
EUROGRAPHICS ’02 STAR – State of The Art Report

Interactive High-Quality Volume Rendering
with Flexible Consumer Graphics Hardware

Klaus Engel and Thomas Ertl

Visualization and Interactive Systems Group, University of Stuttgart

Abstract

Recently, the classic rendering pipeline in 3D graphics hardware has become flexible by means of programmable
geometry engines and rasterization units. This development is primarily driven by the mass market of computer
games and entertainment software, whose demand for new special effects and more realistic 3D environments
induced a reconsideration of the once static rendering pipeline. Besides the impact on visual scene complexity in
computer games, these advances in flexibility provide an enormous potential for new volume rendering algorithms.
Thereby, they make yet unseen quality as well as improved performance for scientific visualization possible and
allow to visualize hidden features contained within volumetric data.
The goal of this report is to deliver insight into the new possibilities that programmable state-of-the-art graphics
hardware offers to the field of interactive, high-quality volume rendering. We cover different slicing approaches
for texture-based volume rendering, non-polygonal iso-surfaces, dot-product shading, environment-map shading,
shadows, pre- and post-classification, multi-dimensional classification, high-quality filtering, pre-integrated clas-
sification and pre-integrated volume rendering, large volume visualization and volumetric effects.

1. Introduction

The massive innovation pressure exerted on the manufactur-
ers of PC graphics hardware by the computer games market
has led to very powerful consumer 3D graphics accelerators.
The latest development in this field is the introduction of pro-
grammable graphics hardware that allows computer game
developers to implement new special effects and more com-
plex and compelling scenes. As a result, the current state-
of-the-art graphics chips, e.g. the NVIDIA GeForce4, or
the ATI Radeon8500, are not only competing with profes-
sional graphics workstations but often surpass the abilities
of such hardware regarding speed, quality, and programma-
bility. Therefore, this kind of hardware is becoming increas-
ingly attractive for scientific visualization. Due to the new
programmability offered by graphics hardware, many pop-
ular visualization algorithms are now being mapped effi-
ciently onto graphics hardware. Moreover, this innovation
leads to completely new algorithms. Especially in the field
of volume graphics, that at all times had very high computa-
tion and resource requirements, the last few years brought a
large number of new and optimized algorithms. In return for
the innovations delivered by the gaming industry, scientific

volume visualization can provide new optimized algorithms
for volumetric effects in entertaiment applications.

This report covers newest volume rendering algo-
rithms and their implementation on programmable con-
sumer graphics hardware. Specialized volume rendering
hardware34 � 30 is not the focus of this report. If details on
the implementation of a specific algorithms are given, we
focus on OpenGL and its extensions32 , although Microsoft’s
DirextX/3D API provides similar functionality for a compa-
rable implementation.

In this report, we restrict ourselves to volume data de-
fined on rectilinear grids. In such grids, the volume data
are comprised of samples located at grid points, which are
equispaced along each volume axis, and can therefore eas-
ily be stored in a texture map. We will start with some ba-
sic, yet important considerations, that are required to pro-
duce satisfying visualization results. After a brief introduc-
tion into the new features of consumer graphics hardware,
we will outline the basic principle of texture-based volume
rendering with different slicing approaches. Subsequently,
we introduce several optimized algorithms, which represent

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

the state-of-the-art in hardware-accelerated volume render-
ing. Finally, we summarize current restrictions of consumer
graphics hardware and give some conclusions with an out-
look on future developments.

2. Basics

Although volumetric data is defined over a continuous three-
dimensional domain (R3), measurements and simulations
provide volume data as 3D arrays, where each of the scalar
values that comprise the volume data set is obtained by sam-
pling the continuous domain at a discrete location. These
values are referred to as voxels (volume elements) and usu-
ally quantized to 8, 16, or 32 bit accuracy and saved as fixed
point or floating point numbers. Figure 1 shows such a rep-
resentation of a volumetric object as a collection of a large
number of voxels.

Figure 1: Voxel representation of a volumetric object after
it has been discretized.

2.1. Reconstruction

In order to reconstruct25 � 31 the original continuous signal
from the voxels, a reconstruction filter is applied, that calcu-
lates a scalar value for the continuous three-dimensional do-
main (R3) by performing a convolution of the discrete func-
tion with a filter kernel. It has been proved, that the “perfect”,
or ideal reconstruction kernel is provided by the sinc filter 33

sinc
�
x ��� sin

�
πx �

πx � (1)

As this reconstruction filter has an unlimited extent, in prac-
tice more simple reconstruction filters like tent or box fil-
ters are applied (see Figure 2). Current graphics hardware
provides linear, bilinear, and trilinear filtering for magnifi-
cation and pre-filtering with mip-mapping and anisotropic
filters for minification. However, due to the availability of
multi-textures and flexible per-fragment operations, con-
sumer graphics hardware also allows filters with higher qual-
ity (see Chapter 7).

Given a reconstruction filter and the three-dimensional ar-
ray of voxels, the data is visualized by sending rays from the

0 11 -1

CBA

00-1

1

-1

1

2 31

1

-2-3
0.5-0.5

Figure 2: Three reconstruction filters: (a) box, (b) tent and
(c) sinc filters.

eye through each pixel of the image plane through the vol-
ume and sampling the data with a constant sampling rate
(ray-casting)23. According to the Nyquist theorem, the orig-
inal signal can be reproduced as long as the sampling rate
is at least twice that of the highest frequency contained in
the original signal. This is, of course, a problem of the vol-
ume acquisition during the measurements and simulations,
so this problem does not concern us here. In the same man-
ner the sampled signal may be reconstructed as long as the
sampling distance in the volume data is at least twice that of
the highest frequency contained in the sampled volume. As a
consequence of the Nyqist theorem we have to choose a sam-
pling rate that satisfies those needs. However, we will show
in Chapter 8 that due to high frequencies introduced during
the classification, which is applied to each filtered sample of
the volume data set, it is in general not sufficient to sample
the volume with the Nyquist frequency of the volume data.
Because of these observations we will later present a clas-
sification scheme that allows us to sample the volume with
the Nyquist frequency of the volume data by pre-integrating
ray-segments in a pre-processing step (see Section 8).

2.2. Classification

Classification is another crucial subtask in the visualiza-
tion of volume data, i.e. the mapping of volume samples to
RGBA values. The classification step is introduced by trans-
fer functions for color densities c̃

�
s � and extinction densi-

ties τ
�
s � , which map scalar values s � s

�
x � to colors and

extinction coefficients. The order of classification and filter-
ing strongly influences the resulting images, as demonstrated
in Figure 3. The image shows the results of pre- and post-
classification at the example of a 163 voxel hydrogen orbital
volume and a high frequency transfer function for the green
color channel.

It can be observed that pre-classification, i.e. classification
before filtering, does not reproduce high-frequencies in the
transfer function. In contrast to this, post-classification, i.e.
classification after filtering, reproduces high frequencies in
the transfer function on the slice polygons.

2.3. Ray Integration

After the filtering and classification of the volume data,
an integration along view rays through the volume is

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

classification-schemes

voxels

post-classification

filtering

filtering

pre-classification

classification

transfer-functions

classification

Figure 3: Comparison of pre-classification and post-classification. Alternate orders of classification and filtering lead to com-
pletely different results. For clarification a random transfer function is used for the green color channel. Piecewise linear
transfer functions are employed for the other color channels. Note, that in contrast to pre-classification, post-classification
reproduces the high frequencies contained within in the transfer function.

required23 � 27. A common approximation used in the visual-
ization of volume data is the density-emitter model, which
assumes that light is emitted and absorbed at each point in
the volume while neglecting scattering and frequency depen-
dent effects.

We denote a ray cast into the volume by
�
x
�
t � , and param-

eterize it by the distance t to the eye. The scalar value cor-
responding to this position on a ray is denoted by s

� �
x
�
t � � .

Since we employ an emission-absorption optical model, the
volume rendering integral we are using integrates absorp-
tion coefficients τ

�
s
� �
x
�
t � � � (accounting for the absorption of

light), and colors c
�
s
� �
x
�
t � � � (accounting for light emitted by

particles) along a ray.

The volume rendering integral can now be used to obtain
the integrated “output” color C, subsuming both color (emis-
sion) and opacity (absorption) contributions along a ray up
to a certain distance D into the volume (see Figure 4):

C �
� D

0
c
�
s
� �
x
�
t � � � e ��� t

0 τ � s ���x � t � 	
	�	 dt � dt (2)

The equation denotes, that at each position in the volume,
light is emitted according to the term c

�
s
� �
x
�
t � � � , which is

absorbed by the volume at all positions along a ray in front of
the light emission position according to the term τ

�
s
� �
x
�
t � � � � .

(t)x

0

D

Figure 4: Integration along a ray through the volume.

By discretizing the integral, we can now introduce the
opacity values A, “well-known” from alpha blending, by
defining

Ai � 1 e � τ � s ���x � id 	�	
	 d (3)

Similarly, the color (emission) of the i-th ray segment can be
approximated by:

Ci � c
�
s
� �
x
�
id � � � d (4)

Having approximated both the emissions and absorptions

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

along a ray, we can now state the approximate evaluation
of the volume rendering integral as (denoting the number of
samples by n � �

D � d �):

Capprox �
n

∑
i � 0

Ci

i � 1

∏
j � 0

�
1 Ai � (5)

Equation 5 can be evaluated iteratively by alpha blending36 � 3

in either back-to-front, or front-to-back order.

The following iterative formulation evaluates equation 5
in back-to-front order by stepping i from n 1 to 0:

C �i � Ci �
�
1 Ai � C �i � 1 (6)

2.4. Shading

In the above considerations we did not take the effects of
external light sources into account. Instead, we assumed a
simple shading, i.e. we identified the primary color assigned
in the classification with c

�
s
� �
x
�
t � � � .

The most popular local illumination model is the Phong
model35 � 4, which computes the lighting as a linear combi-
nation of three different terms, an ambient, a diffuse and a
specular term,

IPhong � Iambient � Idiffuse � Ispecular � (7)

Ambient illumination is modeled by a constant term,
Iambient � ka � const � Without the ambient term parts of
the geometry that are not directly lit would be completely
black. In the real world such indirect illumination effects are
caused by light reflected from other surfaces.

