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Image-Guided Streamline Placement

Greg Turk, University of North Carolina at Chapel Hill
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Abstract

Accurate control of streamline density is key to producing seve
effective forms of visualization of two-dimensional vector fields
We introduce a technique that uses an energy function to guide
placement of streamlines at a specified density.  This energy fu
tion uses a low-pass filtered version of the image to measure
difference between the current image and the desired visual d
sity.  We reduce the energy (and thereby improve the placemen
streamlines) by (1) changing the positions and lengths of strea
lines, (2) joining streamlines that nearly abut, and (3) creating n
streamlines to fill sufficiently large gaps.  The entire process is it
ated to produce streamlines that are neither too crowded nor
sparse.  The resulting streamlines manifest a more hand-placed
pearance than do regularly- or randomly-placed streamlines.  
rows can be added to the streamlines to disambiguate flow di
tion, and flow magnitude can be represented by the thickness, d
sity, or intensity of the lines.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image genera
tion; I.4.3 [Image Processing]: Enhancement.

Additional Key Words:   Vector field visualization, flow visualiza-
tion, streamline, random optimization, random descent.

1  Introduction
The need to visualize vector fields is common in many scienti
and engineering disciplines.  Examples of vector fields include 
locities of wind and ocean currents (e.g., for weather forecasting),
results of fluid dynamics simulation (e.g., for calculating drag over
a body), magnetic fields, blood flow, components of stress and st
in materials, and cell migration during embryo development.  E
isting techniques for vector field visualization differ in how we
they represent such attributes of the vector field as magnitude
rection, and critical points.

This work was motivated by two recent innovations for displayin
vector fields: spot noise [van Wijk 91] and line-integral convolu
tion (LIC) [Cabral & Leedom 93]. We wondered how to compa
the results of the techniques.  What is the gauge that measures
well a certain method depicts a vector field?  Evidently the pla
ment of the graphical elements is tremendously important.  T
graphical elements (e.g. coherent streaks) should follow the fl
direction, but they should not be spaced too close together or too
apart.  Both spot noise and LIC can produce images where stre
aligned streaks are evenly distributed, but that is more an indir
-
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result than a guiding principle in the algorithms.  How can the stream
lines be positioned to explicitly satisfy a desired distribution?

The elegant hand-designed streamline drawings in physics texts (
example in Figure 1a) provide ample inspiration for vector field
illustrations.  The streamlines in such illustrations are placed so th
no region is devoid of streamlines and no region is overpopulat
with them.  The eye is drawn to regions where the density of ink 
one place differs greatly from that of the surrounding region.   Whe
the density of the streamlines is allowed to vary in such illustra
tions, it is usually to represent field magnitude, where denser lin
spacing shows greater field strength.

Bertin shows another effective hand-designed representation of flo
where the direction of ocean current is represented by chains
arrows that are laid out end-to-end so that the eye connects arro
into streamlines and thus gets a stronger sense of flow orientat
[Bertin 83].  The success of this representation depends on hav
chosen proper endpoints for these chains so that nowhere does
image become cluttered.  The techniques presented in our pa
will permit designers of vector-field visualizations to control stream
line-spacing automatically in order to achieve results that mim
hand-drawn figures.

2  Previous Work
A streamline is an integral curve that is everywhere tangent to 
given vector field (see, for example, [Kundu 90]).   Many research
ers have examined how to effectively and accurately integrate
streamline paths through both regular and irregular meshes.  To o

Figure 1:  (a)  Hand-designed illustration of flow around a
cylinder, taken from [Feynman 64] and used with permis
sion from the California Institute of Technology.  (b)  Auto-
matically generated flow lines using streamline optimization
Data is from fluid flow simulation.
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surprise, however, discussions of how best to place streamlines are
almost nonexistent in the visualization literature.  We are aware
three techniques that are used to “seed” streamlines within a ve
field:  regular grids, random sampling, and user-specified seed po
for initiation of streamlines.  Our knowledge of random and regu
grid seeding of streamlines is almost entirely limited to private co
munications with visualization researchers.  The one published te
nique that we have found uses particle traces on a 3D surface
are terminated when they come too close to the paths of other 
ticles [Max et al. 94].  The virtual wind tunnel (a 3D immersive
display system for flow visualization)  allows users to initiate strea
lines singly or in bundles [Bryson & Levit 91].

