group at a time 

Hashing is non-blocking
Good performance if hash table fits in memory

Hybrid Cache is a good alternative otherwise

DISTINCT processing is similar
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Index striding

Hashing alone still may be unfair
Random stream of input rows → updates to small 
groups will be infrequent

Round-robin to support predictable progress across all 
groups, while still providing randomness within each 
group

• Round-robin can be weighted to support equal-width 
confidence intervals or partiality

Use a B+-tree index on the grouping column

g1 g2 g3 gn
…
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Join algorithms

Sort-merge join is unacceptable
Sorting is blocking

Output is sorted by join column; problematic if it happens to be
(or correlated with) grouping or aggregated column

Traditional hash join also blocks (until a hash table has been 
constructed)

Pipelined hash join should be used instead

Nested-loop join is safest but slow; index nested-loop join 
fares better

There are newer algorithms specifically designed for online 
aggregation: ripple join (SIGMOD 1999)
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Pipelined hash join

Non-blocking and symmetric

Only works for equijoins

Hash table for R Hash table for S

Row from R Row from  S

Insert
Probe Probe

Insert

Output Output
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Ripple join (block-based)

R

S
→

Block-based nested-loop join

→
→
… R

S
→

→

→

→

→

→

→

Block-based ripple join

…

Non-blocking and symmetric

Works for non-equality joins
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Optimization issues
Avoid sorting completely
Interesting orders → interestingly bad orders (desirable for 
grouping and aggregated columns)
Divide cost metric in two parts

Time td spent in blocking operations
Time to spend in producing output
Use combined cost function f(to) + g(td), where f is linear and g is 
super-linear, to “tax” operators with too much dead time

Prefer plans with more user control (e.g., index striding)
But how to quantify the degree of user control?

Output rate vs. time to completion trade-off
Fast, bursty plan or slow, steady plan?
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Running confidence intervals

Suppose we have processed n random input rows 
and computed a running aggregate value v
Given a confidence parameter p ∈ (0, 1)

Display a precision parameter ε such that
Current v is within ε away from the final answer vexact
with probability approximately equal to p
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Types of confidence intervals
P = probability that v is 

within ε from vexact

Conservative: P ≥ p
Better guarantee, but 
too conservative
Requires knowledge of 
bounds on input values

Large-sample: P ≈ p
Looks better, but no 
guarantee!
Assumes that n is small 
enough to behave like a 
random sample with 
replacement
Assumes that n is large 
enough so Central Limit 
Theorem applies
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Deterministic: P = 1
Only useful when n is very large
Requires knowledge of bounds 
on input values
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Adaptive query processing

Resources exhibit fluctuating characteristics
Examples: networks with fluctuating performance, 
sensors with fluctuating output rates, etc.

Traditional DBMS
Recompute statistics daily/weekly and use them in query 
optimization in next day/week

Adaptivity at daily/weekly basis

What if characteristics change during execution?

Eddies: continuous adaptivity at execution time
Adaptivity at a per-tuple basis!
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Adaptable joins, issue 1

Synchronization barriers
One input frozen, waiting for the other

Example: merging two sorted streams slow-low and fast-
high; fast-high waits for slow-low to catch up

Cannot adapt while waiting for barrier

Favor joins that have fewer barriers
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Adaptable joins: issue 2

Would like to reorder joins on the fly

Base case: swap inputs to a join
What about per-input state?

NLJA block of R

SCAN(R) SCAN(S)
Moment of symmetry

Inputs can be swapped without state management
Nested-loop join: at the end of each inner loop
Merge join: any time
Traditional hash join: never

More moments of symmetry → more opportunities 
for adaptation
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Adaptable join algorithms 

Pipelined hash join
Synchronization barriers: none

Moments of symmetry: continuously symmetric

Good for equijoins

Block-based ripple join
Synchronization barriers: at “corners”

Moments of symmetry: at “corners”

Good for non-equality joins
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Example of adaptation

R

S
→

→

→

→

→

→

→

Block-based ripple join

…

→
→

S tuples are arriving
faster now

→

S tuples are arriving
at a slow rate
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Reordering beyond two-table joins

Think of swapping “inners”
Can be done at a global moment of symmetry

Intuition: like an n-way join operator
Except that each pair of inputs can be joined by a 
different algorithm

⇒
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Eddies

An iterator for tuple-routing
Essentially merges multiple participating operators into 
one n-ary operator implementing an adaptive query plan

Controls processing order dynamically within this plan

EddyInputs

Output

σ
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Some details

Operators run as independent threads

All edges are finite message queues

Each tuple has a descriptor
A vector of ready bits

• 1 if the corresponding operator is eligible to process the tuple

• Eddy can turn on ready bits together (more flexible) or in order
(more control)

A vector of done bits
• 1 if the tuple has been processed by (returned from) the 

corresponding operator

• Eddy returns the tuple if all done bits are set
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Naïve scheduling

Tuples enter the eddy with low priority and receive 
high priority when they return from operators

Ensures that tuples flow completely through the eddy 
before new input tuples are admitted

Operators fetch high-priority tuples as fast as they 
could
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Experiment
Two expensive selections with 50% selectivity each

Cost of s2 = 5; vary cost of s1
Naïve scheduling favors the faster operator

Eddy

σs1 σs2

Note: For “fair” comparison, static plans are implemented 
as eddies that set ready bits in order
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Naïve is not enough

Two expensive selections with identical cost
Selectivity of s2 = 50%; vary selectivity of s1
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Eddies with lottery scheduling

Operator gets 1 ticket when it takes a tuple
Favor operators that run fast (low cost)

Operator loses a ticket when it returns a tuple
Favor operators with low selectivity

When two operators compete for the same tuple, 
hold a lottery

To improve adaptivity, use a window scheme that 
favors recent history
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Performance

Two expensive selections with identical cost
Selectivity of s2 = 50%; vary selectivity of s1
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Performance in a volatile environment
Two index joins

Slow: 5 seconds delay per lookup
Fast: no delay
Swap speeds after 30 seconds
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Related work

Query scrambling
Change execution order to avoid problems incurred by 
initial delays in receiving first tuples from remote sources

Runtime re-optimization
Execute, monitor statistics, and re-optimize on the fly
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