
Convolution, Smoothing, and Image Derivatives

Carlo Tomasi

Computer vision operates on images that usually come in the form of arrays of pixel values. These
values are invariably affected by noise, so it is useful to clean the images somewhat by an operation, called
smoothing, that replaces each pixel by a linear combination of some of its neighbors. Smoothing reduces
the effects of noise, but blurs the image. In the case of noise suppression, blurring is an undesired effect.

In other applications, when it is desired to emphasize slow spatial variations over abrupt changes, blur-
ring is beneficial. In yet another set of circumstances, these abrupt changes are themselves of interest, and
then one would like to apply an operator that is in some sense complementary to smoothing (in signal pro-
cessing, this operator would be called a high-pass filter). Fortunately, all these operations take the form of
what is called aconvolution. This note introduces the concept of convolution in a simplistic but useful way.
Smoothing is subsequently treated as an important special case.

While an image is an array of pixel values, it is often useful to regard it as a sampling of an underlying
continuous function of spatial coordinates. This function is the brightness of light impinging onto the camera
sensor, before this brightness is measured and sampled by the individual sensor elements.Partial derivatives
of this continuous function can be used to measure the extent and direction of edges, that is, abrupt changes
of image brightness that occur along curves in the image plane. Derivatives, or rather their estimates, can
again be cast as convolution operators. The next section uses a naive version of differentiation to motivate
convolution. The last section of this note shows how derivatives are estimated more accurately.

1 Convolution

To introduce the concept of convolution, suppose that we want to determine where in the image there are
vertical edges. Since an edge is an abrupt change of image intensity, we might start by computing the
derivatives of an image in the horizontal direction. Derivatives with a large magnitude, either positive or
negative, are elements of vertical edges. The partial derivative of a continuous functionF (x, y) with respect
to the “horizontal” variablex is defined as the local slope of the plot of the function along thex direction or,
formally, by the following limit:

∂F (x, y)
∂x

= lim
∆x→0

F (x + ∆x, y)− F (x, y)
∆x

.

An image from a digitizer is a function of a discrete variable, so we cannot take∆x arbitrarily small:
the smallest we can go is one pixel. If our unit of measure is the pixel, we have

∆x = 1

1

and a rather crude approximation to the derivative at an integer positionj = x, i = y is therefore1

∂F (x, y)
∂x

∣∣∣∣
x=j,y=i

≈ f(i, j + 1)− f(i, j) .

Here we assume for simplicity that the origins and axis orientations of thex, y reference system and the
i, j system coincide. When we do edge detection, we will see that we can do much better than this as an
approximation to the derivative, but this example is good enough for introducing convolution.

Here is a piece of code that computes this approximation along rowi in the image:

for (j = jstart; j <= jend; j ++) h[i][j] = f[i][j +1] − f[i][j];

Notice, in passing, that the last value ofj for which this computation is defined is the next-to-last pixel in
the row, sojend must be defined appropriately. This operation amounts to taking a little two-cell maskg
with the valuesg[0] = 1 andg[1] = −1 in its two entries, placing the mask in turn at every positionj along
row i, multiplying what is under the mask by the mask entries, and adding the result. In C, we have

for (j = jstart; j <= jend; j ++) h[i][j] = g[0] ∗f[i][j +1] + g[1] ∗f[i][j];
This adds a little generality, because we can change the values ofg without changing the code. Since we

are generalizing, we might as well allow for several entries ing. For instance, we might in the future switch
to a centered approximation to the derivative,

∂F (x, y)
∂x

∣∣∣∣
x=j,y=i

≈ f(i, j + 1)− f(i, j − 1)
2

.

So now we can define for instanceg[−1] = 1/2, g[0] = 0, andg[1] = −1/2 and write a general-purpose
loop in view of possible future changes in our choice ofg:

for (j = jstart; j <= jend; j ++)
{

h[i][j] = 0;
for (b = bstart; b <= bend; b ++)

h[i][j] + = g[b] ∗f[i][j −b];
}

This is now much more general: it lets us choose which horizontal neighbors to combine and with what
weights. But clearly we will soon want to also combine pixels abovei, j, not only on its sides, and for the
whole picture, not just one row. This is easily done:

for (i = istart; i <= iend; i ++)
for (j = jstart; j <= jend; j ++)
{

h[i][j] = 0;
for (a = astart; a <= aend; a ++)
for (b = bstart; b <= bend; b++)

h[i][j] + = g[a][b] ∗f[i −a][j −b];
}

1Notice that to conform with usual notation the order of variablesi, j in the discrete array is switched with respect to that of the
corresponding variablesx, y in the continuous function:x andj are right, andy andi are down, respectively. Other conventions
are possible, of course. For instance, Forsyth and Ponce have they axis pointing up.

