Convolution, Smoothing, and Image Derivatives

Carlo Tomasi

Computer vision operates on images that usually come in the form of arrays of pixel values. These
values are invariably affected by noise, so it is useful to clean the images somewhat by an operation, called
smoothing that replaces each pixel by a linear combination of some of its neighbors. Smoothing reduces
the effects of noise, but blurs the image. In the case of noise suppression, blurring is an undesired effect.

In other applications, when it is desired to emphasize slow spatial variations over abrupt changes, blur-
ring is beneficial. In yet another set of circumstances, these abrupt changes are themselves of interest, and
then one would like to apply an operator that is in some sense complementary to smoothing (in signal pro-
cessing, this operator would be called a high-pass filter). Fortunately, all these operations take the form of
what is called aonvolution This note introduces the concept of convolution in a simplistic but useful way.
Smoothing is subsequently treated as an important special case.

While an image is an array of pixel values, it is often useful to regard it as a sampling of an underlying
continuous function of spatial coordinates. This function is the brightness of light impinging onto the camera
sensor, before this brightness is measured and sampled by the individual sensor eleantgitderivatives
of this continuous function can be used to measure the extent and direction of edges, that is, abrupt changes
of image brightness that occur along curves in the image plane. Derivatives, or rather their estimates, can
again be cast as convolution operators. The next section uses a naive version of differentiation to motivate
convolution. The last section of this note shows how derivatives are estimated more accurately.

1 Convolution

To introduce the concept of convolution, suppose that we want to determine where in the image there are
vertical edges. Since an edge is an abrupt change of image intensity, we might start by computing the
derivatives of an image in the horizontal direction. Derivatives with a large magnitude, either positive or
negative, are elements of vertical edges. The partial derivative of a continuous fuFi¢tiof) with respect

to the “horizontal” variable: is defined as the local slope of the plot of the function alongetbeection or,
formally, by the following limit:

OF (z,y) . F(z+Az,y) — F(z,y)
_— = hm
oz Az—0 Ax

An image from a digitizer is a function of a discrete variable, so we cannotAakarbitrarily small:
the smallest we can go is one pixel. If our unit of measure is the pixel, we have

Axr =1

and a rather crude approximation to the derivative at an integer position, i = y is thereforé

OF(z,y) . .
T a. %f(za.]—i_l)_f(%j)
0r la=jy=i
Here we assume for simplicity that the origins and axis orientations of theeference system and the
1, j system coincide. When we do edge detection, we will see that we can do much better than this as an
approximation to the derivative, but this example is good enough for introducing convolution.
Here is a piece of code that computes this approximation along iowhe image:

for = jstart;] <= jend; j ++) hi]Q] = flili +1] — L

Notice, in passing, that the last valuejofor which this computation is defined is the next-to-last pixel in
the row, sgend must be defined appropriately. This operation amounts to taking a little two-cell gnask
with the valueg[0] = 1 andg[1] = —1 in its two entries, placing the mask in turn at every positi@iong
row ¢, multiplying what is under the mask by the mask entries, and adding the result. In C, we have

for (j = jstart; j <= jend; j ++) h[i][j] = g[0] «f[il[j +1] + 9[1] =[]

This adds a little generality, because we can change the valyesitifout changing the code. Since we
are generalizing, we might as well allow for several entries iRor instance, we might in the future switch
to a centered approximation to the derivative,

Ox ~ 2 '

T=3,y=1
So now we can define for instange-1] = 1/2, g[0] = 0, andg[1] = —1/2 and write a general-purpose
loop in view of possible future changes in our choiceof

for (= jstart; j <= jend; j ++)
{
h[i][i] = 0;
for (b = Dbstart; b <= bend; b ++)
h[i][] = gb] il —b];

This is now much more general: it lets us choose which horizontal neighbors to combine and with what
weights. But clearly we will soon want to also combine pixels abigyenot only on its sides, and for the
whole picture, not just one row. This is easily done:

for (i = istart; i <= iend; i ++)
for (j = jstart; j <= jend; j ++)
{
h[il[i] =0
for (a = astart; a <= aend; a ++)
for (b = bstart; b <= bend; b++)

h{i][] += glallb] «fi —alj —bJ;

!Notice that to conform with usual notation the order of variablgsn the discrete array is switched with respect to that of the
corresponding variables, y in the continuous functiont andj are right, andy and: are down, respectively. Other conventions
are possible, of course. For instance, Forsyth and Ponce hayeattie pointing up.