Recently there have been several exciting developments in disp
ing vector fields using texture synthesis. Line integral convoluti
is a procedure that stretches a given image along paths that are
tated by a vector field [Cabral & Leedom 93] [Forsell 94] [Stallin
& Hege 95].  Spot noise is a method of creating noise-like textu
by compositing many replicas of a shape [van Wijk 91] [de Leeu
& van Wijk 95].  When the shapes that create spot noise textures
stretched according to a given vector field, the resulting imag
illustrate the vector field’s direction.  Both line integral convolutio
and spot noise are well-suited to depicting the fine detail of flo
orientation. They are somewhat less successful (in a single, sta
image) at showing the flow magnitude; moreover, the local flow
direction is ambiguous in the sense that it can be interpreted to
either of two directions that are 180 degrees apart.

A very different method of illustrating vector field data is to sho
the important topological features of the flow. In general, stream
lines that lie in a small neighborhood follow nearly-parallel path
The exceptions (in a continuously differentiable vector field) occ
in neighborhoods of points with zero-valued vectors. Several 
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searchers have developed techniques to identify these critical p
(sources, sinks, spirals, centers, and saddles) and the stream
that issue from them in eigen-directions [Globus et al. 91] [Helman
& Hesselink 91]. These particular points and curves partition a v
tor field into simpler regions where a texture-based method suff
to display details of the vector field [Delmarcelle & Hesselink 9

The remainder of this paper is organized as follows.  In Sectio
we present a key concept in our work– a visual quality measur
flow illustrations– and show how this measure can create visu
pleasing illustrations containing short arrows.  In Section 4 we d
onstrate the creation of illustrations that contain well-placed l
streamlines.  Section 5 discusses how these streamlines can 
hanced to produce a final illustration.  We conclude by discus
other applications that might use optimization based on a vi
quality measure.

3  Placement of Streamlets
Hedgehog illustrations (sometimes called vector plots) are perh
the most commonly used method of illustrating a two-dimensio
vector field.  These are short field-aligned segments or arrows w
base points lie on a regular grid (see Figure 2).  The lengths o
segments are often varied according to the field magnitude. 
popularity of hedgehog illustrations is almost surely due to th
ease of implementation.  The resulting images can be slightly
hanced by using short streamlines (streamlets) that curve with
flow instead of using straight lines.  We use such streamlets in
figures 2, 3, and 4.

Two artifacts are often present in hedgehog plots.  First, the hu
eye often picks out runs of adjacent arrows and groups them
gether visually, despite the fact that these groups are an artifa
the underlying grid pattern and not related to the vector field be
d

t-
Figure 3:  (a) Short streamlines with
centers placed on a jittered grid (top);
(b) filtered version showing bright and
dark regions (bottom).

Figure 4:  (a) Short streamlines place
by optimization (top); (b) filtered ver-
sion showing fairly even gray value (bo
tom).

Figure 2:  (a) Short streamlines with
centers placed on a regular grid (top);
(b) filtered version of same (bottom).
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illustrated.  This effect can be seen in Figure 2a where three ver
columns of streamlets erroneously suggest the presence of t
parallel field lines.  One way to lessen this problem is to oversam
the seed points that produce the short segments. The drawback
oversampling is that the resulting image becomes so filled w
streamlets that the eye can no longer discern individual element
better solution to the sampling problem is to introduce noise, sligh
jittering the positions of the arrows to make their regularity le
noticeable [Crawfis & Max 92] [Dovey 95].  This strategy is illus
trated in Figure 3a.

The second problem with hedgehogs is that as streamlets are pl
close together, portions of neighboring arrows come very close
one another and may even overlap.  Jittering the streamlets ma
fact make the overlaps more frequent (compare Figures 2a and
The twin problems of overlapped streamlets and grid regularity b
distract the viewer from the data being visualized; we would like
reduce such distractions.  We achieve this goal by using an en
measure to guide streamlet placement and thus improve the qu
of the final image.

3.1  Optimization of Streamlet Positions
In the discussion that follows, S represents a collection of streamlet
sn for a given vector field V.  The elements of S are idealized zero-
width curves, distinct from the geometric primitives (e.g., line seg-
ments or anti-aliased curves) employed to render them.  We de
by I(x,y) the idealized two-dimensional image of the streamlets
S, with I(x,y) = 0 except along streamlines in S where it behaves
like the Dirac delta function.