Diffuse reflection refers to light which is reflected with
equal intensity in all directions (Lambertian reflection). The
brightness of a dull, matte surface is independent of the
viewing direction and depends only on the angle of inci-
dence ϕ between the direction

�
l of the light source and the

surface normal
�
n. The diffuse illumination term is written as

Idiffuse � Ip kd cosϕ � Ip kd
� �
l � �n � . Ip is the intensity emitted

from the light source. The surface property kd is a constant
between 0 and 1 specifying the amount of diffuse reflection
as a material specific constant.

Specular reflection is exhibited by every shiny surface
and causes so-called highlights. The specular lighting term
incorporates the vector

�
v from the object to the viewers eye

into the lighting computation. Light is reflected in the di-
rection of reflection

�
r which is the direction of light

�
l mir-

rored about the surface normal
�
n. For efficiency, the re-

flection vector
�
r can be replaced by the halfway vector

�
h,

Ispecular � Ip ks cosn α � Ip ks
� �
h � �n � n. The material prop-

erty ks determines the amount of specular reflection. The ex-
ponent n is called the shininess of the surface and is used to
control the size of the highlights.

3. Programmable Consumer Graphics Hardware

The typical architecture of todays consumer graphics pro-
cessing units (GPUs) is characterized by a configurable ren-
dering pipeline employing an object-order approach, that ap-
plies several geometric transformations on primitives likes
points, lines and polygons (geometry processing), before the
primitives are rasterized (rasterization) and written into the
frame buffer after several fragment operations (see Figure 5).
The design as a strict pipeline with only local knowledge al-
lows lots of optimizations, for example the geometry stage
is able to work on new vertex data, while the rasterization
stage is processing earlier data. However, the current trend
is to replace the concept of a configurable pipeline with the
concept of a programmable pipeline. The programmability
is introduced in the vertex processing stage as well as in the
rasterization stage. We will mainly be concerned with pro-
grammable units in the rasterization stage, since the major
tasks in texture-based volume rendering is done in this stage,
i.e in volume rendering geometry processing of the proxy ge-
ometry is very simple while rasterization is quite complex.

raster
image

scene
description

RASTERIZATION
FRAGMENT

OPERATIONS
GEOMETRY

PROCESSING

Vertices Primitives PixelsFragments

Figure 5: The graphics pipeline that is used in common PC
consumer graphics hardware.

At the time of this writing (summer 2002), the two most
important vendors of programmable GPUs are NVIDIA and
ATI. The current state-of-the-art consumer graphics proces-
sors are the NVIDIA GeForce4 and the ATI Radeon 8500.
In the following, we will focus on the programmable per-
fragment operation extensions of these two manufacturers.

Traditional lighting calculations were done on a per-
vertex basis, i.e. the primary (or diffuse) color was calcu-
lated at the vertices and linearly interpolated over the inte-
rior of a triangle by the rasterizer. One of the first possibil-
ities for per-pixel shading calculations was introduced for
computer games that employ pre-calculated light maps and
decal maps for global illumination effects in walkable 3D
scenes. The texels of the decal texture map are modulated
with the texels of the light texture map. This model requires
to apply two texture maps on a polygon, i.e. multi-textures
are needed. The way the multiple textures are combined to a
single RGBA value in traditional OpenGL multi-texturing is
defined by means of several hard-wired texture environment
modes.

The OpenGL multi-texturing pipeline has various draw-
backs, particularly it is very inflexible and cannot accom-
modate the capabilities of today’s consumer graphics hard-

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

ware. Starting with the original NVIDIA register combin-
ers, which are comprised of a register-based execution model
and programmable input and output routing and operations,
the current trend is toward writing a fragment shader in an
assembly language that is downloaded to the graphics hard-
ware and executed for each fragment.

The NVIDIA model for programmable fragment shading
currently consists of a two-stage model that is comprised of
the distinct stages of texture shaders14 and register combin-
ers12.

Figure 6: Comparison of traditional multi-texturing and
multi-texturing using NVIDIA’s texture shader concept.

Texture shaders are the interface for programmable tex-
ture fetch operations. For each of the four multi-textures a
fetch operation can be defined out of one of 23 pre-defined
texture shader programs, whereas the GeForce 4 offers 37
different such programs15. In contrast to traditional multi-
texturing, the results of a previous texture fetch may be em-
ployed as a parameter for a subsequent texture fetch (see
Figure 6). Additionally, each texture fetch operation is capa-
ble of performing a math operation before the actual texture
fetch. A very powerful option are dependent texture fetches,
which use the results of previous texture fetches as texture
coordinates for subsequent texture fetches. An example for
one of these texture shader programs is dependent alpha-red
texturing, where the texture unit for which this mode is se-
lected, takes the alpha and red outputs from a previous tex-
ture unit as 2D texture coordinates for a dependent texture
fetch in the texture bound to the texture unit. Thus it per-
forms a dependent texture fetch, i.e. a texture fetch operation
that depends on the outcome of a fetch executed by another
unit.

The major drawback of the texture shaders model is
specifically that it requires to use one of several fixed-
function programs, instead of allowing arbitrary pro-
grammability.

After all texture fetch operations have been exe-
cuted (either by standard OpenGL texturing, or us-
ing texture shaders), the register combiners mecha-
nism may be used for flexible color combination op-
erations, employing a register-based execution model.
The register combiners interface is exposed through two

OpenGL extensions: GL_NV_register_combiners12,
and GL_NV_register_combiners213.

�����
�����
�����
�����

���������������
���������������
���������������

���������������
���������������
���������������

�����
�����
�����

�����������
�����������
�����������

�����
�����
�����
����������
�����
����������
�����
����������
�����
����������
�����
�����
����������
�����
����������
�����
�����

�����������
�����������
�����������
�����������

�����
�����
�����

�����
�����
�����

�����������
�����������
�����������

�����������
�����������
�����������

not readable

input
map

input
map

input
map

input
map

A B C D

primary color

secondary color

texture 0

texture 1

spare 0

spare 1

fog

constant color 0

constant color 1

zero

primary color

secondary color

texture 0

texture 1

spare 0

spare 1

fog

constant color 0

constant color 1

zero

input registers output registers

RGB A RGB A

computations

scale
and
bias

A B + C D
−or−

A B mux C D

A B
−or−

A ● B

C D
−or−

C ● D

not writeable

Figure 7: A general combiner stage of NVIDIA’s register
combiner unit.

Current NVIDIA GPUs feature eight general and one fi-
nal combiner stage. Each general combiner stage (see Fig-
ure 7) has four input variables (A,B,C and D). These in-
put variable can be occupied with one of the possible in-
put parameters, e.g. the result of a texture fetch operation or
the primary color. As all computation are performed in the
range of 1 to 1 an input mapping is required for each vari-
able, that maps the input colors to that range. A maximum
of three math operations may be computed per general com-
biner stage, e.g. a component-wise weighted sum AB � CD
and two component-wise products AB, CD or two dot prod-
ucts A � B and C � D. The result are modified by scale and bias
operations and used in subsequent general combiner stages.
The RGB and the Alpha channels are handled independently,
i.e. alpha portion of each general combiner can perform a
different math operation as the RGB portion.

input
map

A B C D

primary color

secondary color

texture 0

texture 1

spare 0

spare 1

fog

constant color 0

constant color 1

zero

input registers

RGB A

input
map

input
map

input
map

input
map

input
map

input
map

EF

spare 0 +
secondary color

E F

G

AB + (1−A)C + D

G

computations

fragment RGB out

fragment Alpha out

Figure 8: The final combiner stage of NVIDIA’s register
combiner unit.

After all enabled general combiner stages have been exe-
cuted, a single final combiner stage (see Figure 8) generates
the final fragment color, which is then passed on to fragment
tests and alpha blending.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

In contrast to the NVIDIA approach, fragment shad-
ing on the Radeon 8500 uses a unified model that sub-
sumes both texture fetch and color combination operations
in a single fragment shader8 program. The fragment shader
interface is exposed through a single OpenGL extension:
GL_ATI_fragment_shader.

texture coordinates,
constants,

primary & secondary color

temporary
registers

fragment
color

1st pass

2nd pass

arithmetics

sampling & routing

arithmetics

Hdepend.L sampling & routing

arithmetics

Figure 9: The ATI fragment shader unit.

The fragment shader unit is divided up into two (cur-
rently) or more passes, each of which may perform six
texture sampling and routing operations followed by eight
arithmetic calculations (see Figure 9). The second phase al-
lows dependent texture fetches with the results from the first
phase. Such results are stored in a set of temporary registers.

On the Radeon 8500, the input registers used by
a fragment shader consist of six RGBA registers
(GL_REG_0_ATI to GL_REG_5_ATI), correspond-
ing to this architecture’s six texture units. Furthermore,
two interpolated colors, and eight constant RGBA registers
(GL_CON_0_ATI to GL_CON_7_ATI) are available to
provide additional color input to a fragment shader.

Each of the six possible sampling operations can be oc-
cupied with a texture fetch from the corresponding texture
unit. Each of the eight fragment operations can be occupied
with one of the following instructions:

� MOV: Moves one register into another.
� ADD: Adds one register to another and stores the result

in a third register.
� SUB: Subtracts one register from another and stores the

result in a third register.
� MUL: Multiplies two registers component-wise and

stores the result in a third register.

� MAD: Multiplies two registers component-wise, adds a
third, and stores the result in a fourth register.

� LERP: Performs linear interpolation between two regis-
ters, getting interpolation weights from a third, and stores
the result in a fourth register.

� DOT3: Performs a three-component dot-product, and
stores the replicated result in a third register.

� DOT4: Performs a four-component dot-product, and
stores the replicated result in a third register.

� DOT2_ADD: The same as DOT3, however the third com-
ponent is assumed to be 1 � 0 and therefore not actually
multiplied.

� CND: Moves one of two registers into a third, depend-
ing on whether the corresponding component in a fourth
register is greater than 0 � 5.

� CND0: The same as CND, but the conditional is a com-
parison with 0 � 0.

The components of input registers to each of these instruc-
tions may be replicated, and the output can be masked for
each component, which allows for flexible routing of color
components. Scaling, bias, negation, complementation, and
saturation (clamp against 0 � 0) are also supported. Further-
more, instructions are issued separately for RGB and alpha
components, although a single pair of RGB and alpha in-
structions counts as a single instruction.

In general, it can be said that the ATI fragment shader
model is much easier to use than the NVIDIA extensions
providing similar functionality, and also offers more flexibil-
ity with regard to dependent texture fetches. However, both
models allow specific operations that the other is not able to
do.