where nowg[a][b] is a two-dimensional array. The part within the braces is a very important operation
in signal processing. The two innermdst loops just keep adding valuesh][j] ,SO We can express
that piece of code by the following mathematical expression:

Qend bend

h(i,j) = Z Z 9(a,b) f(i —a,j—). 1)

a=0start b=bgstqrt

This is called aconvolution Convolving a signal with a given magkis also callediltering that signal
with that mask. When referred to image filtering, the mask is also calleddimé-spread functiomf the
filter. In fact, if we let
1 ifi=j=0
0 otherwise

then the imagég is a single point (thé) in a sea of zeros. When the convolution (1) is computed, we obtain
h(i,j) = g(i,j) -

In words, the single point at the origin is spread into a blob equal to the mask (interpreted as an image).
The choice of subscripts for the entriesgfin both the code and the mathematical expression, seems
arbitrary at first. In fact, instead of definigg—1] = 1, g[0] = 0, g[1] = —1, we could have written, perhaps
more naturallyg[—1] = —1, g[0] = 0, g[1] = 1, and in the expressiorif-a][j-b] andf(i—a,j—b)
the minus signs would be replaced by plus signs. In terms of programming, there is no difference between
these two options (and others as well). Mathematically, on the other hand, the minus sign is much preferable.
The first reason is that(i, j) can be interpreted, as done above, as a point spread function. With the other
choice of signs the convolution gf= ¢ with g would yield a doubly-mirrored imagg —i, —j) of the mask
g.
Another reason for this choice of signs is that the convolution now looks like the familiar multiplication
for polynomials. In fact, consider two polynomials

f(z) = fo+fiz+...+ f2"
g(2) = go+giz+...+gn2".

Then, the sequence of coefficients of the product
h(z) =ho+hiz+ ...+ hpynz™"

of these polynomials is the (one-variable) convolution of the sequences of their coefficients:

Aend

hi= Y. Yafi-a- 3)

A=0start

In fact, notice that, multiplies z* and f;_, multipliesz*~—¢, so the power corresponding 4gfi_ is z* for
all values ofa, andh; as defined by equation (3) is the sum of all the products with a térms required
by the definition of product between two polynomials. Verify this with an example. Thus, putting a minus
sign in the definition (1) of the convolution makes the latter coincide with the product of two polynomials,
thereby making the convolution an even deeper are more pervasive concept in mathematics.

The interpretation of the convolution magki, j) as a point-spread function suggests another useful
way to look at the operation of filtering. Thefunction defined in (2) is a single spike of unit height at the

3

origin. A generic imag¢ (¢, 7), on the other hand, can be seen as a whole collection of spikes, one per pixel,
whose height equals the image value. In formulas,

fG,5) =YY" f(a,b)s(i —a,j—b),
a b

where the summations range over the entire image. This expression is the convolytiandf. Notice
that this is the same as

f(Z,]) :Zz.f(i_aaj _b)é(avb)
a b

after the change of variablés— ¢ — a, j — j — b at least if the summation ranges are assumed to be
(—o0, +00)2. Butif the output taj (i, j) is the point-spread functiay(s, 1), then the output ty”, 3=, f(a,b)d(i—

a,j — b) is a linear combination of point-spread functions, amplified each by one of the pixels in the image.
This describes, for instance, what happens in a pinhole camera with a pinhole of nonzero radius. In fact, one
point in the world spreads into a small disk on the image plane (the point-spread function, literally). Each
point in the world draws a little disk onto the image, and the brightness of each disk is proportional to the
brightness of the point in the world. This results in a blurred image. In conclusion, the image formed by a
pinhole camera is the convolution of the ideal (sharp) image with a pillow-case function.

The difference between the convolution defined in (1) and what happens in the pinhole camera is that
the points in the world are not neatly arranged onto a rectangular grid, as are pixels in an image, but form
a continuous. Fortunately, all the concepts relative to convolution can be extended to continuous functions
as well. In analogy with equation (1), we define the convolution between two continuous funttiong
andg(z,y) as the following double integral:

—+o00 —+o00
h(x,m:/_oo /_oo g(a.b)f(z — ary — b) dadb

The blurred image produced by the pinhole camera is then the convolution of the ideally sharp image
f(x,y) with the pillow-case function

1 ifvx2+y2<r
g(ﬂ%@/):{ v=

)

0 otherwise

wherer is the radius of the pinhole.

