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ABSTRACT This paper presents new algorithms to trace 
objects represented by densities within a volume grid, e.g. 
clouds, fog, flames, dust, particle systems. We develop the 
light scattering equations, discuss previous methods of solu- 
tion, and present a new approximate solution to the full 
three-dimensional radiative scattering problem suitable for 
use in computer graphics. Additionally we review dynami- 
cal models for clouds used to make an animated movie. 
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§1 I n t r o d u c t i o n  

A large class of natural phenomena is described by 
partial differential equations. In almost all cases, the 
description of these phenomena is given by a set of 
vector or scalar fields defined on a uniform mesh in 
3-space. This paper will render objects defined in this 
way via the ray tracing method (Whitted 1980, Appel 
1968, Goldstein 1971, Kajiya 1982, 1983). 

Recently, the synthesis of images with clouds and, 
more generally, of objects defined as volume densities 
has been pursued by a number of investigators (Blinn 
1982, Max 1983, Voss 1983). This paper is a continua- 
tion of that  work in the context of ray tracing. 

Blinn introduced the use of density models in computer 
graphics in Blinn (1982), where he considers plane 
parallel atmospheres. Other researchers have adapted 
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his models to more general shapes. Max defines clouds 
as densities with boundaries defined by analytic func- 
tions. Voss has fractally generated densities with a 
series of plane parallel models, yielding images of strik- 
ing realism. 

The work presented here extends previous efforts in 
two ways: first, we present an alternative to the Blinn 
scattering model which models multiple radiative scat- 
tering against particles with high albedo. Second, we 
show how to ray trace these models. 

We emphasize tha t  the rendering techniqes presented 
here are general. We are able to view the models from 
any angle, with multiple arbitrarily placed light sources 
(even within the densities). The density model may 
intersect other procedural models. The viewing point 
may lie inside the density function. With these tech- 
niques we are able to render clouds that  cast shadows 
on their environment as well as on themselves. We may 
have scenes in which mountain peaks disappear into a 
cloud interior. We may fly through the clouds. And, 
of course, the clouds appear reflected and refracted 
in other objects in the scene. There is one situa- 
tion, however, which we do not handle correctly: other 
procedural objects, while they may be shadowed ac- 
curately by clouds, do not themselves cast shadows 
upon the clouds. 

While clouds are the most obvious application of this 
representation, other phenomena also lend themselves 
well to this representation. For example, it is possible 
to model media which do not simply scatter, but also 
absorb and emit light. In this way we can model flames. 
Additionally, it is possible to generate models of very 
high geometric complexity which are treated simply as 
volume densities. In this way these techniques allow 
the application of ray tracing to Reeves' particle sys- 
tems (Reeves 1983). 
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§2 T h e  s c a t t e r i n g  e q u a t i o n  

In this section we discuss the relevant physical para- 
meters and set up an equation which describes the scat- 
tering of radiation in volume densities. This section 
loosely follows the derivation in Chandrasekhar(1950). 

The quantity to be calculated in a scattering problem 
is the energy per unit solid angle per unit area: 

dE - - ~  I(z,  w) sin #dwda 

This quantity is called the inter~dty of radiation at a 
point x in the direction of the solid angle dw. 

The scattering equation can be derived by considering 
a differential cylindrical volume dV ---- dads, where da 
is the cross section of the cylinder and ds is the length 
(figure 1). If we follow a pencil of radiation along the 
length of the cylinder, we find that  the difference in 
intensity between the two ends is given by 

dl = --absorbed + emitted 

= -~pdsdadw + 3pdadadw (2.1) 

where p is the density of matter in the volume element; 
is the absorbption coefficient, viz. optical depth per 

unit density; and 3 is the emission coefficient. 

The emission coefficient can be broken into two terms 

3 ---- 3 (~) + 3 (') 

where 3(e) is the emission coefficient due to pure emis- 
sion of the medium, for example a black body term for 
flames or stellar interiors; and 3(') is the emission term 
due to pure scattering of incident radiation into the 
direction of interest. The form of this term is usually 
written as 

/ ¢ Z  f 
3 (8) = / . .  