Our method creates hedgehog plots by incrementally improving
initial collection of streamlets.  The initial collection can be creat
by placing the streamlets either on a regular grid or in some rand
fashion, and the final results appear to be independent of wh
initialization method is chosen.  An image may be improved 
selecting one streamlet at random and moving it a small amoun
a random direction.  If the resulting image has a lower energy m
sure (lower energy means better quality) then that change is
cepted.  This process is repeated many times, terminating when
energy reaches a threshold or when acceptance of random cha
become rare.  Such a process is sometimes referred to as ran
optimization or random descent.  Figure 4a shows the result of 
algorithm applied to the same vector field as in Figures 2 and
Notice how the streamlets of Figure 4 are more evenly spaced t
in Figures 2 and 3.

The energy measure that guides the optimization is based on a 
pass-filtered (blurred) version of the image of S which is compared
against a uniform gray-level.  Let L ∗ I represent a low-pass-filtered
version of the image I, where L is a given filter function.  If t is the
target gray-scale value, then we define the energy measure E as the
squared error integrated over the domain:

     E(I) = ∫x ∫y [(L ∗ I) (x,y) - t]2 dx dy

The motivation for this energy measure is that the eye is drawn
regions of an illustration where the density of ink is uneven, and
a hedgehog plot we do not want to draw the eye to any inadv
ently bright or dim places.  The streamlets should be evenly pla
across the image instead of being crowded in any one location
blurred image contains high values where the streamlets are
close together and low values in regions that are devoid of stream
Salisbury and his co-workers made similar used of low-pass filt
ing to decide whether or not to lay down strokes for pen-and-
illustrations [Salisbury et al. 94].  Figure 2b and 3b show low-pass
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filtered versions of Figures 2a and 3a.  Locations where tw
streamlets crowd together in Figures 2a and 3a appear as a 
intensity (black) spot in Figures 2b and 3b.  Figure 4a and 4b sh
the corresponding images after the optimization routine has b
run.  The intensity level in Figure 4b is more uniform than in Fi
ures 2b and 3b.

When the optimization process is animated it looks as though e
streamlet is pushing away other nearby streamlets, reminiscen
methods that use repulsion between points to evenly distrib
samples on a surface [Turk 91] [Witkin & Heckbert 94].  This sim
larity should come as no surprise, since both methods are desig
to minimize an energy term by making small changes in the po
tion of graphical elements. In fact, we too have implement
streamlet-repulsion as a method for creating hedgehog plots.  
visual results of the repulsion method are very similar to the resu
of random optimization, and the running times are also similar.  W
pursued the random-descent technique rather than the repul
method because we expected random descent to be easily e
sible to the more complicated task of placing longer streamlin
within V (Section 4).

3.2  Implementation of Low-Pass Filter
This section describes the implementation details for efficien
computing the energy term for a given set S of streamlets.  There
are three components to this computation: the representation o
blurred image, the low-pass filter used to perform the blur, and 
manner in which we apply the filter to calculate this blurred imag

It would be computationally prohibitive to calculate the energy ter
E by actually filtering an entire image each time we consider a ra
dom change to some streamlet sn .  Instead, we associate with sn

certain information about how it affects the low-pass-filtered im
age.  The blurred image B contains pixel values for an image of S.
A streamlet maintains a list of pixels that it affects in B, together
with the values that it contributes to each of those pixels.  To t
whether moving sn  would improve the value of E, we first remove
the contribution of sn  from its list of pixels in B and correct the
value of E based on the changes.  Next, we add in the pixel con
butions for the new position of sn  and recalculate E.  We retain the
change to sn  if the new value of E is better; otherwise we revert to
the old position for sn .  The (un-blurred) image I is purely a concep-
tual aid, and at no time during optimization do we generate an 
tual representation of I.

Two criteria influence the choice of a filter to create the blurre
image B.  First, the filter kernel should have compact support 
that filtering operations are fast to compute.  Second, the po
spread function should fall off smoothly so that the quality measu
changes smoothly with small changes in streamline position.  T
allows the optimization to detect changes in E even for small changes
in the image.

We use the following circularly symmetric filter kernel (from a ba
sis function of cubic Hermite interpolation) to blur the image:

  K(x, y) = 2r3 - 3r2 +1, r < 1

  K(x, y) = 0, r >= 1

where r = sqrt(x2 + y2) / R.