4. Texture-Based Volume Visualization

As discussed in the previous section, current consumer
graphics hardware is based on an object-order rasterization
approach, i.e. primitives (polygons, lines, points) are scan-
converted and written pixel-per-pixel into the frame buffer.
Since the volume data does not consists of such primitives
per se, a proxy geometry is defined for each individual slice
through the volume data. Each slice is textured with the
corresponding data from the volume. The volume is recon-
structed during rasterization on the slice polygon by apply-
ing a convolution of the volume data with a filter kernel as
discussed in Section 2. The entire volume can be represented
by a stack of such slices, if the number of slices satisfies the
restrictions imposed by the Nyquist theorem.

There exist at least three different slicing approaches.
View-aligned slicing in combination with 3D textures5 is the
most common approach (see Figure 10). In this case, the vol-
ume is stored in a single 3D texture and three texture coordi-
nates from the vertices of the slices are interpolated over the
inside of the slice polygons. These three texture coordinates
are employed during rasterization for fetching filtered texels
from the 3D texture map.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

Polygon Slices Final Image3D Texture

Figure 10: The 3D texture-based approach uses view-
aligned slices as proxy geometry.

Polygon Slices Final Image2D Textures

Figure 11: The 2D texture-based approach uses object-
aligned slices as proxy geometry.

If only 2D texture mapping is supported by the graphics
hardware, i.e. the hardware is able to perform bi-linear inter-
polation, the slices have to be aligned orthogonal with one
of the the three major axes of the volume. For this so called
object-aligned slicing (see Figure 11), the volume data is
stored in several two-dimensional texture maps. To prevent
unfavorable alignments of the slices with the viewers line of
sight, that would allow the viewer to see in between indi-
vidual slices, one slice stack for each major axis is stored.
During rendering, the slice stack that is most perpendicular
to the viewer’s line of sight is chosen for rendering (see Fig-
ure 12).

image planeimage planeimage planeimage plane image plane

B EA C D

Figure 12: Choosing the most perpendicular slice stack to
the viewer’s line of sight during object-aligned slicing. Be-
tween (C) and (D) another slice stack is chosen for render-
ing.

There are major disadvantages when using object-aligned
slices with standard 2D texturing. First, the volume must be
tripled, which is critical especially in the context of lim-
ited memory of consumer graphics hardware. Second, the
number of slices that are rendered is limited to the reso-
lution of the volume, because the insertion of interpolated

slice will increase the memory consumption. Typically, un-
dersampling occurs most visibly on the side of the volume
along the currently used major axis. Another disadvantage
is, that switching from one slice stack to another when ro-
tating the volume leads to an abrupt change of the currently
used sampling points, which becomes visible as a popping
effect (see Figure 13). Finally, the distance of sampling point
depends on the viewing angle as outlined in Figure 14. A
constant sampling distance is however necessary in order to
obtain correct results.

CA B

Figure 13: Abrupt change of the location of sampling points,
when switching from one slice stack (A) to another (B).

d2 d4d3d0 d1

Figure 14: The distance between adjacent sampling points
depends on the viewing angle.

However, almost all of these disadvantages are circum-
vented by using multitextures and programmable rasteriza-
tion units. The basic idea is to render arbitrary, tri-linearly
interpolated, object-aligned slices by mapping two adja-
cent texture slices to a single slice polygon by means of
multitextures37. The texture environment of the two 2D tex-
tures performs two bi-linear interpolations whilst the third
interpolation is done in the programmable rasterization unit.
This unit is programmed to compute a linear interpolation of
two bi-linearly interpolated texel from the adjacent slices. A
linear interpolation in the fragment stage is implementable
on a wide variety of consumer graphics hardware architec-
tures. A register combiner setup for the NVIDIA GeForce
series is illustrated in Figure 15. The interpolation factor α
(variable D) is mapped into a constant color register and in-
verted by means of a corresponding input mapping to obtain
the factor 1 α (variable B). The two slices that enclose the
position of the slice to be rendered are configured as tex-
ture 0 (variable A) and texture 1 (variable C). The combiner
is configured to calculate AB � CD, thus the final fragment
contains the linearly interpolated result corresponding to the
specified fractional slice position.

With the aid of this extension it is now possible to freely
adjust the sampling rate without increasing the required
memory. Furthermore, by adapting the sampling distance
to the viewing angle, the sampling rate is held constant, at
least for orthogonal projections. There remains the problem

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

RGB A

texture 0

output registerinput registers final
combiner

slice i+1
texture 1

const col 0

A

B

C

D
Alpha Portion
interpolated

alpha

INVERT

RGB Portion
interpolated

color

AB + CD

RGB A

fragment

general
combiner 0

gradient
intensity

slice i
A

B

C

D

A B +
(1-A) C

+ D

interpolation
factor

gradient
intensity

G

Figure 15: Register combiners configuration for the interpolation of intermediate slices.

of tripled memory consumption, yet this problem is solv-
able with a small modification of the above approach. For
that purpose view-aligned slice polygons similar to a 3D
texture-based approach are computed (see Figure 10). By
intersecting view-aligned slices with a single object-aligned
slice stack we obtain small stripes, each of which is bounded
by two adjacent object-aligned slices (see Figure 16). Instead
of a constant interpolation factor it is now necessary to lin-
early interpolate the factor from 0 to 1 from one slice to the
adjacent slice on the stripe polygon. By enabling Gouraud
shading for the stripe polygons and using a primary color
of 0 and 1 for the corresponding vertices of the stripe poly-
gon the primary color is linearly interpolated and therefore
employed as the interpolation factor. An appropriate register
combiner configuration is shown Figure 17.

calculate
cross−section

cut polygon
into stripes

specify alpha
values

apply
multi−texture

Figure 16: Interpolation of view-aligned slices by rendering
slab-polygons.

slice i

slice (i +1)

input registers

RGB A

 texture 1

interpolation
factor α primary color

 texture 0

INVERT

general
combiner 0

A

B

C

D

A B + C D

Alpha portion:
interpolated

alpha

RGB portion:
interpolated

color

Figure 17: Register combiners configuration for rendering
tri-linearly interpolated stripe polygons.

Consequently, a volume rendering algorithm similar to the
3D texture-based approach is possible with 2D textures and
simple per-fragment operations. The only remaining prob-
lem is the subdivision of the slice polygons into stripes and

the larger number of resulting polygons to be rendered. In
order to circumvent a potentially expensive calculation of
the stripe polygon vertices, an analog algorithm with object-
aligned stripes can be implemented. Since volume rendering
is usually fillrate or memory bandwidth bound and the num-
ber of polygons to be rendered is still quite limited for ren-
dering stripe polygons, framerates similar to a 3D texture-
based algorithm are possible.

view
ing

rays

image plane

view
ing

rays

image plane

viewing

rays

eye
image plane

view
ing

rays

eye

image plane

B. Perspective projectionA.Parallel Projection

Figure 18: For perspective projections the sampling rate
varies for each viewing ray (left: parallel projection, right:
perspective projection).

A general disadvantage of a planar proxy geometry is the
still varying sampling distance inside the volume for each
viewing ray when using perspective projections (see Fig-
ure 18). This problem is circumventable by rendering con-
centric spherical shells around the camera position21 � 9 (see
Figure 19). These shells are generated by clipping tessellated
spheres against the viewing frustum and the volume bound-
ing box. However, the setup and rendering of shells is more
complicated than rendering planar slice polygons. Since the
pixel-to-pixel difference, due to unequal sampling distances
is often not visible, shells should only be used for extreme
perspectives, i.e. large field-of-views.

All of the above slicing approaches render infinitesimal
thin slices into the framebuffer, whereby the number of slices
determines the sampling rate. In contrast to this slice-by-
slice approach, pre-integrated volume rendering employs a
slab-by-slab algorithm, i.e. the space in between two adja-
cent slices (or shells) is rendered into the framebuffer. De-
tails on pre-integrated volume rendering will be presented in
Chapter 8.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

eye

Figure 19: Shell rendering provides a constant sampling
rate for all viewing rays.

A continuous volume is reconstructed on the slice poly-
gons by the graphics hardware by applying a reconstruc-
tion filter. Current graphics hardware supports pre-filtering
mechanisms like mip-mapping and anisotropic filtering for
minification and linear, bilinear, and tri-linear filters for mag-
nification. However, in Section 7 multi-textures and pro-
grammable per-fragment operations allow to apply high-
quality filters to the volume data on-the-fly.

The classification step in hardware-accelerated volume
rendering is either performed before or after the filter-
ing step. The differences of pre- and post-classification
were already demonstrated in Section 2.2. Pre-classification
can be implemented in a pre-processing step by using the
CPU to transform the scalar volume data into a RGBA
texture containing the colors and alpha values from the
transfer function. However, as the memory consumption
of RGBA textures is quite heavy, NVIDIA’s GPUs sup-
port the GL_EXT_paletted_texture extension, which
uses 8 bit indexed textures and performs the transfer func-
tion lookup in the graphics hardware. Unfortunately, there
does not exist an equivalent extension for post-classification.
However, NVIDIA’s GL_NV_texture_shader and
ATI’s GL_ATI_fragment_shader extension makes it
possible to implement post-classification in graphics hard-
ware using dependent texture fetches. For that, first a filtered
scalar value is fetched from the volume, that is used as a
texture coordinate for a dependent lookup into a texture con-
taining the RGBA values of the transfer function. The vol-
ume texture and the transfer function texture are bound by
means of multi-textures to a slice polygon. This also enables
us to implement multi-dimensional transfer functions, i.e. a
2D transfer function is implemented with a 2D dependent
texture and a 3D transfer function is possible by using a 3D
dependent texture (see Section 6).

5. Illumination

Realistic lighting of volumetric data greatly enhances depth
perception. For lighting calculations a per-voxel gradient is
required, that is determined directly from the volume data

by investigating the neighborhood of the voxel. Although
newest graphics hardware will enable the calculation of the
gradient at each voxel on-the-fly, in the majority of the cases
the voxel gradient is pre-computed in a pre-processing step.