47r Jll~ll = 1  

This expression says that  the light scattered in direc- 
tion s is a linear operator of the light incident upon the 
volume element from all angles. The function p(s, ~) 
is called the phate function and gives the amount of 
light scattered from direction s to direction Y. In 
many situations the medium is itotropie, in the case 
the phase function depends only on the phase angle O, 
the angle between s and ~. Although there are many 
interesting phenomena in which the emission coefficient 
3(e) is nonzero, let us for simplicity assume it is zero 
in the remainder of this paper. 

The phase function embodies all the information about 
the scattering behavior of the medium. From it we may 

derive all the other lighting parameters popular in com- 
puter graphics. For example, Lambert and Phong sur- 
faces are simply phase functions with particular shape 
parameters. In these cases anisotropy prevails: there 
are preferred angles for example, the normal of the 
surface element. Thus the phase function varies with 
more than just the phase angle. When the medium is 
composed of a large number of particles, no preferred 
orientations occur and isotropy obtains. In this case 
the phase angle completely determines the phase func- 
tion value. Blinn (1982) discusses a number of impor- 
tant phase functions. For the work on clouds, two will 
be of particular interest: 1) perfectly diffuse scattering: 
p(cos O) ~- wo where w0 is an arbitrary constant, and 
2) Rayleigh scattering: p(cos O) = w043-(1 + cos20). 

The scattering equation can be brought into general 
form by dividing both sides of equation (2.1) by -Icpds. 
But the derivative along the cylinder is simply a direc- 
tional derivative along s 

dI 
- -  = t .  V = I .  
ds 

This gives us the scattering equation: 

- 1  
- - a .  v J ( z ,  - I ( x ,  
~p 

+ 4 p(" '  = o. 

§3 S o l v i n g  t h e  s c a t t e r i n g  e q u a t i o n  

The scattering equation is solvable analytically only 
in a few very special cases: indeed, it is very difficult 
to solve even numerically without assumptions which 
reduce the dimensionality of the intensity field I(z,  8), 
a function of six real variables. 

Various assumptions are customarily made to reduce 
the difficulty of the problem. Here are some common 
assumptions: 1) the medium is isotropic--the phase 
function is only dependent on the phase angle; 2) the 
medium is uniform--its density does not change from 
point to point in space; 3) the geometry is simple--the 
medium may vary in space but only along, say, the 
z-axis (this is the plane parallel or scattering in a slab 
problem); 4) the phase function is of a very simple type, 
viz. isotropic; 5) the albedo is very small or very large. 

Various combinations of these assumptions have been 
treated extensively in the literature. The slab scatter- 
ing problem has been the most common assumption 
(Chandrasekhar 1950). 
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The method of Wick-Chandrasekhar or discrete or- 
dinates is a numerical method for plane parallel atmo- 
spheres. It sets up a coupled array of PDEs each of 
which represents one scattering angle. A finite Euler 
approximation is made for the phase integral which is 
the coupling mechanism of the individual equations. 
Convergence results for such approximations have ap- 
peared in Keller (19fi0ab) and more recently Anselone 
and Gibbs (1974). 

Unfortunately, the discrete ordinates method is rela- 
tively unsuitable for computer graphics: we need to 
most often finely sample a given portion of the solid 
angle sphere, rather than have a uniform sampling 
across the whole sphere. 

It may well be that  a finite element approach would be 
a promising alternative to Wick-Chandrasekhar, but 
we have found that  simpler schemes are effective for 
image synthesis. 

3.1 Blinn's Low Albedo approximation 

Blinn (1982) was the first to introduce a volume density 
scattering model to computer graphics. In this paper 
he made a number of approximations well suited to the 
problem he was studying: the rings of Saturn. Blinn 
chose to model a uniform medium of relatively low al- 
bedo with a single illuminating light source. (Although 
his method generalizes easily to multiple light sources.) 