This function has a similar shape to a two-dimensional Gauss
filter, but it falls off to zero at a distance R away from its center.
The ideal density for a set of streamlines may be varied across
image by stretching or shrinking the radius R of the filter.
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We sample a streamlet sn  at a finite number of points, resulting in a
piecewise-linear curve composed of zero-width line segments. 
calculate the filtered image of each segment by considering th
pixels in the filtered image that are within a distance R of the seg-
ment.  The contribution of the line segment to a particular pixel
the filtered image can quickly be computed by a variant of the te
nique used by Feibush for polygon anti-aliasing [Feibush et al. 80].
The line segment is rotated about the pixel center so that it 
horizontally, and then two table-lookups based on the segme
endpoints are used to determine the kernel-weighted contribu
to the pixel.  We have found that a very coarse low-pass filte
image suffices to guide the placement of streamlines.  Typically 
use a filter kernel that extends just two or three pixels in radi
The filtered images in Figures 2, 3 and 4 were computed at a m
higher resolution than this for expository purposes.

4  Long Streamlines
This section describes how the optimization technique from S
tion 3 can be extended to create images containing long, eve
distributed streamlines.  One goal of this procedure is to enable 
control over the distance between adjacent streamlines, whether
target spacing be constant-valued or position-dependent.  A sec
goal is to avoid interrupting the streamlines.  Since each endp
of a streamline distracts from the visual flow of the image, our im
ages should favor fewer, longer streamlines over numerous, sho
streamlets.  It is not always possible to satisfy the two goals of u
form streamline separation and infrequent streamline breaks.
places where the vector field converges (e.g. near a sink) these two
goals are at odds with one another.  Our solution to the dilemm
to let the energy function be the arbiter between uniform spac
and long streamlines.

The optimization procedure for creating a hedgehog plot cons
of repeatedly considering small changes to the positions of 
streamlets, accepting only the changes that improve the measuE.
The procedure for creating a set of longer streamlines sn  is similar.
We improve a set S of streamlines by considering several kinds o
changes to the streamlines.  In addition to changes in a streaml
position, the algorithm also allows the operations of streamline 
sertion/deletion, lengthening/shortening of streamlines, and co
bination of two streamlines, end-to-end, into a single streamli
We use the same quality measure E to determine which changes
will be accepted.  In pseudo-code, the process for creating the 
lection S of long streamlines is as follows.

  S ← null  { S begins as an empty set of streamlines }

  { find an initial group of streamlets }
  foreach position (x,y) on a grid
    insert streamlet s at (x,y) into S to produce S’
    if E(S’) < E(S) then
      S ← S’

  { improve the collection of streamlines in S }
  repeat until accepted changes are rare
    choose an operation
    apply operation to random element(s) of S to produce S’
    if E(S’) < E(S) then
      S ← S’

Figure 5b shows a collection of streamlines created with the ab
optimization procedure.  The streamlines are evenly spaced and 
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Figure 5:  (a)  Long streamlines with centers regularly place
on a grid (top);  (b) Streamlines placed by density-based 
timization (bottom).  This data is a randomly generated ve
tor field.

endpoints are generally located where the vector field diverges
converges.  For comparison, Figure 5a shows long streamlines wh
seed points lie on a regular grid so that streamline density va
greatly.

4.1  The Allowable Operations
The primitive streamline operations that we employ to improve t
quality of an image are described in more detail below.

Move: Change the position of the seed point of the strea
line.  Each streamline is defined in terms of this see
point and a length to travel forward and backwar
through the flow.
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Insert: Create a new streamlet.

Delete: Remove a streamline entirely from S.

Lengthen: Add a positive value to the length of the streamlin
(relative to the seed point) in the forward or back
ward direction.

Shorten: Subtract from the length of the streamline (relativ
to the seed point) in the forward or backward direc
tion.

Combine: Connect two streamlines whose endpoints are suf
ciently close to one another.  The location of the joi
is a weighted average of the two endpoints based 
the relative lengths of the streamlines.  The lengt
of the new streamline is the sum of the lengths of th
two parent streamlines.