2

where nowg[a][b] is a two-dimensional array. The part within the braces is a very important operation
in signal processing. The two innermostfor loops just keep adding values toh[i][j] ,so we can express
that piece of code by the following mathematical expression:

h(i, j) =
aend∑

a=astart

bend∑

b=bstart

g(a, b)f(i− a, j − b) . (1)

This is called aconvolution. Convolving a signal with a given maskg is also calledfiltering that signal
with that mask. When referred to image filtering, the mask is also called thepoint-spread functionof the
filter. In fact, if we let

f(i, j) = δ(i, j) =

{
1 if i = j = 0
0 otherwise

, (2)

then the imagef is a single point (the1) in a sea of zeros. When the convolution (1) is computed, we obtain

h(i, j) = g(i, j) .

In words, the single point at the origin is spread into a blob equal to the mask (interpreted as an image).
The choice of subscripts for the entries ofg, in both the code and the mathematical expression, seems

arbitrary at first. In fact, instead of definingg[−1] = 1, g[0] = 0, g[1] = −1, we could have written, perhaps
more naturally,g[−1] = −1, g[0] = 0, g[1] = 1, and in the expressionsf[i-a][j-b] andf(i− a, j− b)
the minus signs would be replaced by plus signs. In terms of programming, there is no difference between
these two options (and others as well). Mathematically, on the other hand, the minus sign is much preferable.
The first reason is thatg(i, j) can be interpreted, as done above, as a point spread function. With the other
choice of signs the convolution off = δ with g would yield a doubly-mirrored imageg(−i,−j) of the mask
g.

Another reason for this choice of signs is that the convolution now looks like the familiar multiplication
for polynomials. In fact, consider two polynomials

f(z) = f0 + f1z + . . . + fmzm

g(z) = g0 + g1z + . . . + gnzn .

Then, the sequence of coefficients of the product

h(z) = h0 + h1z + . . . + hm+nzm+n

of these polynomials is the (one-variable) convolution of the sequences of their coefficients:

hi =
aend∑

a=astart

gafi−a . (3)

In fact, notice thatga multipliesza andfi−a multiplieszi−a, so the power corresponding togafi−a is zi for
all values ofa, andhi as defined by equation (3) is the sum of all the products with a termzi, as required
by the definition of product between two polynomials. Verify this with an example. Thus, putting a minus
sign in the definition (1) of the convolution makes the latter coincide with the product of two polynomials,
thereby making the convolution an even deeper are more pervasive concept in mathematics.

The interpretation of the convolution maskg(i, j) as a point-spread function suggests another useful
way to look at the operation of filtering. Theδ function defined in (2) is a single spike of unit height at the

3

origin. A generic imagef(i, j), on the other hand, can be seen as a whole collection of spikes, one per pixel,
whose height equals the image value. In formulas,

f(i, j) =
∑
a

∑

b

f(a, b)δ(i− a, j − b) ,

where the summations range over the entire image. This expression is the convolution off andδ. Notice
that this is the same as

f(i, j) =
∑
a

∑

b

f(i− a, j − b)δ(a, b)

after the change of variablesi → i − a, j → j − b at least if the summation ranges are assumed to be
(−∞, +∞)2. But if the output toδ(i, j) is the point-spread functiong(i, j), then the output to

∑
a

∑
b f(a, b)δ(i−

a, j − b) is a linear combination of point-spread functions, amplified each by one of the pixels in the image.
This describes, for instance, what happens in a pinhole camera with a pinhole of nonzero radius. In fact, one
point in the world spreads into a small disk on the image plane (the point-spread function, literally). Each
point in the world draws a little disk onto the image, and the brightness of each disk is proportional to the
brightness of the point in the world. This results in a blurred image. In conclusion, the image formed by a
pinhole camera is the convolution of the ideal (sharp) image with a pillow-case function.

The difference between the convolution defined in (1) and what happens in the pinhole camera is that
the points in the world are not neatly arranged onto a rectangular grid, as are pixels in an image, but form
a continuous. Fortunately, all the concepts relative to convolution can be extended to continuous functions
as well. In analogy with equation (1), we define the convolution between two continuous functionsf(x, y)
andg(x, y) as the following double integral:

h(x, y) =
∫ +∞

−∞

∫ +∞

−∞
g(a, b)f(x− a, y − b) da db .