Assuming the above and, in addition, only a single 
scattering of the radiation from the light source to the 
eye, he was able to solve the problem analytically. Of 
course, multiple scattering is a second order effect for 
a medium with low albedo. The Blinn model is thus 
valid for a wide variety of phenomena. 

Voss (1083) has adapted Blinn's procedure to more 
general geometries, by essentially modelling a sandwich 
of several Blinn models. With it, he has made 
some exceptional images of clouds. Both the Blinn 
and Voss methods place restrictions on the light- 
ing and viewing geometry of the scene. 

Unfortunately, clouds have a very high albedo--the 
single scattering approximation does not hold. A num- 
ber of visible defects appear when rendering by the new 
technique. This is because the older method imposed 
viewing geometry restrictions which hid the defects. 

It is one finding of this paper that  realistic rendering of 
clouds demands more accuracy in the scattering model. 

3.2 A ray tracing algorithm for the low albedo case 

In this section we will describe a new technique which 

allows one to ray trace volume densities without any 
viewing or lighting restrictions. But for one slight 
twist, this method is essentially a brute force develop- 
meat  of the Blinn single scattering model for ray trac- 
ing. 

The key to the new method is tha t  it separates the 
rendering procedure into two steps. The first step 
drives the radiation from light source i through a den- 
sity array p(x, y, z) into an array Ii(x, y, z) which holds 
the contribution of each light source to the brightness 
of each point in space. This is done simply by calculat- 
ing in parallel the following line integrals for each path 
F=,y,z = (z(t), It(t), z(t)) from the light source through 
p(~,y,z). 

I~(x,',z)=-exp(-rfr,.,. P(~)d~ ) 
where ~ = rp. The principal observation is tha t  this 
computation need only be done from at most once per 
frame to at least once per scene. 

The second step occurs once per ray trace. Each ray is 
first culled against a bounding rectangular prism as an 
extent. The brightness of a ray sums the contribution 
of each volume element. It  is given by: 

B = f /x '  e-" f:l p(~(p),y(p),z(/~)) d/~ 
JX]. 

x pCzCt), yCt), z(t)) dt 

In this expression, ),1, )'2 are the beginning and ending 
of the path  between the eye and furthest visible volume 
element. It  is set by 

kl ~ max(0, dl) 

X2 ~ min(dgtobal, d2) 

Where dl is the distance to the nearest intersection 
point with the bounding extent, dgloba 1 is the distance 
to the nearest intersection point with the rest of the 
world database, and d2 is the distance to the farthest 
intersection point with the bounding extent. 

The first exponential in the brightness integral gives 
the amount of attenuation due to absorption and scat- 
tering of the material visible to the eye. The sum term 
gives the brightness contribution of each light source 
to the brightness of the particular point. 

According to the integral there are two remaining steps 
which must be done. The first is to compute the in- 
tegrated optical path  length along a particular ray. 
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This is done by simply bilinearly sampling and sum- 
ming the density array along the ray. The second step 
is to compute and sum the actual brightness integral. 
Note that  each of the integral terms has been precom- 
puted so that  a point sampling is all that  is needed 
to compute the brightness term. We have used the 
Romberg integration method to actually compute the 
integral (Dahlquist and Bjork 1974). 

§4 H i g h  A l b e d o  a p p r o x i m a t i o n .  

The low albedo approximation suffers from a number 
of defects when used to model clouds, a scattering 
medium of very high albedo. This can be seen in the 
results section. There are portions of the clouds which 
are abnormally dark due to shadowing of one part of 
a cloud upon another. In the actual physical situation 
these dark portions are illuminated by the second and 
higher order scattering centers within the cloud. 