For scalar volume data the gradient vector is defined by
the first order derivative of the scalar field I

�
x � y � z � , which

is defined as by the partial derivatives of I in the x-, y- and
z-direction:

�
∇I � �

Ix � Iy � Iz ���
�

∂
∂x

I � ∂
∂y

I � ∂
∂z

I � � (8)

The length of this vector defines the local variation of the
scalar field and is computed using the following equation:��� �∇I

��� ��� Ix
2 � Iy

2 � Iz
2
� (9)

Note that for dot-product lighting calculations the gradi-
ent vector must normalized to a length of 1 to obtain cor-
rect results. Due to the fact that the gradients are normalized
during pre-calculation on a per-voxel basis and interpolated
tri-linearly in space, interpolated gradient will generally not
be normalized. Thus, instead of dot-product lighting calcu-
lations, often light- or environment-maps are employed, be-
cause in this case the lookup of the incoming light purely de-
pends on the direction of the gradient (see Section 5.3). An-
other possibility are normalization maps, that contain nor-
malized gradients for each lookup with unnormalized gradi-
ents. A normalized gradient is then used for further lighting
calculations.

One of the most common approaches to estimate the gra-
dient is based on the first term of a Taylor expansion. With
this central differences method, the directional derivative in
the x-direction is calculated by evaluating

Ix
�
x � y � z ��� I

�
x � 1 � y � z � I

�
x 1 � y � z � with x � y � z � IN �(10)

The derivatives in the other two directions are calculated
respectively. A common way to store pre-computed gradi-
ent vectors for hardware-accelerated volume rendering is to
store the three components of the gradient and the scalar
value of the volume data as a RGBA texture:

�
∇I � �� Ix

Iy

Iz

	
 ��
��
�� R

G
B

I �� A

(11)

Use of gradients for the visualization of non-polygonal
shaded iso-surfaces and for volume shading is demonstrated
in the following subsections.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

Figure 20: A step in the transfer function or an alpha test GL_GEQUAL generates a single-sided iso-surface. Note, that the
artifacts in the iso-surface are removed by very high sampling rates.

5.1. Non-polygonal Iso-surfaces

Aside from the explicit reconstruction of threshold surfaces
from volume data in a pre-processing step to rendering, there
exist also techniques for the visualization of iso-surfaces
during rendering. The underlying idea is to reject fragments
from being rendered that lie over (and/or under) the iso-
value, by applying a per-fragment test or assigning a trans-
parent alpha-value by classification. Westermann proposed
to use the OpenGL alpha test to reject fragments that do
not actually contribute to an iso-surfaces with given iso-
value41. The OpenGL alpha test allows us to define a al-
pha test reference value and a comparison test that rejects
fragments based on the comparison of the alpha channel of
the fragment and the given reference value. With the RGBA
texture setup from the last section and by setting the al-
pha test reference value to the iso-value and the compari-
son test to GL_GEQUAL (greater or equal) one side of the
iso-surface is visualized, while a test GL_LEQUAL (less or
equal) visualizes the other side (see Figure 20). An alpha test
with GL_EQUAL will lead to a two-sided iso-surface. Rezk-
Salama et al.37 extended Westermann’s approach to use pro-
grammable graphics hardware for the shading calculations.

The similar result is obtained by using appropriate trans-
fer functions for classification. Single-sided iso-surfaces are
generated by using a step function from fully transparent to
fully opaque values or vice versa, whilst peaks in the trans-
fer function cause double-sided iso-surfaces. The thickness
of the iso-surfaces is determined by the width of the peak.
As peaks in the transfer function generate high frequencies
in the classified volume data, holes in the surface will only
be removed by employing very high sampling rates (see Fig-
ure 21). It should be noted, that only post-classification will
fill the holes in the surfaces for high sampling rates, since
pre-classification does not reconstruct the high frequencies

of the transfer function on the slice polygons properly. For a
solution of this problem we refer to Section 8.

5.2. Fragment Shading

With the texture setup introduced in the section, interpo-
lated gradients are available during rasterization on a per-
fragment basis. In order to integrate the Phong illumina-
tion model35 into a single-pass volume rendering algorithm,
dot-products and component-wise products must be com-
puted with per-fragment arithmetic operations. This mech-
anism is provided by modern PC graphics hardware through
advanced per-fragment operations. The standard OpenGL
extension EXT_texture_env_dot3 provides a simple
mechanism for product calculations. Additionally, NVIDIA
provides the mechanism of texture shaders and register com-
biners for texture fetching and arithmetic operations, whilst
ATI combines the functionality of these two units into the
fragment shader API.

Although similar implementations are possible with ATI’s
fragment shader extension, the following examples employ
NVIDIA’s register combiners. The combiner setup for dif-
fuse illumination with two independent light sources is dis-
played in Figure 22. In this setup two textures are used for
each slice polygon - one for the pre-calculated gradients and
one for the volume scalars. The first combiner calculates
the two dot products of the gradient with the directions of
the light sources. The second combiner multiplies these dot
products with the colors of the corresponding light sources
and sums up the results. In the final combiner stage the RGB
value after classification is added to the RGB result and the
transparency of the fragment is set to the alpha value ob-
tained from classification.

Specular and diffuse illumination is achieved by using the

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

Figure 21: Three peaks in the transfer function generate three double-sided iso-surfaces. Note, that the holes in the iso-surfaces
are removed by very high sampling rates.

G

RGB A

texture 0

output registerinput registers

texture 1
RGB A

fragment

slice i

final
combiner

A

B

C

D

A B +
(1-A) C

+ D

direction of
light 2 const col 1

sec. color
color of light
source 2

gradient
intensity

RGB

ALPHA

direction of
light 1 const col 0

prim. color
color of light
source 1

general
combiner 0

A

C

D

B dot
product

C D

A B

general
combiner 1

A

C

D

B comp.
wise

AB CD+

ONE

ZERO

Figure 22: NVidia register combiner setup for diffuse illumination with two independent light sources.

register combiner setup displayed in Figure 23. Here, the
first combiner calculates a single dot product of the gradient
with a single light source direction. The result is used in the
second general combiner for calculation of a diffuse light-
ing term and at the same time the dot product is squared. In
the final combiner the squared dot product is squared twice
before the ambient, diffuse and specular lighting terms are
summed up.

5.3. Light/Reflection Maps

In the above lighting calculations the complexity of the light-
ing conditions is limited by the number of arithmetic opera-
tions (or combiner stages) that are allowed on a per-fragment
basis. Additionally, due the current unavailability of square
root and division operations in the fragment stage, the inter-
polated gradients cannot be renormalized. Dot-product light-
ing calculations with unnormalized gradients will lead to
shading artifacts.

In order to allow more complex lighting conditions and
prevent artifacts, the concept of reflection maps is applica-
ble. A reflection map caches the incident illumination from
all directions at a single point in space. The general assump-
tion for the justification of reflection maps is, that the object
to which the reflection map is applied is small with respect
to the environment that contains it.

For a lookup into a reflection map on a per-fragment ba-
sis, a dependent texture fetch operation with the normal from
a previous fetch is required. The coordinates for the lookup
into a diffuse environment map are directly computed from
the normal vector, whereas the reflection vectors for reflec-
tion map lookups are a function of both the normal vectors
and the viewing directions.

Besides spherical reflection-maps, cube maps have be-
come more and more popular within the past years (see Fig-
ure 24). In this case the environment is projected onto the
six sides of a cube, which are indexed with the largest ab-
solute component of the normal or reflection vector. The de-

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

RGB A

texture 0

output registerinput registers

texture 1
RGB A

fragment

slice i

final
combiner

A

B

C

D

gradient
intensity

RGB

ALPHA

direction of
light 1 const col 0

prim. color
color of light
source 1

general
combiner 0

A

C

D

B

general
combiner 1

C

B comp.
wise

product

ZERO

dot
product

A B

G

E

F

A B +
(1-A) C

+ D

E F

A B

C D

A

D +

Figure 23: NVidia register combiner setup for diffuse and specular illumination. The additional sum (+) is achieved using the
spare0 and secondary color registers of the final combiner stage.

Figure 24: Example of a cube environment map.

pendent lookup into such a cube map is supported in ATI’s
fragment shader and NVIDIA’s texture shader OpenGL ex-
tensions. With NVIDIA’s texture shader extension four tex-
ture units are required. The first texture unit fetches a fil-
tered normal from the volume. Since the reflection map
is generated in world coordinate space, the current model-
ing matrix is required to transform the normals into world
space. The texture coordinates of the three remaining tex-
ture stages are used to pass the current modeling matrix�
si � ti � ri � � i � �

1 � 2 � 3 � and the eye vector
�
q1 � q2 � q3 � to the

rasterization unit as vectors vi �
�
si � ti � ri � qi � � i � �

1 � 2 � 3 �
(see Figure 25). From this information the GPU calculates
a normal in world space for a diffuse lookup or a reflection
vector in world space for a reflection map lookup. The values
from those lookups are finally combined using the register
combiner extension (see Figure 26 for results).

Due to the fact, that the upload time of updated cube maps

Figure 25: Texture shader configuration for lookup
into a reflection cube map. For a diffuse cube map
lookup, the last fetch operation is replaced by a
DOT_PRODUCT_TEXTURE_CUBE_MAP_NV operation.

is negligible, cube maps are ideally suited for complex, dy-
namic lighting conditions.

5.4. Shadows

Shadows are another important visual clue for the perception
of 3D structures. Behrens and Ratering2 proposed a hard-
ware model for computing shadows in volume data. They
compute a second volume that captures the light arriving at a
certain volume sample. During rasterization the colors after
the transfer function are multiplied with these values to pro-
duce attenuated colors. However this approach suffers from
blurry shadows and too dark surfaces due to the interpolation

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

Figure 27: Example volume renderings with shadow computations.

Figure 26: Iso-surface of the engine block with diffuse cube
map (left) and specular reflection map (right).

of the coarse light intensity volume. This effect is referred to
as attenuation leakage.

An alternative approach was proposed by Kniss18. Instead
of a shadow volume an offscreen render buffer accumulates
the amount of light from the light’s point of view. In order
to render the same slices for light attenuation and volume
slicing, Kniss proposed to slice the volume with a slice axis
that is the halfway vector between the view and light direc-
tions. For a single headlight the same slices for accumulat-
ing opacity and for volume rendering are employed (Fig-
ure 28(a)). The amount of light arriving from the light source
at a particular slice is one minus the accumulated opacity
from the slices before it. Given the situation in Figure 28(b),
normally a separate shadow volume must be created. With
the approach of Kniss the halfway vector s between the light
source direction l and the view vector v is used as slicing axis
(Figure 28(c)). In order to have an optimal slicing direction
for each possible configuration, the negative view vector is
used for angles greater than 90 degrees between the view and
the light vector (Figure 28(d)). Note, that in order to ensure
a consistent sampling rate, the slice spacing along the slice
direction must be corrected.