The blurred image produced by the pinhole camera is then the convolution of the ideally sharp image
f(x, y) with the pillow-case function

g(x, y) =

{
1 if

√
x2 + y2 ≤ r

0 otherwise
,

wherer is the radius of the pinhole.

2 Smoothing

The effects of noise on images can be reduced by smoothing, that is, by replacing every pixel by a weighted
average of its neighbors. This operation can be expressed by the following convolution:

h(i, j) =
aend∑

a=astart

bend∑

b=bstart

g(a, b)f(i− a, j − b) (4)

whereg is the convolution mask (or kernel or point-spread function) that lists the weights,f is the image, and
astart, aend, bstart, bend delimit the domain of definition of the kernel, that is, the size of the neighborhood

2Otherwise, they should be modified according to the change of variables.

4

Figure 1: The two dimensional kernel on the left can be obtained by rotating the functionγ(r) on the right
around a vertical axis through the maximum of the curve (r = 0).

involved in smoothing. The kernel is usually rotationally symmetric, as there is no reason to privilege, say,
the pixels on the left of positioni, j over those on the right3:

−astart = aend = −bstart = bend = n (5)

g(a, b) = γ(r)

where
r =

√
a2 + b2

is the distance from the center of the kernel to its elementa, b. Thus, a rotationally symmetric kernel can be
obtained by rotating a one-dimensional functionγ(r) defined on the nonnegative reals around the origin of
the plane (figure 1).

2.1 The Gaussian Function

The plot in figure 1 was obtained from the Gaussian function

γ(r) =
1

2πσ2
e−

1
2(r

σ)2

with σ = 6 pixels (one pixel corresponds to one cell of the mesh in figure 1), so that

g(a, b) =
1

2πσ2
e−

1
2

a2+b2

σ2 . (6)

The normalizing factor1/(2πσ2) makes the integral of the two-dimensional Gaussian equal to one. This
normalization, however, assumes thata, b in g(a, b) are real variables, and that the Gaussian is defined over
the entire plane.

In the following, we first justify the choice of the Gaussian, by far the most popular smoothing function
in computer vision, and then give a better normalization factor for a discrete and truncated version of it.

The Gaussian function satisfies an amazing number of mathematical properties, and describes a vast
variety of physical and probabilistic phenomena. Here we only look at properties that are immediately
relevant to computer vision.

3This only holds for smoothing. Nonsymmetric filterstunedto particular orientations are very important in vision. Even for
smoothing, some authors have proposed to bias filtering along an edge away from the edge itself. An idea worth pursuing.

5

Figure 2: The pillbox function.

The first set of properties is qualitative. The Gaussian is, as noted above, symmetric. It also emphasizes
nearby pixels over more distant ones, a property shared by any nonincreasing functionγ(r). This property
reduces smearing (blurring) while still maintaining noise averaging properties. In fact, compare a Gaussian
with a given support to a pillbox function over the same support (figure 2) and having the same volume
under its graph. Both kernels reach equally far around a given pixel when they retrieve values to average
together. However, the pillbox uses all values with equal emphasis. Figure 3 shows the effects of convolving
a step function with either a Gaussian or a pillbox function. The Gaussian produces a curved ramp at the
step location, while the pillbox produces a flat ramp. However, the pillbox ramp is wider than the Gaussian
ramp, thereby producing a sharper image.

A more quantitative useful property of the Gaussian function is its smoothness. Ifg(a, b) is considered
as a function of real variablesa, b, it is differentiable infinitely many times. Although this property by itself
is not too useful with discrete images, it implies that in the frequency domain the Gaussian drops as fast as
possible among all functions of a given space-domain support. Thus, it is as low-pass a filter as one can
get for a given spatial support. This holds approximately also for the discrete and truncated version of the
Gaussian. In addition, the Fourier transform of a Gaussian is again a Gaussian, a mathematically convenient
fact. Specifically,

F
[
e−π(x2+y2)

]
= e−π(u2+v2) .

In words, the Gaussian functione−π(x2+y2) is an eigenfunction of the Fourier transformation.4 The Fourier
transform of the normalized and scaled Gaussiang(a, b) defined in equation (6) is

G(u, v) = e−
1
2
(2πσ)2(u2+v2) .

Another important property ofg(a, b) is that it never crosses zero, since it is always positive. This is
essential for instance for certain types of edge detectors, for which smoothing cannot be allowed to introduce
its own zero crossings in the image.

The Gaussian function is also a separable function. A functiong(a, b) is said to be separable if there are
two functionsg1 andg2 of one variable such that

g(a, b) = g1(a)g2(b) .