If one observes these clouds from above, the shadowing 
problem is not observable, since the eye and the light 
source are on the same side of the cloud. When looking 
from the underside of the cloud on the opposite side of 
the light source, one cannot determine what the actual 
thickness of the cloud is, so again the eye cannot dis- 
cern an artificial darkening. However, clouds observed 
to shadow themselves viewed from the side show this 
problem quite clearly (see the figures). 

Blinn (1982) has suggested treating the multiple scat- 
tering problem by a Neumann expansion involving the 
phase integral. This method is likely to work well only 
with lower albedo media, since the series is geometric 
in the albedo w0. If the albedo w0 is close to one, many 
terms will be needed to converge to a solution. 

4.1 A Perturbation solution, conservative systems 

In order to approximate the high albedo solution, we 
perform a perturbation expansion on fl ---- (1 - w0)- 
We normalize the phase function to 

p(O) = w0 p(o)  
= (1 - / ~ )  p(o)  

For compactness, we write the scattering equation 

- 1  
- - s .  V J ( x ,  s) - Z(z, s) 
ap 

1 ~ p(s, ~)ZCx, ~) d~ = 0 
+ ~ ( 1 - ~ )  d f x  

as the sum of two linear operators 

where 

LI  + (1 - f l )MZ ---- 0 

- 1  
LI  = - - s .  V=Z(x, s) -- I(z,  s) 

tcp 

4~rl fll *11=1 p(s, ~)Z(z, ~) d~. M / =  - - -  

Expanding I into a power series in fl gives 

Z =  E flk Zk. 

Substituting into the original equation for Z and equat- 
ing like powers of fl gives a set of equations 

LIk + M I k  --~ - -MIk -1 .  

Thus the perturbation solution presents us with a 
'series of forced conservative (w0 ---- 1) scattering equa- 
tions. We now develop techniques which allow us to 
approximate the solutions for the conservative case. 

4.2 The Scattering equation expressed in Spherical 
Harmonics 

We expand Z(z, s) into spherical harmonics in s to ob- 
tain 

oo l 

l ~ O  m ~ - - I  

The functions ]Qm are the customary normalized spheri- 
cal harmonics of degree l and order m 

5re(o,  ¢) = a m ( 0 ,  

where the Pl~ are the associated Legendre polynomials 
of degree l and order m (Courant and Hilbert 1953). 

Substituting the spherical harmonic expansion into the 
scattering equation we obtain 

~ _ 1 .  [ w , ~ ( ~ ) ]  y , ~ ( ~ )  _ i ,~ (~ )~ ,~C,  ) 

+,'~fp(,.~)~,~(~)~= o. 
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Multiplying this equation by Yt,,,,,(s) and integrating 
we get 

~ l v I t" (z )  . / Y t;m,(s)sYt,,,(s) ds 

- I " ( = ) ~ . ,  ~,,,,,,, 

//" + Yt,,n, (s)p(*. ~)YL,~(~) d-~ do = 0 

or, writing it in Dirac "bra-ket" notation 

~ w ' ~ ( = )  • (Y,, , , , , ( . ) l .  Ir~,,.(.)) 

- l t " ( z ) ~ u , ~ , , , , , , ,  

+ I t " (x)(Y~,. , . , (s) lPl r . , . (s))  = o; 

where we write (XIOIY) for the integral 

fo '~ / /  X " O Y sin O d~ dO. 
St  

This gives us a coupled set of first order PDEs for 
I~"~(r). If we know the coupling coefficients given by 
the matrix elements 

and 

( r , , . , . , ( . ) lp lY, , . ( . ) )  

(Y~,...,(.)I. IY.,.(.)) 
then we can solve this system by relaxation. For 
graphics applications, only the first few spherical har- 
monics are necessary for a convincing image. We trun- 
cate the so-called "p-wave", viz. after the l = 1 term. 
The next order of business is then to calculate the 
matrix coupling coefficients. 