2 Smoothing

The effects of noise on images can be reduced by smoothing, that is, by replacing every pixel by a weighted
average of its neighbors. This operation can be expressed by the following convolution:

Aend bend

h(Z,]) = Z Z g(CL?b)f(Z —a,j— b) (4)

a=0astart b=bgtqrt

whereg is the convolution mask (or kernel or point-spread function) that lists the weifjlg¢he image, and
Gstarts Gends Dstart, beng delimit the domain of definition of the kernel, that is, the size of the neighborhood

20therwise, they should be modified according to the change of variables.

7
;?’/II
i

i

]

o,
“"'32320.

Figure 1: The two dimensional kernel on the left can be obtained by rotating the fun¢tipon the right
around a vertical axis through the maximum of the curve-(0).

involved in smoothing. The kernel is usually rotationally symmetric, as there is no reason to privilege, say,
the pixels on the left of positiof j over those on the rigit

—Qstart = Qend = —bstart = beng =N (5)
g(a,b) = ~(r)
where
r=+va2+ b2

is the distance from the center of the kernel to its elemeht Thus, a rotationally symmetric kernel can be
obtained by rotating a one-dimensional functigim) defined on the nonnegative reals around the origin of
the plane (figure 1).

2.1 The Gaussian Function

The plot in figure 1 was obtained from the Gaussian function

1 _1(r)?
1) = 3¢ 3(3)

with o = 6 pixels (one pixel corresponds to one cell of the mesh in figure 1), so that

1 1 a2+b2
2

glab) = e 2 ®)

The normalizing factoi /(2ro?) makes the integral of the two-dimensional Gaussian equal to one. This
normalization, however, assumes thak in g(a, b) are real variables, and that the Gaussian is defined over
the entire plane.

In the following, we first justify the choice of the Gaussian, by far the most popular smoothing function
in computer vision, and then give a better normalization factor for a discrete and truncated version of it.

The Gaussian function satisfies an amazing number of mathematical properties, and describes a vast
variety of physical and probabilistic phenomena. Here we only look at properties that are immediately
relevant to computer vision.

3This only holds for smoothing. Nonsymmetric filtexmedto particular orientations are very important in vision. Even for
smoothing, some authors have proposed to bias filtering along an edge away from the edge itself. Anidea worth pursuing.

Figure 2: The pillbox function.

The first set of properties is qualitative. The Gaussian is, as noted above, symmetric. It also emphasizes
nearby pixels over more distant ones, a property shared by any nonincreasing fuficiiohhis property
reduces smearing (blurring) while still maintaining noise averaging properties. In fact, compare a Gaussian
with a given support to a pillbox function over the same support (figure 2) and having the same volume
under its graph. Both kernels reach equally far around a given pixel when they retrieve values to average
together. However, the pillbox uses all values with equal emphasis. Figure 3 shows the effects of convolving
a step function with either a Gaussian or a pillbox function. The Gaussian produces a curved ramp at the
step location, while the pillbox produces a flat ramp. However, the pillbox ramp is wider than the Gaussian
ramp, thereby producing a sharper image.

A more quantitative useful property of the Gaussian function is its smoothnegs., H) is considered
as a function of real variables b, it is differentiable infinitely many times. Although this property by itself
is not too useful with discrete images, it implies that in the frequency domain the Gaussian drops as fast as
possible among all functions of a given space-domain support. Thus, it is as low-pass a filter as one can
get for a given spatial support. This holds approximately also for the discrete and truncated version of the
Gaussian. In addition, the Fourier transform of a Gaussian is again a Gaussian, a mathematically convenient

fact. Specifically,
F [0] = et

In words, the Gaussian functien™@*+¥*) is an eigenfunction of the Fourier transformatfofihe Fourier
transform of the normalized and scaled Gausgianb) defined in equation (6) is

G(u,v) = e~ 3(2mo)* (W' +v?)

Another important property of(a, b) is that it never crosses zero, since it is always positive. This is
essential for instance for certain types of edge detectors, for which smoothing cannot be allowed to introduce
its own zero crossings in the image.

The Gaussian function is also a separable function. A fungtfanb) is said to be separable if there are
two functionsg; andgs of one variable such that

g9(a,b) = gi(a)g2(b) .
For the Gaussian, this is a consequence of the fact that

et = %Y

“4A function f is an eigenfunction for a transformati@nif 7f = \f for some scalah.