Why do we allow so many kinds of changes during the optimiz
tion process?  Presumably we could create any possible collec
of streamlines using only insert and delete operations if we allow
newly-inserted streamlines to assume any length and positi
However, an actual implementation of the optimization process u
ing such a restricted set of operations would be prohibitively slo
to converge.  We use the larger complement of operations so 
the optimization procedure can move smoothly through the spa
of all collections of streamlines.  For example, suppose that joini
two particular streamlines would greatly improve the measure E.
The optimization routine could choose at random to remove ea
of these streamlines and, also at random, create another stream
that fills the void left by the two that were removed.  It is ver
unlikely that these three independent events would happen 
chance.  Explicitly providing a combine operation makes this small
change in visual appearance much more likely to occur.

We find candidate pairs of streamlines for the combine operation
by querying a data structure that maintains the positions of strea
line endpoints and can return pairs of endpoints whose distanc
less than a given tolerance.  There are several ways in which we
favor joining together streamlines.  We could add a term to the e
ergy function that gives a higher energy to those images that c
tain more streamlines.  Instead of this approach, however, we cho
to accept combine operations if they result in a new value of E that
is no greater than the old energy value plus a tolerance.

We can animate the optimization process by displaying the colle
tion of streamlines every time a favorable change occurs.  An a
mation of the optimization indicates the role of each operation.  Fir
streamlets are inserted throughout the image.  After this initial pha
is finished the result looks much like a hedgehog plot using a 
tered grid, reminiscent of a Poisson-disk distribution of points.  Ne
many of the streamlines gradually lengthen.  As streamline en
points approach one another, pairs of streamlines combine to fo
longer streamlines.  This dual process of lengthening and joini
creates many longer streamlines that typically follow nearly-para
lel trajectories.  Gradually the changes in the image become min
and many of the changes at this stage are streamlines movin
small distance, evening the spacing between neighbors.  Chan
are accepted with decreasing frequency, and the process is te
nated when accepted changes become sufficiently rare.

4.2  Acceleration Using an Oracle
The stochastic optimization produces good results, but it spen
considerable time entertaining changes that are unlikely to impro
457
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the image.  The method can be accelerated by using an oracle that
suggests changes that are likely to decrease the energy functioE.
An oracle is only effective if it can be consulted quickly and i
answers are generally reliable.  The oracle described in this sec
typically speeds up the convergence of the optimization by a fac
of three to five.

There are two systematic ways for an oracle to select change
propose: an image-based approach, and a streamline-based ap-
proach.  Our oracle uses a combination of the two.  The ima
based approach examines the blurred image B to identify places
where the streamlines are too sparse.  The oracle makes insert sug-
gestions in these places.  The streamline-based approach exam
the neighborhood of each individual streamline to decide if an o
eration applied to the streamline is likely to improve the imag
The oracle uses information gathered from around a streamlin
decide whether to suggest a lengthen, shorten or move operation.
More precisely, the oracle keeps a running measure of how “en
getic” a given streamline is, and it maintains a priority queue th
orders the streamlines based on their individual level of ener
When consulted, the oracle returns one of the most energetic stre
lines, along with a suggestion of how to lessen its measure of 
ergy.

The energy of a streamline is the sum on three factors: “desire
lengthen, “desire” to shorten, and “desire” to move.  Each of the
factors is calculated by sampling the image B at a small number of
positions near the streamline.  The desire to lengthen is compu
by comparing the target gray level t with the image values a short
distance beyond the endpoints of the streamline.  The lower th
values are with respect to t, the greater the streamline desires t
grow into this empty region.  The desire to shorten is found 
sampling B on either side of the streamline endpoints.  If these v
ues are too high, the streamline desires to shrink.  The desir
move is computed by comparing the image values on one side
the streamline with the values on the other side.  The greater
difference between these two values, the more the streamline
sires to change its position.  We typically consult 20 samples of 
image B to determine each of the three factors that determine
streamline’s energy.  This sampling is an inexpensive task in co
parison to creating the entire path of a streamline and then lo
pass-filtering the resulting curve.

The oracle need not bother suggesting that a streamline be dele
Every time the optimization routine attempts to modify a stream
line it can easily check whether entirely removing the streamli
improves the total energy measure E of the image.  This is done by
evaluating E after the contribution of the streamline to the imageB
is removed and before the altered streamline’s effect is added tB.