Given the above slicing approach and a front-to-back slice
rendering order, a two-pass volume rendering algorithm will
provide the desired results. First, a hardware-accelerated off
screen render buffer is initialized with 1 light_intensity.

v v -v

l ls
s

θ

1
2−θ

v
l

v

l

(a) (b)

(c) (d)

Figure 28: Modified slicing approach for light transport
computation.

Alternatively, to create effects like spotlights, the buffer is
initialized with an arbitrary image. Then each slice is ren-
dered in a first pass from the observers point of view using
the off screen buffer to modulate the brightness of samples.
The two textures are applied to a slice polygon by means
of multi-textures. Then, in the second pass, the slice is ren-
dered from the light’s point of view to calculate the intensity
of the light arriving at the next layer. Light is attenuated by
accumulating the opacity for each sample with the over op-
erator. Optimized performance is achievable by utilizing a
hardware-accelerated off screen buffer, that can be directly
used as a texture. Such functionality is provided in OpenGL
by the extension render to texture. The approach renders one
light source per volume rendering pass. Multiple light source
require additional rendering passes. The resulting images are
weighted and summed. Figure 27 demonstrates results of the
approach. As images created with the this approach often ap-
pear to dark because of missing scattering effects, Kniss also
proposed to use the approach for scattering computations19

to simulate translucent material.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

6. Multi-Dimensional Classification

The term classification was introduced in Section 2 as the
process of mapping scalar values from the volume to RGBA
values using a one-dimensional transfer function. Figure 29
shows a one-dimensional histogram of a CT data set (see
Figure 31), that allows to identify three basic materials.

� � �

Figure 29: A 1D histogram of the CT human head data set
(black: log scale, grey: linear scale). The colored regions
(A,B,C) identify basic materials.

However, it is often advantageous to have a classification
that depends on multiple scalar values. The two-dimensional
histogram based on the scalar value and the first order deriva-
tive in Figure 30 allows to identify the materials as well as
the material boundaries of the same CT data set (see Fig-
ure 31).

� � �
� �

� 	�

������������ ���
Figure 30: A log-scale 2D histogram. Materials (A,B,C) and
material boundaries (D,E,F) can be distinguished.

Multi-dimensional transfer functions were first proposed
by Levoy22. They provide a very effective way to extract ma-
terials and their boundaries for both scalar and multivariate
data. However, the manipulation of multi-dimensional trans-
fer functions is extremely difficult. Kindlman16 proposed
the semi-automatic generation of transfer functions whilst
Kniss17 proposed a set of direct manipulation widgets that
make specifying such transfer functions intuitive and conve-
nient.

Since identifying good transfer functions is a difficult
task, the interactive manipulation of all transfer function pa-
rameters is mandatory. Fortunately, dependent texture reads,
which were introduced in the latest generation of consumer
graphics hardware, are particularly suited for an interactive
classification with multi-dimensional transfer functions. In-
stead of the one-dimensional dependent texture from Sec-
tion 4, the transfer function is transformed into a two- or

�

�

�

�

�

Figure 31: CT scan of a human head showing the materi-
als and boundaries identified by a two-dimensional transfer
function.

three-dimensional RGBA texture with color and opacity val-
ues from the transfer function. The volume itself is defined
as a LUMINANCE_ALPHA-texture for two scalars per voxel
and as a RGB-texture for three scalars per voxel.

Figure 32: Texture shader setup for a three-dimensional
transfer function. Stage 0 fetches the per-voxel scalars while
stage 1 performs a dependent texture lookup into the 3D
transfer function.

Figure 32 shows the texture shader setup for NVIDIA’s
GeForce4 chip. During rendering the first texture stage
fetches filtered texels from the volume containing the three
scalars defined for that voxel in the RGB components. Tex-
ture stage 1 performs dependent texture lookups with the
RGB components from stage 0 as texture coordinates into
the 3D transfer function volume. Consequently, a post-
classification with the 3D transfer function is performed.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

It should be noted, that a 3D dependent texture lookup is
currently only supported by the texture_shader3 ex-
tension of the GeForce4 chip. In contrast, both the ATI
Radeon8500 and the NVIDIA GeForce3 and GeForce4
chips support 2D dependent lookups.

7. High-Quality Filtering

As outlined in Section 2, the accurate reconstruction of
the original volume from the sampled volume data requires
an appropriate reconstruction filter. Unfortunately, current
graphics hardware only supports linear filters for magnifi-
cation. However, Hadwiger et al.10 have shown that multi-
textures and flexible rasterization hardware allow to evaluate
arbitrary filter kernels during rendering.

The filtering of a signal can be described as the convolu-
tion of the signal function s with a filter kernel function h:

g
�
t � � � s � h � � t � �

� ∞

� ∞
s
�
t t � � � h

�
t � � dt � (12)

In the discretized form this leads to

gt �
� I

∑
i � � I

st � ihi (13)

with the half width of the filter kernel denoted by I. Basi-
cally this means, that we have to collect the contribution of
neighboring input samples multiplied by the corresponding
filter values to get a new filtered output sample. Instead of
this gathering approach, Hadwiger et al. use a distributing
approach for a hardware-accelerated implementation. That
is, the contribution of an input sample is distributed to its
neighboring samples, instead of the other way. The order
was chosen, since this allows to collect the contribution of
a single relative input sample for all output samples simulta-
neously. The term relative input sample denotes the relative
offset of an input sample to the position of an output sample.
The final result is obtained by adding the result of multi-
ple rendering passes, whereby the number of input samples
that contribute to an output sample determine the number of
passes.

Figure 33 demonstrates this in the example of a one-
dimensional tent filter. As one left-handed and one right-
handed neighbor input sample contribute to each output sam-
ple, a two-pass approach is necessary. In the first pass, the in-
put samples are shifted right half a voxel distance by means
of texture coordinates. The input samples are stored in a
texture-map that uses nearest-neighbor interpolation and is
bound to the first texture stage of the multi-texture unit (see
Figure 34). Nearest-neighbor interpolation is needed to ac-
cess the original input samples over the complete half ex-
tend of the filter kernel. The filter kernel is divided into

input samples

resampling points

input samples

resampling points

Figure 33: Distributing the contributions of all “left-hand”
(a), and all “right-hand” (b) neighbors, when using a tent
filter as a simple example for the algorithm.

two tiles. One filter tile is stored in a second texture map,
mirrored and repeated via the GL_REPEAT texture environ-
ment. This texture is bound to the second stage of the multi-
texture unit. During rasterization the values fetched by the
first multi-texture unit are multiplied with the result of the
second multi-texture unit. The result is added into the frame
buffer. In the second pass, the input samples are shifted left
half a voxel distance by means of texture coordinates. For a
symmetric filter the same unmirrored filter tile is reused. The
result is again added to the frame buffer to obtain the final
result.

pass 1

pass 2

mirrored +

2 4

1 2 30

1 3

(nearest−neighbor interpolation)

filter tile (texture 1)

shifted input samples (texture 0)

x

output samples

Figure 34: Tent filter (width two) used for reconstruction of
a one-dimensional function in two passes. Imagine the val-
ues of the output samples added together from top to bottom.

If a given hardware architecture supports 2n multi-
textures, the number of required passes can be reduced by
n. That is, two multi-texture units are calculating the result
of a single pass. Note, that the method outlined above is not
considering area-averaging filters, since it is assumed that
magnification is desired instead of minification. For minifi-
cation pre-filtering approaches like mip-mapping are advan-
tageous. Figure 35 demonstrates the benefit of bi-cubic fil-
tering using a B-spline filter kernel over a standard bi-linear
interpolation.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

Figure 35: Using a high-quality reconstruction filter for vol-
ume rendering. This image compares bi-linear interpolation
of object-aligned slices (A) with bi-cubic filtering using a B-
spline filter kernel (B).

8. Pre-Integrated Volume Rendering

Obviously, as outlined in Section 2, post-classification will
reproduce high frequencies of the transfer function. How-
ever, as observed in Section 5.1, high frequencies (e.g. iso-
surface peaks) are only reproduced on slice polygons. In or-
der to visualize details of the transfer function in between
slice polygons, additional tri-linearly interpolated slice must
be rendered. As this demands higher rasterization require-
ments from the graphics hardware, framerates considerably
decrease.

8.1. Pre-Integrated Classification

In order to overcome the limitations discussed above, the ap-
proximation of the volume rendering integral has to be im-
proved. In fact, many improvements have been proposed,
e.g., higher-order integration schemes, adaptive sampling,
etc. However, these methods do not explicitly address the
problem of high Nyquist frequencies of the color after the
classification c̃

�
s
�
x ��� and an extinction coefficients after

the classification τ
�
s
�
x � � resulting from non-linear trans-

fer functions. On the other hand, the goal of pre-integrated
classification38 is to split the numerical integration into two
integrations: one for the continuous scalar field s

�
x � and one

for the transfer functions c̃
�
s � and τ

�
s � in order to avoid the

problematic product of Nyquist frequencies.

The first step is the sampling of the continuous scalar field
s
�
x � along a viewing ray. Note that the Nyquist frequency

for this sampling is not affected by the transfer functions.

s f = sHxHi dLL
sb = sHxHHi + 1L dLL

d

sHxHΛLL

Λi d Hi + 1L d

xHΛLxHi dL xHHi + 1L dL
Figure 36: Scheme of the parameters determining the color
and opacity of the i-th ray segment.