For the Gaussian, this is a consequence of the fact that

ex+y = exey

4A functionf is an eigenfunction for a transformationT if Tf = λf for some scalarλ.

6

Figure 3: Intensity graphs (left) and images (right) of a vertical step function (top), and of the same step
function smoothed with a Gaussian (middle), and with a pillbox function (bottom). Gaussian and pillbox
have the same support and the same integral.

7

which leads to the equality
g(a, b) = g1(a)g1(b)

where

g1(x) =
1√
2πσ

e−
1
2(x

σ)2

(7)

is the one-dimensional Gaussian, whose integral is also 1.
Thus, the Gaussian of equation (6) separates into two equal factors. This is computationally very impor-

tant. In fact, the convolution (4) can then itself be separated into two one-dimensional convolutions:

h(i, j) =
n∑

a=−n

g1(a)
n∑

b=−n

g1(b)f(i− a, j − b) (8)

(we also used equation (5) for simplicity), with substantial savings in the computation. In fact, the double
summation

h(i, j) =
n∑

a=−n

n∑

b=−n

g(a, b)f(i− a, j − b)

requiresm2 multiplications andm2 − 1 additions, wherem = 2n + 1 is the number of pixels in one row or
column of the convolution maskg(a, b). The separate sums in (8), on the other hand, can be computed by
m multiplications andm− 1 additions for the internal summation, followed bym more multiplications and
m−1 more additions for the external summation. Thus, the operation count decreases to2m multiplications
and2(m− 1) additions. If for instancem = 21, we need only42 multiplications instead of441.

Exercise. Notice the similarity betweenγ(r) andg1(a). Is this a coincidence?

2.2 Normalization and Truncation

All Gaussian functions in this section were given with normalization factors that make the integral of the
kernel equal to one, either on the plane or on the line. This normalization factor must be taken into account
when actual values output by filters are important. For instance, if we want to smooth an image, initially
stored in a file of bytes, one byte per pixel, and write the result to another file with the same format, the
values in the smoothed image should be in the same range as those of the unsmoothed image. Also, when
we compute image derivatives, it is sometimes important to know the actual value of the derivatives, not just
a scaled version of them.

However, using the normalization values as given above would not lead to the correct results, and this
is for two reasons. First, we do not want theintegral of g(a, b) to be normalized, but rather its sum, since
we defineg(a, b) over an integer grid. Second, our grids are invariably finite, so we want to add up only the
values we actually use, as opposed to every value fora, b between−∞ and+∞.

The solution to this problem is simple. For a smoothing filter we first compute the unscaled version of,
say, the Gaussian in equation (6), and then normalize it by sum of the samples:

g0(a, b) = e−
1
2

a2+b2

σ2 (9)

c =
n∑

a=−n

n∑

b=−n

g0(a, b)

g(a, b) =
1
c
g0(a, b) .

8

To verify that this yields the desired normalization, consider an image with constant intensityf0. Then its
convolution with the newg(a, b) should yieldf0 everywhere as a result. In fact, we have

h(i, j) =
n∑

a=−n

n∑

b=−n

g(a, b)f(i− a, j − b)

= f0

n∑

a=−n

n∑

b=−n

g(a, b)

= f0

as desired.
Of course, normalization can be performed on one-dimensional Gaussian functions separably, if the

two-dimensional Gaussian function is written as the product of two one-dimensional Gaussian functions.
The concept is the same:

g10(b) = e−
1
2(b

σ)2

c =
n∑

b=−n

g1(b) (10)

g1(b) =
1
c
g10(b) .

3 Derivatives

In order to compute derivatives in discrete images, one needs a model for how the underlying continuous5

image behaves between pixel values. For instance, approximating the derivative with a first-order difference

f(i, j + 1)− f(i, j)

implies that the underlying image is piecewise linear. In fact, the first-order difference is exactly the deriva-
tive of a linear function that goes throughf(i, j + 1) andf(i, j).

More generally, if the discrete image is formed by samples of the continuous image, then the latter
interpolates the former. Interpolation can be expressed as a hybrid-domain convolution:6

h(x, y) =
n∑

a=−n

n∑

b=−n

f(a, b)p(x− a, y − b)

wherex, y are real variables andp(x, y), theinterpolation function, must satisfy the constraint

p(a, b) =

{
1 if a = b = 0
0 for all other integersa, b

.

In fact, with this constraint we have
h(i, j) = f(i, j)

on all integer grid points. In other words, this constraint guarantees thatp actually interpolates the image
pointsf(i, j).

For instance, for linear interpolation in one dimension,p is the triangle function of figure 4.