2200
2
= :’3.33"111,1 AT
L
ey
7

>
223225
5
05555
i
20727575
19750005

o
5555

=
205225
(5555
5555555
e 200055
i
i lter ey
7

200,20
209220/ %4
i
s g,
S ar s iy,
22052205207,
20032070 1y
s e 17
222522

Figure 3: Intensity graphs (left) and images (right) of a vertical step function (top), and of the same step
function smoothed with a Gaussian (middle), and with a pillbox function (bottom). Gaussian and pillbox

have the same support and the same integral.

which leads to the equality
9(a,b) = g1(a)g1(b)

where

gi(r) = e 32 U

2mo
is the one-dimensional Gaussian, whose integral is also 1.
Thus, the Gaussian of equation (6) separates into two equal factors. This is computationally very impor-

tant. In fact, the convolution (4) can then itself be separated into two one-dimensional convolutions:

n

i) =3 g@ S a®)i—aj—b) ®

a=—n b=—n

(we also used equation (5) for simplicity), with substantial savings in the computation. In fact, the double
summation
n n
h(Zaj> = Z Z g(a7 b)f(l —a,j— b)
a=—nb=—n
requiresm? multiplications andn? — 1 additions, wheren = 2n + 1 is the number of pixels in one row or
column of the convolution mask(a, b). The separate sums in (8), on the other hand, can be computed by
m multiplications andn — 1 additions for the internal summation, followed hymore multiplications and
m— 1 more additions for the external summation. Thus, the operation count decre2semtdtiplications
and2(m — 1) additions. If for instancen = 21, we need onlyl2 multiplications instead of41.

Exercise. Notice the similarity betweef(r) andg; (a). Is this a coincidence?

2.2 Normalization and Truncation

All Gaussian functions in this section were given with normalization factors that make the integral of the
kernel equal to one, either on the plane or on the line. This hormalization factor must be taken into account
when actual values output by filters are important. For instance, if we want to smooth an image, initially
stored in a file of bytes, one byte per pixel, and write the result to another file with the same format, the
values in the smoothed image should be in the same range as those of the unsmoothed image. Also, when
we compute image derivatives, it is sometimes important to know the actual value of the derivatives, not just
a scaled version of them.

However, using the normalization values as given above would not lead to the correct results, and this
is for two reasons. First, we do not want tinéegral of g(a, b) to be normalized, but rather its sum, since
we defineg(a, b) over an integer grid. Second, our grids are invariably finite, so we want to add up only the
values we actually use, as opposed to every value,ibbetween—oco and+oo.

The solution to this problem is simple. For a smoothing filter we first compute the unscaled version of,
say, the Gaussian in equation (6), and then normalize it by sum of the samples:

(J,2+b2

i (9)

go(a,b) = e

c = zn: zn: 90(a7b)

a=—nb=—n

g(a,b) = %go(a,b).

8

To verify that this yields the desired normalization, consider an image with constant inténsitiien its
convolution with the newy(a, b) should yieldf, everywhere as a result. In fact, we have

h(l,j) = Z Zg(a,b)f(i—a,j—b)
a=—nb=—n

= fo >, > glab)

a=—nb=—n
= fo

as desired.

Of course, normalization can be performed on one-dimensional Gaussian functions separably, if the
two-dimensional Gaussian function is written as the product of two one-dimensional Gaussian functions.
The concept is the same:

glO(b) = 6_%(5)2
c = Z g1(b) (10)
b=—n
q1(b) = %glo(b) :

3 Derivatives

In order to compute derivatives in discrete images, one needs a model for how the underlying conhtinuous
image behaves between pixel values. For instance, approximating the derivative with a first-order difference

implies that the underlying image is piecewise linear. In fact, the first-order difference is exactly the deriva-
tive of a linear function that goes througf(:, j + 1) and f(z,).

More generally, if the discrete image is formed by samples of the continuous image, then the latter
interpolates the former. Interpolation can be expressed as a hybrid-domain conv®lution:

h(z,y) = Xn: Zn: f(a,b)p(z —a,y —b)

a=—nb=—n

wherez, y are real variables and x, y), theinterpolation functionmust satisfy the constraint

1 if a=b=0
0 for all other integers, b

p(a, b) = {

In fact, with this constraint we have
h(i,j) = f(i.J)
on all integer grid points. In other words, this constraint guaranteegthetually interpolates the image

pointsf(i, 7).
For instance, for linear interpolation in one dimensipis the triangle function of figure 4.