For the purpose of pre-integrated classification, the sam-
pled values define a one-dimensional, piecewise linear scalar
field. The volume rendering integral for this piecewise lin-
ear scalar field is efficiently computed by one table lookup
for each linear segment. The three arguments of the table
lookup are the scalar value at the start (front) of the segment
s f : � s

�
x
�
id ��� , the scalar value the end (back) of the segment

sb : � s
�
x
� �

i � 1 � d � � , and the length of the segment d. (See
Figure 36.) More precisely spoken, the opacity αi of the i-th
segment is approximated by

αi � 1 exp

�

� � i � 1 	 d
i d

τ � s
�
x
�
λ ����� dλ �

� 1 exp

�

� 1

0
τ
� �

1 ω � s f � ωsb � d dω � � (14)

Thus, αi is a function of s f , sb, and d. (Or of s f and sb, if the
lengths of the segments are equal.) The (associated) colors
C̃i are approximated correspondingly:

C̃i
� � 1

0
c̃
� �

1 ω � s f � ωsb �
� exp � � ω

0
τ
� �

1 ω � � s f � ω � sb � d dω � � d dω �(15)

Analogously to αi, C̃i is a function of s f , sb, and d. Thus, pre-
integrated classification will approximate the volume render-
ing integral by evaluating the following Equation:

I � n

∑
i � 0

C̃i

i � 1

∏
j � 0

�
1 α j �

with colors C̃i pre-computed according to Equation (15) and
opacities αi pre-computed according to Equation (14). For
non-associated color transfer function, i.e., when substitut-
ing c̃

�
s � by τ

�
s � c � s � , we will also employ Equation (14) for

the approximation of αi and the following approximation of

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

the associated color C̃τ
i :

C̃τ
i

� � 1

0
τ
� �

1 ω � s f � ωsb � c
� �

1 ω � s f � ωsb �
� exp � � ω

0
τ
� �

1 ω � � s f � ω � sb � d dω � � d dω �(16)

Note that pre-integrated classification always computes as-
sociated colors, whether a transfer function for associated
colors c̃

�
s � or for non-associated colors c

�
s � is employed.

In either case, pre-integrated classification allows to sam-
ple a continuous scalar field s

�
x � without the need to in-

crease the sampling rate for any non-linear transfer function.
Therefore, pre-integrated classification has the potential to
improve the accuracy (less undersampling) and the perfor-
mance (fewer samples) of a volume renderer at the same
time.

One of the major disadvantages of the pre-integrated clas-
sification is the need to integrate a large number of ray-
segments for each new transfer function dependent on the
front and back scalar value and the ray-segment length. Con-
sequently, an interactive modification of the transfer function
is not possible. Therefore several modifications to the com-
putation of the ray-segments were proposed7 , that lead to an
enormous speedup of the integration calculations. However,
this requires to neglect the attenuation within a ray segment.
Yet, this is a common approximation for post-classified vol-
ume rendering and well justified for small products τ

�
s � d.

The dimensionality of the lookup table can easily be reduced
by assuming constant ray segment lengths d. This assump-
tion is correct for orthogonal projections and view-aligned
proxy geometry. It is a good approximation for perspective
projections and view-aligned proxy geometry, as long as ex-
treme perspectives are avoided. This assumption is correct
for perspective projections and shell-based proxy geome-
try. In the following hardware-accelerated implementation,
two-dimensional lookup tables for the pre-integrated ray-
segments are employed, thus a constant ray segment length
is assumed.

8.2. Texture-Based Pre-Integrated Volume Rendering

The utilization of flexible graphics hardware for a hardware-
accelerated implementation of pre-integrated volume render-
ing for volume data on cartesian grids was first proposed
in 7. The texture maps (either three-dimensional or two-
dimensional textures) contain the scalar values of the vol-
ume, just as for post-classification. As each pair of adjacent
slices (either view-aligned or object-aligned) corresponds to
one slab of the volume (see Figure 37), the texture maps of
two adjacent slices have to be mapped onto one slice (ei-
ther the front or the back slice) by means of multiple tex-
tures. Thus, the scalar values along a viewing ray of both
slices (front and back) are fetched from texture maps dur-
ing the rasterization of the polygon for one slab. These two
scalar values are utilized as texture coordinates for a third

s f
sb

front slice
back slice

Figure 37: A slab of the volume between two slices. The
scalar value on the front (back) slice for a particular viewing
ray is called s f (sb).

dependent texture fetch operation. This fetch performs the
lookup of pre-integrated colors and opacities from a two-
dimensional texture map.

The opacities of the dependent texture map are calculated
according to Equation (14), while the colors are computed
according to Equation (15) if the transfer function specifies
associated colors c̃

�
s � , and Equation (16) if it specifies non-

associated colors c
�
s � . In either case the compositing Equa-

tion (5) is used for blending as the dependent texture map
always contains associated colors.

NVidia’s texture shader extension provides a texture
shader operation that employs the previous texture shader’s
green and blue (or red and alpha) colors as the

�
s � t � co-

ordinates for a non-projective 2D texture lookup. Unfor-
tunately, this operation cannot be used as the coordinates
are fetched from two separate 2D textures. Instead, as a
workaround, the dot product texture shader, which com-
putes the dot product of the stage’s

�
s � t � r � and a vector de-

rived from a previous stage’s texture lookup is used (see
Figure 38). The result of two of such dot product texture
shader operations are employed as coordinates for a depen-
dent texture lookup. Here the dot product is only required to
extract the front and back volume scalars. This is achieved
by storing the volume scalars in the red components of the
textures and applying a dot product with a constant vector�
v � � 1 � 0 � 0 � T . The texture shader extension allows us to de-
fine to which previous texture fetch the dot product refers
with the GL_PREVIOUS_TEXTURE_INPUT_NV texture
environment. The first dot product is set to use the fetched
front texel values as previous texture stage, the second uses
the back texel value . In this approach, the second dot prod-

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

uct performs the texture lookup into our dependent texture
via texture coordinates obtained from two different textures.
As ATI’s fragment shader OpenGL extension is more flexi-
ble than the NVIDIA counterpart, the more simple setup is
possible. The front and back scalar values are fetched ac-
cordingly to the NVIDIA setup. After the fetches the two
scalar value are contained in the red components of two
temporary registers. Then the scalar value from one of tem-
porary registers is moved to the green component of the
other register with a GL_MOV_ATI command. In the sec-
ond phase of the fragment shader program, a 2D dependent
texture fetch with the red and green components of this tem-
porary register fetches the pre-integrated ray-segment from
a texture map.

Figure 38: Texture shader setup for dependent 2D texture
lookup with texture coordinates obtained from two source
textures. If 3D textures are employed, the first two fetch oper-
ations are replaced by the corresponding 3D texture fetches.

For direct volume rendering without lighting the fetched
texel from the last dependent texture operation is used
without further processing and blended into the frame
buffer with the OpenGL blending function glBlend-
Func(GL_ONE,GL_ONE_MINUS_SRC_ALPHA). A
comparison of the results of pre-classification, post-
classification and pre-integrated classification is shown in
Figure 39.

Besides the suitability of high-frequency transfer func-
tions for the evaluation of volume rendering quality, they
also allow to identify homogeneous regions and small vari-
ations in the volume data (see Figure 40, right). Random
transfer functions are a way to visualize all iso-surfaces in
the volume data at once, because a random transfer function
consists of a large number of peaks, each of which represents
a single iso-surface. Homogeneous regions have a low iso-
surface density. In contrast, large variations, i.e. large gra-
dients are identifiable by applying gradient-weighted opac-
ity. The usual way to implement gradient weighting is to

Figure 39: Comparison of the results of pre-, post- and
pre-integrated classification for a random transfer function.
Note, that pre-classification does not reproduce high fre-
quencies of the transfer function, that post-classification re-
produces the high frequencies on the slice polygons, but pre-
integrated classification produces the best visual result due
to the reconstruction of high frequencies in the volume.

store a pre-computed gradient-magnitude per voxel and to
use a two-dimensional transfer function to enhance bound-
ary structures. However, a directional derivate in the view-
direction is implicitly contained within the pre-integrated
volume rendering scheme, simply by assigning higher opac-
ity to texels that are further away from the diagonal of the de-
pendent texture containing the pre-integrated ray segments
(see Figure 40, left). Note, that entries near the diagonal of
the dependent texture correspond to ray segments with simi-
lar front and back scalar values, i.e. low gradient magnitude,
whereas entries further away from the diagonal correspond
to high directional gradient magnitude.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

Figure 40: Gradient-weighted opacity allows to identify re-
gions of big variation in the data (left), while high-frequency
transfer functions allow to identify small variations (right).
Note, that homgeneous and inhomogeneous regions inside
the engine data set can easily be identified.

8.3. Iso-surfaces and Shading

One of the additional advantages of pre-integrated classifica-
tion is the possibility of classifying each ray segment in the
pre-processing step regarding the existence of iso-surfaces in
that segment. An iso-surface is contained within a ray seg-
ment, if the iso-value lies in between the scalar values at the
front and the back slice position along the ray. Just by ini-
tializing a transparent dependent texture and then coloring
pixels in this texture with the color and alpha value that cor-
respond to iso-surfaces that intersects the ray segments, the
rendering of iso-surfaces is possible. Certainly this is not re-
stricted to a single iso-surface per ray segment. If more than
one iso-surface intersects a ray segment, the iso-surfaces are
blended respectively and the resulting color and alpha value
is used for the corresponding pixel in the dependent texture.
Additionally, the back and front of the iso-surface can be
colored independently. This is demonstrated in Figure 41,
where a dependent texture that is used for visualizing 10 in-
dependently colored iso-surfaces at once. Certainly, visual-
izing multiple isosurfaces at once has no impact on frame
rates, as this only requires to modify the dependent texture.

For shading calculations it is common to employ RGBA
textures, that hold the volume gradient in the RGB compo-
nents and the volume scalar in the ALPHA component. As
dot3 dot-products on the NVIDIA architecture are required
to extract the front and back volume scalar from a RGBA
texel, the scalar data has to be stored in one of the RGB com-
ponents (here in red). The first gradient component is stored
in the ALPHA component in return. In the register combiners
the red and alpha values are swapped back for shading cal-
culations with RGB gradients. This workaround is not nec-
essary on the ATI Radeon8500 board, since this architecture
allows more flexible per-fragment operations, i.e. the scalar
value in the alpha channel can be simply moved to another
color channel for a dependent texture fetch.

After the color and alpha values have been fetched from

the dependent texture, the gradients from the front and
the back slice are available for shading calculations. Note,
that due to limited amount of fetch operations on the cur-
rent NVIDIA GPUs and the limited amount of dependency
phases on the ATI GPUs, light maps cannot be employed for
shading. Instead dot-product shading is used to evaluate an
ambient, diffuse and specular lighting term. The gradient is
linearly interpolated to the position of the intersection of the
iso-surfaces inside a ray segment. If multiple iso-surfaces are
contained within a ray segment, the gradient is interpolated
to the position of the most front iso-surface or a weighted
combination of multiple iso-surface gradients is used, if mul-
tiple semi-transparent iso-surfaces are visible28. The result
of such a shading calculation is shown in Figure 41.

Figure 41: Multiple shaded non-polygonal iso-surfaces that
were extracted with the corresponding dependent texture
(bottom, right). Note, that the front and back face of the iso-
surfaces have different colors.