The oracle is important for improving efficiency, but it is the en
ergy measure E that drives the optimization.  The oracle is use
purely as a source of suggestions for how to reduce E, not as a
source of directives that are applied blindly.  The oracle’s sugg
tions are only accepted if the change improves the image qua
We have found it effective for the oracle to propose 50% of t
changes, and for the other changes to be chosen completely at
dom.  Thus any change to the collection of streamlines is possibl
which makes it unlikely that the optimization will overlook a worth
while improvement arising from any systematic bias of the orac

4.3  Intensity Tapering at Streamline Ends
Some streamlines must terminate within a region of converging fl
or else the target density of the image cannot be preserved th
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Figure 6:  Field magnitude has been redundantly mappe
onto streamline density and width.  Large magnitude is ind
cated by dense, thin curves.

The resulting break of the streamline is visually jarring if it is ren
dered as a rectangular end cap.  We make the termination less ab
by gradually decreasing the width or intensity of the streamline ne
its endpoint.  We can gently fade a streamline by allowing yet a
other operation, namely streamline tapering.  Each streamline car-
ries with it (in addition to its center and length) two positions alon
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its length that indicate where to begin linearly fading to the ba
ground color at either endpoint.  This intensity tapering is used
weight the contribution of the streamline to the filtered imageB.
Streamline tapering allows the optimization to find an even clo
match to the ideal gray-scale value in regions near the stream
ends.  In practice we have found it most effective to let intens
tapering be a separate optimization phase, after the streamlines
settled into their final position.  In this final phase each streaml
is allowed to perform only two operations:  1) changes in leng
and 2) changes in the locations at which to begin intensity taper
Performing the intensity tapering after long streamlines have b
formed avoids the possibility that the optimization will produce ma
short, intensity-tapered streamlines to satisfy the target den
Figures 6 and 8 are rendered using the tapering information to m
late streamline width and intensity, respectively.

Saito and Takahashi have demonstrated a similar tapering effec
drawing contour lines of a scalar field [Saito & Takahashi 90].  Th
use information about the gradient of the scalar field to guide 
fading out of the contour lines.  Their technique can also be used
drawing streamlines of vector fields where the divergence is z
everywhere, but it has no obvious generalization when the div
gence is non-zero (e.g. fields with sources and sinks).

4.4  Optimization Issues
Two recent techniques in computer graphics provided inspirat
for the optimization approach described here.  The first of thes
the work by Andrew Witkin and Paul Heckbert for distributing pa
ticles over an implicit surface [Witkin & Heckbert 94].  In the
constrained optimization method, they let a small number of s
particles repel one another in order to distribute themselves ev
over a surface.  They found that it is helpful to allow the init
particles to grow, split, shrink or die to accommodate any chang
surface area when the surface geometry is being edited.  Thei
erations on particles are analogous to our operations on stream
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Figure 7:  Chains of arrows indicate wind direction and magnitude over Australia.  The arrows were deposited along stre
created by streamline optimization.  Higher velocity is indicated by larger arrows.  The vector field data was calculated
numerical weather model.
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A second source of inspiration was the mesh optimization work
Hugues Hoppe and co-workers [Hoppe et al. 93].  Their technique
uses three fundamental operations to automatically simplify a 
lygonal mesh: edge split, edge collapse, and edge swap.  They 
an energy measure to guide the optimization by random desc
The high quality of the results produced by this method encoura
us to try random descent in streamline optimization.

One frequently-voiced concern about optimization techniques is t
the behavior of the system is highly sensitive to the values of m
parameters.  An example of such a parameter for streamline opt
zation is the maximum distance a streamline can move.  The fe
that the system may require a large amount of “parameter twe
ing.”  Happily, we have found it unnecessary to change our para
eter settings between datasets.  The single parameter that we sp
for an illustration is the desired distance between neighboring stre
lines (which can even be position-dependent).  Other parame
are derived from this target-distance.  We believe that researc
who implement the techniques described here will not have di
culty replicating our results.  To relieve the burden of re-impl
menting our technique, we are making our source code publ
available at http://www.cs.msstate.edu/~banks/IGSP.