3.3 Matrix elements for the position 

To calculate the matrix element (Yt,m,(s)]slYlm(s)) for 
the direction operator s, we calculate the matrix ele- 
ment for each component of s, 

(Y,,,,,,(.)I=IY,,,,(.)) = (~,,.,,(~)1 s i n O c o s  ~,lr,,..(~)) 
(r,,,,,,(,)lylY,,.(,)) = (Yt,,,.,(s)l sin o sin el f , . , . ( . ) )  

( rv , , . , ( , ) l z lY . , , ( . ) )  = (r~,,,.,(.) l  cos e lY . , , ( . ) ) .  

Now, 

(Y/,.,,, ( . )  I,~IY...(~)) 

f [  . = e,,..(co.O)e'"~] [p,,,..,(co.O)."~] 
X e i¢ sin 2 ~b de de 

= [~'Pt.(¢osO)P~,ra,(cosO)sin2 O dO] 

1 

Letting/~ ~--- cos 0 and taking into account the Kronecker 
~, the matrix element becomes: 

l (~, , . . , (~)I ,~IY., . ( . ) )  = 1 Plrtt(~)Pl'rn"l'l(~)(1--#2)l/2 d~ 

(4.1) 
But from a recursion relation for the Legendre polyno- 
mial we have 

Pl, m+~(/~)(1 --/z2) 1/2 = k0/~+l,m - klPt-1,,,*, 

where 

ko = (l  - m + 1)(1 - m + 2) 

2 / + 1  

~gl = (I "b $ -- 1)(/+ m) 
2 l +  1 

Using this relation in equation (4.1) we obtain 

(]~,.,.,(.)1,,1~6.,.(.)) 

1 
= ko~t,,t+l - kl6t,,l-1. 

The last equality follows from the orthogonality for the 
Legendre polynomials. Since 

z = Re(u) 

y = Ira(u) 

Now we may save a bit of work by setting 

u ~  z +iy  
= sin Oe i÷. 

we have 

(Y, , , . . , ( . ) I=I~. , . ( . ) )  = (~, . , . , ( . ) l , . IY, . , . ( . ) )  
(~ , . , . , ( . ) ly l r , , . , (~) )  = o. 
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Now to compute the z matrix element we get 

(~1,,.,(s)lzlh,.(s)) 

= [/" e,,..,(~osO)~=(~osO)cos Os~ O dO] 

x[f[e'("-"')+d¢,] 
= [ fo" Pvm,(eosO)Pt=(eosO)cos Osin O dO] 

~m, tr~l 2 7~ 

(4.2) 

Now f:om a recursion relation for the Legendre poly- 
nomial Pt,~ we have 

where 

~Pl~,~(~) = k2 Pl+ l ,m(~)  -- k 3 P l - l , m ( J  ~) 

l + m  
k 2 - - - -  

2 / + 1  
l - m + l  

k3- -  
2 / + 1  

Substituting into (4.2) we obtain 

(h,=,(s)Mh=(s))  

/2 ~ e v . , . ( . ) [ k 2 ~ + i , = ( ~ )  - k 3 e t - i , ~ ( ~ ) l  d~ 

= [k2,~t,,l+l -- ka~v ,~ - l ]~ ,27 r ,  

where the last equality follows from the orthogonality 
of the Pt,~. 

4.4 Matrix elements for the phase integral 

We assume the phase function to vary with the phase 
angle only. In this case we may expand the phase 
function into Legendre polynomials 

p(cosO) = £ ~kPl=(cosO) 
k = O  

and substitute into the matrix expression 

(Y~,,.,Cs) lv I~,,.(s)) 

= L,,=. L,,=. 
X Yl=(s) ds d$ 

= f s'a)Yt,~(s)dsda. 
k 

(4.3) 

Now, a • ~ in polar coordinates is 

8 • ~ = COS '7 

= cos 0 cos 0 + s in  O s in 0 cos(¢  --  ~). 