Beyond that, volume shading29 can easily be integrated
into the pre-integration scheme. As for iso-surfaces, RGBA
textures with gradients and scalar values are employed. In-
stead of the special dependent iso-surface texture, the pre-
integrated dependent texture is required again. For shading,
the gradient is averaged between the front and back gradient.
Figure 42 shows the result of pre-integrated volume shading.

The volume shading approach is also useful as an al-
ternative approach for iso-surface visualization. As dis-
cussed in Section 5.1 a peak in the transfer function de-
fines a double-sided iso-surface. Due to the pre-integration
of ray-segments, the iso-surface resulting iso-surfaces do not

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

Figure 42: Pre-integrated volume shaded rendering of con-
vection flow in the earth’s crust.

have holes as opposed to post-classification (see Figures 43
and 21 for a comparison).

Figure 43: Visualization of iso-surfaces using transfer func-
tion peaks (bottom, left) and pre-integrated shaded volume
rendering does not lead to holes in the iso-surfaces for a low
number of slices as opposed to post-classification.

9. Large Volumes

One of the main limitations of employing current PC con-
sumer graphics hardware for volume rendering is the rela-
tively small amount of available on-board texture memory.

Currently, a maximum of 128 MB is supported by NVIDIA’s
GeForce4 and ATI’s Radeon8500 boards. Due to the quite
slow bus bandwidth of current PC architectures, the utiliza-
tion of the main memory in combination with a bricking5

approach is often impractical. Although texture compres-
sion is available in current consumer graphics hardware
for quite a time in form of S3’s texture compression ex-
tensions EXT_texture_compression_s3tc and the
equivalent extension NV_texture_compression_vtc
for 3D textures, the compression ratios and quality is quite
limited. Multi-resolution methods39 � 21 still have not pro-
vided satisfactory results.

255 255 138 3

255 228 222 104

237 146 198 24

187 59 93 214

0

1

2

3

4

......

Figure 44: Data structure for vector quantization of volume
textures. Each byte of the index data specifies one data block
consisting of 2 � 2 � 2 voxels.

However, due to indirect memory access functionality
provided by dependent texture fetch operations of mod-
ern PC graphics hardware, decoders for compressed vol-
ume data can directly be integrated into the rasterization
pipeline. Kraus et al.20 proposed to use dependent texture
fetches for adaptive texture maps and vector-quantization of
volume data. The basic idea of vector quantization of vol-
ume data is illustrated in in Figure 44. Instead of the original
volume data, the rendered 3D texture contains indices that
reference one vector of voxels in a codebook. In the imple-
mentation of Kraus, the codebook includes 256 vectors con-
sisting of 8 bytes corresponding to 2 � 2 � 2 voxels of the
original volume data. Thus, each cell of the index data spec-
ifies the complete data of eight voxels with just one byte,
i.e. the compression ratio is about 8 : 1 since the size of the
relatively small codebook may be ignored. The codebook is
computed in a pre-processing step with the help of one of
the numerous vector quantization algorithms.

Since the dependent fetch from the codebook is done af-
ter the filtering step, currently nearest neighbor interpolation
is employed. In a hardware implementation on future graph-
ics hardware, a vector quantization decoding unit would be

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

placed in front of the texture filtering unit to facilitate tri-
linear interpolation.

10. Volumetric FX

In return for the advantages the scientific visualization com-
munity takes from the rapid development in the consumer
graphics hardware, we can provide advanced algorithms that
facilitate new volumetric effects in computer games. In or-
der to capture the characteristics of many volumetric objects
such as clouds, smoke, trees, hair, and fur, high frequency
details are essential. Ebert’s6 approach for modeling clouds
uses a coarse technique for modeling the macrostructure and
uses procedural noise-based simulations for the microstruc-
ture (see Figure 45). This technique was adapted by Kniss19

to interactive volume rendering through two volume pertur-
bation approaches which are efficient on modern graphics
hardware. The first approach is used to perturb texture co-
ordinates and is useful to perturb boundaries in the volume
data, e.g. the boundary of the cloud in Figure 45. The second
approach perturbs the volume itself, which has the effect that
materials appear to have inhomogeneities.

Both volume perturbation approaches employ a small 3D-
perturbation volume with 323 voxels. Each texel is initial-
ized with four random 8-bit numbers, stored as RGBA com-
ponents, and blurred slightly to hide the artifacts caused by
trilinear interpolation. Texel access is then set to repeat. An
additional pass is required for both approaches due to lim-
itations imposed on the number of textures which can be
simultaneously applied to a polygon, and the number of se-
quential dependent texture reads permitted. The additional
pass occurs before the steps outlined in the previous section.
Multiple copies of the noise texture are applied to each slice
at different scales. They are then weighted and summed per
pixel. To animate the perturbation, they add a different offset
to each noise texture’s coordinates and update it each frame.

In the case of the modification of the location of the data
access for the volume, the three components of the noise
texture form a vector, which is added to the texture coor-
dinates for the volume data per pixel. Offset textures in cur-
rent graphics hardware would be ideally suited to add the
noise vector to each per-fragment texture coordinate. Unfor-
tunately, NVIDIA’s texture shader extension does not facil-
itate 3D offset textures. Instead, the perturbed data is ren-
dered to a pixel buffer that is used instead of the original
volume data. Figure 46 illustrates this process. Notice that
the high frequency content is created by allowing the noise
texture to repeat.

In the case of the modification of the volume itself, the
scalar value for each fragment is modified with the weighted
sum of the three noise textures. Then this modified scalar is
employed for the transfer function lookup.

Figure 47 shows a fireball that is rendered with a small

Figure 45: Procedural clouds. The image on the top shows
the underlying data, 643. The center image shows the per-
turbed volume. The bottom image shows the perturbed vol-
ume lit from behind with low frequency noise added to the
indirect attenuation to achieve subtle iridescence effects.

modification of the pre-integrated volume rendering ap-
proach from Section 8. Instead of a indexed 3D-texture con-
taining just the scalar values from a single volume, a RGB
texture is employed, that contains the volume scalars in the
red channel, a low-frequency noise texture in the green chan-
nel and a high-frequency noise texture in the blue color
channel. If we apply texture coordinates

�
α � β � γ � instead of

the constant
�
1 � 0 � 0 � texture coordinates as outlined in Fig-

ure 38, the three volumes contained in the color channels are
weighted using the dot-product before the dependent texture
lookup is performed. Thus, if we store a radial distance vol-
ume in the red color channel, it is perturbed. Flames are an-
imated by changing the weighting factors

�
α � β � γ � , while an

outwards movement is achieved by color cycling the transfer
function.

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

Figure 46: An example of texture coordinate perturbation
in 2D. A shows a square polygon mapped with the original
texture that is to be perturbed. B shows a low resolution per-
turbation texture applied to the polygon multiple times at dif-
ferent scales. These offset vectors are weighted and summed
to offset the original texture coordinates as seen in C. The
texture is then read using the modified texture coordinates,
producing the image seen in D.

11. Limitations

Even though there has been a enormous development in the
consumer graphics market in the last few years, current low-
cost graphics hardware still has its drawbacks.

First, the computational precision of current PC graphics
hardware is quite limited, especially in the rasterization stage
of the rendering pipeline. Framebuffers currently support 32
bits, 8 bits per color channel. NVIDIA’s register combiners
extension has 9 bits precision for a range from 1 to 1, while
the texture shader unit has floating point precision. ATI’s
fragment shader unit supports 16 bits precision for a range
of values from 8 to 8, 13 bit in the range 1 to 1. Note, that
for calculations in 16 bit precision, it is necessary to expand
the values to the full range of 8 to 8. Textures currently
have 8 bit precision per color channel. The first step towards
higher precision is NVIDIA’s HILO texture format, that sup-
ports two channels per texture with 16 bits precision. The
result limited precision are artifacts, that can be frequently
observed in hardware-accelerated renderings. One solution
was already introduced-the pre-computation of values with
the full precision of the CPU in a pre-processing step, as em-
ployed for pre-integrated volume rendering.

Another drawback is the limited programmability of cur-
rent units in the rendering pipeline. NVIDIA supports four
texture fetches in a pass, followed by 8 general combiner
and one final combiner operation. ATI’s fragment shaders

Figure 47: Pre-Integrated volume rendering of a fireball.
The fireball effect is obtained by mixing different volumes
during rendering. (1) Radial distance volume with high-
frequency fire transfer function, (2) Perlin-Noise-Volume
with fire-transfer function, (3)Weighted combination of the
distance volume and two Perlin-Noise volumes, (4) Like (3),
but with higher weights for the Perlin-Noise-volumes.

currently support 2 phases, each with 8 texture fetches fol-
lowed by 8 math operations. More complex operations re-
quire to split the computation into multiple rendering passes.
Hardware-accelerated offscreen buffers (PBuffers) and the
possibility to directly render to a texture (render to texture
OpenGL extension) help to limit the loss in performance
caused by slow read-backs for subsequent rendering passes.

As already discussed in Section 9, the limited amount of
texture memory in combination with the low bandwidth of
the AGP bus is one of the main obstacles for volume ren-
dering on low-cost PC graphics hardware. Whilst the avail-
able texture memory might be sufficient for computer games,
the currently employed brute-force approaches of rasterizing
the complete volume make it necessary to keep the com-
plete data set in the texture memory. Current frame rates
are mainly limited by rasterization power and memory band-
width. Progress in this field is thus dependent on the devel-
opment of faster memory in the memory market. Besides
texture compression as discussed in Section 9, early z-tests
or embedded DRAM with wide busses might be future solu-
tions to this problem.

From the application developer’s point of view, the vari-
ety of different (and highly incompatible) extensions, that
give access to the features of the proprietary hardware ex-
tensions of graphics hardware manufacturers on a low ab-
straction layer, make it hard to develop programs, that work
on all graphics boards. Shading languages, that raise the ab-

c
�

The Eurographics Association 2002.

Engel and Ertl / High-Quality Volume Rendering

straction layer are currently under development for the future
OpenGL2.0 and DirectX9 APIs. A first big step is the Stan-
ford shading language, that is already available for quite a
while26.

12. Summary and Conclusions

This report presented the latest algorithms that utilize
flexible consumer graphics hardware for high-quality vol-
ume rendering. We have shown a number of new, highly-
optimized methods, that permit an interactive visualization
of quite large volumetric data sets with yet unseen speed and
quality.