5  Binding Visual Attributes to Streamlines
There is an important distinction between a streamline (a zero-w
integral curve) and the geometric elements associated with its 
play.  A simple approach for displaying a streamline is to draw 
anti-aliased curve that connects vertices sampled along the stre
line, but such a constant-width, constant-intensity curve is not n
essarily the best way to visualize the flow.  For example, the cur
are unchanged if all the vectors reverse direction in the underly
vector field; that is, the sense of flow direction is ambiguous in
simple streamline display.  Arrows can be inserted into the imag
disambiguate the flow direction.  We apply two different techniqu
to bind arrow-shaped glyphs to streamlines.  The first techniqu
to traverse the streamlines and deposit an arrow whenever the 
grated arc-length along a streamline is sufficient to accommod
the arrow’s length.  Such an object-order traversal is appropr
for binding a long chain of glyphs onto a streamline.  The seco
approach is to distribute arrow-glyphs uniformly throughout th
image and then snap them to the nearest point on a streamline.  
an image-order traversal is appropriate for images with only a f
scattered arrows serving as reminders of the flow direction.

Often some important scalar quantity is associated with a vec
field.  The scalar value might be the temperature or density i
fluid flow, or it might be the magnitude of the vector field at eac
point. We would like to bind visual attributes to display such a sc
lar quantity along with the streamlines.  The thickness and 
grayscale-intensity of a streamline offer two convenient visual 
tributes to convey a scalar quantity.  Figure 6 shows a vector fi
whose magnitude is bound to the width of the streamlines and wh
the streamlines themselves have been placed so that the scalar
determines the distance between neighboring streamlines.

6  Results
In this section we show some examples of images constructed
ing the optimization method for positioning long streamlines.  T
first example is Figure 1b, which illustrates a numerical simulati
of flow around a cylinder.  The arrowheads in this figure disam
biguate flow orientation in the eddies. Figure 7 shows compu
wind velocity in the vicinity of Australia.  First, the long streamlin
optimization method placed streamlines through the image.  Th
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arrows were bound to these streamlines.  The size of the arrow
cates the wind magnitude.  The arrows line up head-to-tail so
the eye can easily follow from one to the next, as is favored
illustrators [Bertin 83].  Human-subject studies have shown th
a graphical stroke varies in width from large to small, people ha
strong sense that the direction is towards the larger end [Fowl
Ware 89].  This guided our choice of tapered arrows in Figure 

Another application of the streamline-placement technique is to
ate iso-intensity contours that are evenly spaced.  Consider th
fect of highlighting several discrete intensity levels in a gray-sc
image: even if the intensity-values are chosen in equal increm
the resulting contours are likely to clump together in some reg
and spread apart in others.  Our optimization technique provid
convenient way to adaptively sample the intensity values so 
the curves are uniformly distributed in the image.  Figure 8 sh
how the technique can be applied to a color photograph.  We 
verted the image to monochrome, blurred it, and then calculate
gradient vector field.  We ran the optimization on the gradient v
tor field and on a vector field orthogonal to it (and thus aligned w
the iso-value lines).  The two sets of streamlines that resulted 
combined and used as a mask to apply the original color valu
the grayscale image.  The effect is akin to weaving, with const
intensity thread being used along the contours.

Our streamline optimization program was written in C++, and 
calculations for the figures herein were performed on a Sili
Graphics Indigo2 with an R4400 processor operating at 250 M
Figures 4 (a) and 5 (b) were created in under one minute, an
streamlines for Figures 6, 7 and 8 required roughly 15 minutes e
We expect that fine-tuning the code would improve the speed 
factor of two to four.

7  Conclusion and Future Work
There are several logical extensions to the streamline optimiza
method presented in this paper.  This same process can be u
create streamlines on curved surfaces by running the optimiza
in the parametric space of the surface and correcting for map

Figure 8:  “Pears.”  The texture in this image was created
combining streamlines in two directions: along the gradi
of the blurred intensity and at 90 degrees to the grad
Original photograph courtesy of Herb Stokes.
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distortions.  The technique could also be used to create stream
in three dimensions, although computational efficiency will pro
ably become an issue. The density of 3D streamlines could be m
dependent on additional properties of the vector field, such as p
imity to vortex cores.  Another research area is in creating illust
tions that reveal different levels of detail when the viewer is at va
ous distances.

We expect that the notion of guiding the placement of graphi
elements by a visual measure of quality will have applications 
yond vector field visualization.  For instance, a similar optimiz
tion method might prove useful in placing graphical elements in
texture.  Another potential use for such techniques is for compu
generation of illustrations that have a hand-drawn appearance [S
& Takahashi 90] [Winkenbach & Salesin 94].
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