5Continuity here refers to continuity of the domain:a andb are real numbers.
6For simplicity, thex andy axes are assumed to point along columns and rows, respectively.

9

1

1

Figure 4: The triangle function interpolates linearly.

Exercise. Verify the last statement.
Since both interpolation and differentiation are linear, instead of interpolating the image and then differ-

entiating we can interpolate the image with the derivative of the interpolation function. Formally,

hx(x, y) =
∂h

∂x
(x, y) =

∂

∂x

n∑

a=−n

n∑

b=−n

f(a, b)p(x− a, y − b)

=
n∑

a=−n

n∑

b=−n

f(a, b)px(x− a, y − b) .

Finally, we need to sample the result at the grid pointsi, j to obtain a discrete image. This yields the final,
discrete convolution that computes the derivative of the underlying continuous imageh with respect to the
horizontal variable:

hx(i, j) =
n∑

a=−n

n∑

b=−n

f(a, b)px(i− a, j − b) .

From the sampling theorem, we know that the mathematically correct interpolation function to use
would be the sinc function:

p(x, y) = sinc(x, y) =
sinπx

πx

sinπy

πy
. (11)

However, the sinc decays proportionally to1/x and1/y, which is a rather slow rate of decay. Consequently,
only values that are far away from the origin can be ignored in the computation. In other words, the sum-
mation limit n in (11) must be large, which is a computationally undesirable state of affairs. In addition,
if there is aliasing, the sinc function will amplify its effects, since it combines a large number of unrelated
pixel values.

Although the optimal solution to this dilemma is outside the scope of this course, it is clear that a good
interpolation functionp must pass only frequencies below a certain value in order to smooth the image. At
the same time, it should also have a small support in the spatial domain. We noted in the previous section
that the Gaussian function fits this bill, since it is compact in both the space and the frequency domain. We
therefore letp0 be the (unnormalized) Gaussian function,

p0(x, y) = g0(x, y)

andp0x, p0y its partial derivatives with respect tox andy (figure 5). We then samplep0x andp0y over the
integers and normalize them by requiring that their response to a ramp yield the slope of the ramp itself. A
unit-slope, discrete ramp in thej direction is represented by

u(i, j) = j

10

Figure 5: The partial derivatives of a Gaussian function with respect tox (left) andy (right) represented by
plots (top) and isocontours (bottom). In the isocontour plots, thex variable points vertically down and they
variable points horizontally to the right.

and we want to find a constantc such that

c
n∑

a=−n

n∑

b=−n

u(a, b)p0x(i− a, j − b) = 1 .

for all i, j so that

px(x, y) = c p0x(x, y) and py(x, y) = c p0y(x, y) .

In particular fori = j = 0 we obtain

c = − 1∑n
a=−n

∑n
b=−n bg0x(a, b)

. (12)

Since the partial derivativeg0x(a, b) of the Gaussian function with respect tob is negative for positiveb, this
constantc is positive. By symmetry, the same constant normalizesg0y.

Of course, since the two-dimensional Gaussian function is separable, so are its two partial derivatives:

hx(i, j) =
n∑

a=−n

n∑

b=−n

f(a, b)gx(i− a, j − b) =
n∑

b=−n

d1(j − b)
n∑

a=−n

f(a, b)g1(i− a)

11

where

d1(x) =
dg1

dx
= − x

σ2
g1(x)

is the ordinary derivative of the one-dimensional Gaussian functiong1(x) defined in (7). A similar expres-
sion holds forhy(i, j) (see below).

Thus, the partial derivative of an image in thex direction is computed by convolving withd1(x) and
g1(y). The partial derivative in they direction is obtained by convolving withd1(y) andg1(x). In both
cases, the order in which the two one-dimensional convolutions are performed is immaterial:

hx(i, j) =
n∑

a=−n

g1(i− a)
n∑

b=−n

f(a, b)d1(j − b) =
n∑

b=−n

d1(j − b)
n∑

a=−n

f(a, b)g1(i− a)

hy(i, j) =
n∑

a=−n

d1(i− a)
n∑

b=−n

f(a, b)g1(j − b) =
n∑

b=−n

g1(j − b)
n∑

a=−n

f(a, b)d1(i− a) .

Normalization can also be done separately: the one-dimensional Gaussiang1 is normalized according to
(10), and the one-dimensional Gaussian derivatived1(a) is normalized by the one-dimensional equivalent
of (12):

d0(x) = −xe−
1
2(x

σ)2

c =
1∑n

b=−n bd0(b)

d1(x) =
1
c
d0(x) .

12