This allows us to apply Laplace's formula, 

l 

/ ~ ( c o s ~ )  - -  4 ~  21 + 1 ~-4. Ytm(e, ~b)r;,,n(-O,-~). 
m . ~  - - |  

Using this identity in (4.3) we obtain 

{~,..., (s) lp IY.,=(a)) 
4 ~  

k 

' [ /  ][/ ] X ~ lq,,,,,(a)Y~p(a) da Y*t,,,(s)Ykp(s) ds 
p~--k  

k 4~r 
= ~ wk 2k +------1 ~ 6,,k&~,p6u=~,,,,. 

k p~- -k  
42r 

k 

4a" 
- -  - -  ~ 7 l  ~ l l '  ~ n z  t m .  

2 l + 1  

So the phase function matrix is diagonal with respect 
to spherical harmonics: no scattering occurs between 
different spherical harmonics. Each diagonal element 
is given by the Legendre expansion coefficients ~k- 

§5 G e n e r a t i n g  d e n s i t y  m o d e l s  

There are many ways to generate volume density 
models for the above procedure. ¥oss (1983) has used 
fractal densities with great success. We show a num- 
ber of images based on these. In our images we follow 
Voss in setting the densities with 1 / f  noise generated 
by a 3 dimensional FFT.  They make convincing clouds. 
Unfortunately, it is unlikely that  this method will elicit 
realistic dynamical behavior. 

A second set of models which appears promising is 
Reeves' particle systems (Reeves 1983). We can use his 
techniques to fill the density array by interpolation. 
Ray tracing can then be used to render the array. 
Flows of ODEs and PDEs can be used to model the 
action of flowing water and to model hair and fuzzy 
surfaces, as well as trees. These methods are obvious 
generalizations of Reeves' method. 

Finally we mention actual physical models of the at- 
mosphere to generate motion studies of clouds. 
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5.1 A Cloud Model for Generating Density Functions 

A numerical model for cumulus convection is used to 
generate three-dimensional optical density functions. 
The model incorporates the equations of motion, con- 
tinuity, condensation, and evaporation. It  models the 
convective motions of the atmosphere, the latent heat 
of vaporization of water, and frictional effects. Coriolis 
effects due to the rotation of the Earth are ignored. 

The cloud simulation commences in a convectively un- 
stable atmosphere with high relative humidity. A con- 
stant heat source is applied at the base of the model, 
representing sunlight heating the earth. In the model, 
a warm layer of air forms close to the ground, and 
starts to rise. The cloud starts forming as soon as 
moist air rises enough to become supersaturated. The 
output of the model is the mixing ratio of liquid water 
in the atmosphere at each 3D grid point. The liquid 
water mixing ratio is directly interpreted as the opti- 
cal density of the cloud. An image is then generated 
from these optical densities using the diffuse rendering 
algorithm. 

The following symbols are used to represent atmos- 
pheric quantities: 

u, v, w wind velocities in the z, y, and z 
directions, respectively 

V the velocity vector consisting of the 
components (u, v, w) 

F the friction vector consisting of the 
components (F=, Fy, F=) 

0 potential temperature 
q total water mixing ratio 

q~ liquid water mixing ratio 

Nine equations define the model. The first three 
equations define the acceleration of an air parcel. 
Acceleration is determined from the momentum of the 
airflow, frictional effects, and from buoyancy. 

0 u  
- -  = - V -  V u  - F= 

Of 
Ov 

= - v .  v , ,  - 

Ow 
- -  = - V .  V w  - F= + 0 
Ot 

The buoyancy term is proportional to the potential 
temperature of the air parcel, $. Potential tempera- 
ture is defined as the temperature an air parcel would 
have if it were brought down to sea level. It is more 
convenient to use in the model instead of absolute tem- 
perature for the following reason: as an air parcel as- 
cends, its temperature will decrease due to the decreas- 
ing pressure, and must be recalculated at each altitude 

of the air parcel. However, the potential temperature 
of the air parcel will remain constant. Therefore, it 
is computationally more efficient to use potential tem- 
perature instead of absolute temperature in the model. 
Potential temperature effectively measures the amount 
of heat energy contained in an air parcel. 