SContinuity here refers to continuity of the domainandb are real numbers.
SFor simplicity, thex andy axes are assumed to point along columns and rows, respectively.

1

Figure 4: The triangle function interpolates linearly.

Exercise. Verify the last statement.
Since both interpolation and differentiation are linear, instead of interpolating the image and then differ-
entiating we can interpolate the image with the derivative of the interpolation function. Formally,

0h

a=—nb=-—n

= Z Z fla,0)py(z —a,y —b) .
a=—nb=—n
Finally, we need to sample the result at the grid poinjsto obtain a discrete image. This yields the final,
discrete convolution that computes the derivative of the underlying continuous imaijle respect to the

horizontal variable: Y
]) = Z Z f(avb)pl‘(i_avj _b) :
a=—nb=-n
From the sampling theorem, we know that the mathematically correct interpolation function to use
would be the sinc function: _)
S 7w S mTY

(11)

p(z,y) = sinc(z,y) = w1y

However, the sinc decays proportionallyltor and1/y, which is a rather slow rate of decay. Consequently,
only values that are far away from the origin can be ignored in the computation. In other words, the sum-
mation limit» in (11) must be large, which is a computationally undesirable state of affairs. In addition,
if there is aliasing, the sinc function will amplify its effects, since it combines a large number of unrelated
pixel values.

Although the optimal solution to this dilemma is outside the scope of this course, it is clear that a good
interpolation functiorp must pass only frequencies below a certain value in order to smooth the image. At
the same time, it should also have a small support in the spatial domain. We noted in the previous section
that the Gaussian function fits this bill, since it is compact in both the space and the frequency domain. We
therefore lepy be the (unnormalized) Gaussian function,

po(z,y) = go(w,y)

andpo., poy its partial derivatives with respect toandy (figure 5). We then samplg), andpo, over the
integers and normalize them by requiring that their response to a ramp yield the slope of the ramp itself. A
unit-slope, discrete ramp in thjedirection is represented by

10

25
I
/4
A0
i
i) e
;;;%zozo“\\\\\\\\\ VT
g#wv“ AR TN
l,'t.‘“ “ NSNS 7111/ "" “‘\\\\\00 SRS
sraree e PRSI 7 Il"”“‘\\\“"o’o“%
ot (RSE NNz
S I %00% IR OO0 %0 00200225222
= e SN2
N \‘ 077 O RIS
) \\\\\\\ “ O SN
L0022 SN
RS

Figure 5: The partial derivatives of a Gaussian function with respec{eft) andy (right) represented by
plots (top) and isocontours (bottom). In the isocontour plotsgthariable points vertically down and the

variable points horizontally to the right.

and we want to find a constansuch that

n n

c Z Z u(a,b)pog(i —a,j—b)=1.

a=—nb=—n
for all 4, j so that
pz(7,y) = cpox(w,y) and py(x,y) = cpoy(r,y) -

In particular fori = j = 0 we obtain
1
g:fn Z?:fn bgUz (a7 b) ‘

Since the partial derivativg, (a, b) of the Gaussian function with respectites negative for positive, this

constant is positive. By symmetry, the same constant normaliggs

Of course, since the two-dimensional Gaussian function is separable, so are its two partial derivatives:

n n

he(iyj) = > > fla,b)ge(i —a,j—b)= Y di(j—b) _Z f(a,b)g1(i — a)

a=—nb=—n b=—n

11

where
dgy T

is the ordinary derivative of the one-dimensional Gaussian fungtion) defined in (7). A similar expres-
sion holds forh, (i, j) (see below).

Thus, the partial derivative of an image in thalirection is computed by convolving wit (z) and
91(y). The partial derivative in thg direction is obtained by convolving witth; (y) and g, (x). In both
cases, the order in which the two one-dimensional convolutions are performed is immaterial:

ha(i,j) = Zgll—a Zfabdlj—b Zdlj—b Zf@bgll—a)

a=—n b=—n b=—n a=-n

hy(i,j) = Zdlz—a Zfabglj—b Zglj—b Zfabdlz—a)

a=—n b=—n b=—n a=-—n

Normalization can also be done separately: the one-dimensional Gagssarormalized according to
(10), and the one-dimensional Gaussian derivafie) is normalized by the one-dimensional equivalent
of (12):

do(z) = —ozte_%(f)2
o 1

Y, bdo(b)
h(z) = “do(x).

12