Apart from the these algorithms, multi-textures and pro-
grammable rasterization units provide a number of addi-
tional options, like per-fragment clipping with arbitrary
clipping geometry40, speedup of rendering using parallel
rasterization37 and the rendering of translucent materials19.
The parallelization of multiple consumer graphics boards
to a rendering cluster has been investigated by several
authors11 � 24.

We believe, that the trend towards more programmability
of the graphics pipeline will carry on. A fully programmable
rasterization unit, that facilitates arbitrary per-fragment pro-
grams, might even be available in the next generation of con-
sumer graphics hardware. Early z-tests will prevent unneces-
sary rasterization and memory accesses. Another trend is the
development towards floating point precision in the frame-
buffer and textures. This is particularly useful for multi-pass
approaches, that currently suffer from accumulated errors
during rendering passes. Instead of merely rendering ge-
ometry created from scientific data, programmable graphics
hardware will be increasingly used for filtering and mapping
tasks in scientific data visualization in the future.

The next generation of consumer graphics hardware is
just on the horizon. 3DLabs just announced1 the P10 Visual
Processor Unit (VPU), that will be fully programmable and
support the upcoming standards OpenGL 2.0 and DirectX9.
NVIDIA’s and ATI’s next generation GPUs will follow in
fall 2002.

Acknowledgements

We would like to thank Joe Kniss, Christof Rezk-Salama,
Markus Hadwiger and Martin Kraus for providing images
and illustrations for this report.

Web-Links

Semian:
http://www.cs.utah.edu/~jmk/simian/

Pre-Integrated Volume Rendering:
http://wwwvis.informatik.uni-stuttgart.de/~engel/

Interactive Volume Rendering:

http://www9.informatik.uni-erlangen.de/Persons/Rezk/

High-Quality filtering on PC graphics hardware:
http://www.vrvis.at/vis/research/hq-hw-reco/algorithm.html

Siggraph course on PC volume graphics:
http://www.siggraph.org/s2002/conference/courses/crs42.html

References

1. 3DLabs Press Release.
http://www.3dlabs.com/whatsnew/pressreleases/pr02/02-05-03-vpu.htm,
Sunnyvale, CA - May 3, 2002 23

2. U. Behrens and R. Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In 1998 Volume Visualization Sym-
posium, pages 39–46, 1998. 12

3. J. F. Blinn. Jim Blinn’s Corner: Image Compositing–Theory.
newblock IEEE Computer Graphics and Applications, 14(3),
1994. 4

4. J. Blinn, Models of Light Reflection for Computer Synthe-
sized Pictures. Computer Graphics, 11(2):192–198, 1977. 4

5. B. Cabral and N. Cam and J. Foran. Accelerated Volume Ren-
dering and Tomographic Reconstruction Using Texture Map-
ping Hardware. ACM Symposium on Vol. Vis., 1994 6, 20

6. D. Ebert, F. K. Musgrave, D. Peachey, K. Perlin and S. Worley.
Texturing and Modeling: A Procedural Approach. Academic
Press July, 1998. 21

7. Klaus Engel, Martin Kraus, and Thomas Ertl. High-
Quality Pre-Integrated Volume Rendering Using
Hardware-Accelerated Pixel Shading. Proc. of
Eurographics/SIGGRAPH Graphics Hardware Workshop
2001, 2001. 17

8. Ginsburg, D. and Hart, E. and Mitchell, J.
ATI_fragment_shader, OpenGL Extension Registry:
http://oss.sgi.com/projects/ogl-sample/registry/ATI/fragment_shader.txt. 6

9. R. Grzeszczuk, C. Henn and R. Yagel. Advanced Geomet-
ric Techniques for Ray Casting Volumes. In SIGGRAPH 98
Course Nbr. 4, Orlando, FL, 1998. 8

10. M. Hadwiger, T. Theußl, H. Hauser, and E. Gröller. Hardware-
Accelerated High-Quality Filtering on PC Hardware. Proc.
of Vision, Modeling, and Visualization 2001, pages 105–112,
2001. 15

11. Greg Humphreys, Ian Buck, Matthew Eldridge and Pat Han-
rahan. Distributed Rendering for Scalable Displays. Proceed-
ings of Supercomputing, 2000. 23

12. Mark J. Kilgard. NV_register_combiners, OpenGL Extension
Registry:
http://oss.sgi.com/projects/ogl-sample/registry/NV/register_combiners.txt. 5

13. Mark J. Kilgard. NV_register_combiners2, howpublished =
OpenGL Extension Registry:
http://oss.sgi.com/projects/ogl-sample/registry/NV/register_combiners2.txt. 5

14. Mark J. Kilgard. NV_texture_shader, OpenGL Extension
Registry:
http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader.txt. 5

c
�

The Eurographics Association 2002.

http://www.cs.utah.edu/~jmk/simian/
http://wwwvis.informatik.uni-stuttgart.de/~engel/
http://www9.informatik.uni-erlangen.de/Persons/Rezk/
http://www.vrvis.at/vis/research/hq-hw-reco/algorithm.html
http://www.siggraph.org/s2002/conference/courses/crs42.html

Engel and Ertl / High-Quality Volume Rendering

15. Mark J. Kilgard. NV_texture_shader2, OpenGL Extension
Registry:
http://oss.sgi.com/projects/ogl-sample/registry/NV/texture_shader2.txt. 5

16. Gordon Kindlmann and James W. Durkin. Semi-Automatic
Generation of Transfer Functions for Direct Volume Render-
ing. In IEEE Symposium On Volume Visualization, 79–86,
1998. 14

17. Joe Kniss, Gordon Kindlmann and Charles Hansen. Inter-
active Volume Rendering Using Multi-Dimensional Transfer
Functions and Direct Manipulation Widgets. IEEE Visualiza-
tion 2001 14

18. Joe Kniss, Gordon Kindlmann and Charles Hansen. Multi-
Dimensional Transfer Functions for Interactive Volume Ren-
dering. Transactions on Visualization and Computer Graphics
2002 13

19. Joe Kniss, Simon Premoze, Charles Hansen and David Ebert.
Interative Translucent Volume Rendering and Procedural
Modeling. IEEE Visualization 2002, 13, 21, 23

20. Martin Kraus and Thomas Ertl Adaptive Texture Maps Proc.
of Eurographics/SIGGRAPH Graphics Hardware Workshop
2002, 2002 20

21. E. LaMar, B. Hamann and K. Joy. Multiresolution Techniques
for Interactive Texture-based Volume Visualization. Proc.
IEEE Visualization, 1999. 8, 20

22. Marc Levoy. Display of Surfaces from Volume Data. IEEE
Computer Graphics & Applications, 8(5):29–37, 1988. 14

23. Marc Levoy. Efficient ray tracing of volume data. ACM Trans-
actions on Graphics, 9(3):245–261, July 1990. 2, 3

24. M. Magallon, M. Hopf, and T. Ertl. Parallel Volume Rendering
using PC Graphics Hardware. In Pacific Graphics, 2001. 23

25. S. R. Marschner and R. J. Lobb. An evaluation of reconstruc-
tion filters for volume rendering. In Proceedings of IEEE Vi-
sualization ’94, pages 100–107, 1994. 2

26. William R. Mark, Svetoslav Tzvetkov and Pat Hanrahan.
A Real-Time Procedural Shading System for Programmable
Graphics Hardware. In Proceedings of SIGGRAPH ’01, pages
159–170,2001. 23

27. Nelson Max Optical Models for Direct Volume Rendering.
IEEE Transactions on Visualization and Computer Graphics,
1(2):99–108, 1995. 3

28. M. Meißner. and S. Guthe and W. Strasser Interactive Light-
ing Models and Pre-Integration for Volume Rendering on PC
Graphics Accelerators. In Proceedings of Graphics Interface,
Conference on Human Computer Interaction and Computer
Graphics, 2002. 19

29. M. Meißner and U. Hoffmann and W. Straßer. Enabling Clas-
sification and Shading for 3D Texture Based Volume Render-
ing Using OpenGL and Extensions Visualization ’99, 1999.
19

30. M. Meißner, U. Kanus and W. Straßer. VIZARD II, A PCI-
Card for Real-Time Volume Rendering. Proc. Eurograph-
ics/Siggraph Workshop on Graphics Hardware, 61–68, 1998.
1

31. D. P. Mitchell and A. N. Netravali. Reconstruction filters in
computer graphics. In Proceedings of SIGGRAPH ’88, pages
221–228, 1988. 2

32. M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification. http://www.opengl.org. 1

33. A. V. Oppenheim and R. W. Schafer. Digital Signal Process-
ing. Prentice Hall, Englewood Cliffs, 1975. 2

34. H. Pfister and J. Hardenbergh and J. Knittel and H. Lauer and
L. Seiler. The VolumePro real-time ray-casting system. Proc.
of SIGGRAPH ’99, 251–260, 1999. 1

35. B.T. Phong. Illumination for Computer Generated Pictures.
Communications of the ACM, 18(6):311–317, June 1975. 4,
10

36. T. Porter and T. Duff. Compositing digital images. ACM Com-
puter Graphics (Proc. of SIGGRAPH ’84), 18:253–259, 1984.
4

37. Christof Rezk-Salama, Klaus Engel, Michael Bauer, Günther
Greiner, and Thomas Ertl. Interactive Volume Rendering on
Standard PC Graphics Hardware Using Multi-Textures and
Multi-Stage Rasterization. Proc. of Eurographics/SIGGRAPH
Graphics Hardware Workshop 2000, 2000. 7, 10, 23

38. S. Röttger, M. Kraus, and T. Ertl. Hardware-Accelerated
Volume and Isosurface Rendering Based On Cell-Projection.
Proc. of IEEE Visualization 2000, pages 109–116, 2000. 16

39. M. Weiler, R. Westermann, C. Hansen, K. Zimmerman and
T. Ertl. Level-Of-Detail Volume Rendering via 3D Textures.
Procceedings of IEEE VolVis 2000, 7–13, 2000. 20

40. D. Weiskopf, K. Engel and T. Ertl Texture-Based Volume
Clipping via Fragment Operations Proc. of IEEE Visualiza-
tion 2002, 2002 23

41. R. Westermann and T. Ertl. Efficiently Using Graphics
Hardware in Volume Rendering Applications. Proc. of
SIGGRAPH ’98, 169–178, 1998. 10

c
�

The Eurographics Association 2002.