The change in potential temperature is determined by 
the advection of temperature into the local region and 
the heat released by condensing cloud vapor. The 
term "advection" is used to describe the change of a 
parameter  at a fixed location due to transportat ion by 
the winds. Thus an increase in potential temperature 
due to transportation of warm air into the local region 
is called advective warming. An external heat source 
such as sunlight is represented by the variable Q: 

08 L . .  Oql 
- -  = - V . V S + - - - - + Q .  
Ot cp Ot 

Lo~ is the latent heat of vaporization of water. ¢v is 
the specific heat of air at constant pressure. 

Frictional effects are approximated by a simple relation 
yielding an exponential decay of wind velocities with 
time: 

F= l v  
~f 

where t S is the friction timescale. 

The equation of continuity constrains the motions of 
the air parcels. The requirement is that  air is neither 
created nor destroyed at any given location, which 
implies that  

V . V = O .  

The density of air is assumed to be constant over the 
scale of the model. A corollary of this requirement is 
that  the upward velocity over any horizontal plane in 
the model must average to zero. 

The change in water mixing ratios is determined by 
the advection of water and the amount of evaporation 
and condensation which takes place. Evaporation is 
assumed to take place until the air is saturated or all 
the liquid water is evaporated. Condensation takes 
place whenever the air is supersaturated. The change 
in total water content is simply determined by the 
advection of water: 

Oq 
0-~ ---- - V .  Vq 

The saturation mixing ratio at any given level is an 
exponential function of altitude: 

q8 ~ A exp -~z  
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where A and a are exponential scaling constants, qo 
is interpreted to be the mass ratio of water to air at 
saturation for a given volume of air. The constants are 
determined by the boundary conditions that  q, = 0.02 
at the bot tom level of the model, and q° = 0.002 at 
the top of the model. The liquid water mixing ratio is 
determined by the amount of water present in the air 
parcel in excess of the saturation mixing ratio: 

qt = max(q -- q., O). 

An important  advantage of using a physical model for 
clouds is that  the cloud evolves realistically with time. 
This approach lends itself to realistic cloud animation 
whereas other modelling approaches do not automati- 
cally produce realistic cloud behavior. An animation 
of an evolving cumulus cloud is discussed in the next 
section. 

§6 C o m p u t e r  R e s u l t s  

Figures 1 through 4 show the low albedo rendering 
technique with fractal volume densities. Figure 1 is 
defined on a 16 X 16 X 16 grid, while 2 and 3 show 
a cloud fractally generated on a 128 X 128 X 16grid. 
These frames were computed at 512 X 512 resolution 
on an IBM4341 processor. CPU times ranged from 1 
to 4 hours. Figure 4 shows a fractal cloud in combina- 
tion with a fractally generated mountain at 256 X 250 
resolution, on the same machine this frame consumed 
6 hours of CPU time. 

Figures 5 through 10 show a cumulus cloud at various 
stages of development. The optical densities were cal- 
culated using the above model on a VAX 11/780 us- 
ing a three dimensional grid of (10 by 10 by 20) grid 
elements. A simple forward-differencing scheme was 
used to integrate the above differential equations in 
time. Each time step took around 10 cpu seconds 
to compute, representing roughly one second of cloud 
evolution. The cloud was allowed to evolve for several 
minutes to generate the images shown. Rendering was 
done on an IBM4341 at 512 X 512 resolution, with CPU 
times of 2 hours each. 

§7 Summary 

This paper has presented new methods for the syn- 
thesis of images which contain volume densities. We 
have found that  single scattering is a poor approxima- 
tion for clouds when more general viewing geometries 
are used. We have offered a new method for solving the 
scattering equations in an approximate manner suit- 
able for computer graphics. We have also presented 

equations which will model the dynamic behavior of 
clouds. 
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