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Abstract

c
s

The task of the rendering process is to display the primitives used to represent the 3D volumetri
cene onto a 2D screen. Rendering is composed of a viewing process which is the subject of this paper,

b
and the shading process. The projection process determines, for each screen pixel, which objects are seen
y the sight ray cast from this pixel into the scene. The viewing algorithm is heavily dependent on the

e
e
display primitives used to represent the volume and whether volume rendering or surface rendering ar
mployed. Conventional viewing algorithms and graphics engines can be utilized to display geometric

d
primitives, typically employing surface rendering. However, when volume primitives are displayed
irectly, a special volume viewing algorithm should be employed. This algorithm should capture the con-

p
tents of the voxels on the surface as well as the inside of the volumetric object being visualized. This
aper surveys and compares previous work in the field of direct volume viewing. We describe methods

c
for accelerating volume viewing, parallel volume viewing algorithms, and special purpose hardware. We
onclude by surveying recent method for rendering intermixed volume-and-surface datasets and algorithms

for volume viewing of various types of irregular grids.

Introduction1.

The simplest way to implement viewing is to traverse all the volume regarding each voxel as a 3D
e

s
point that is transformed by the viewing matrix and then projected onto a Z-buffer and drawn onto th
creen. Some methods have been suggested in order to reduce the amount of computations needed in the

e
d
transformation by exploiting the spatial coherency between voxels. These methods are described in mor
etails in Section 3.1.

The back-to-front (BTF) algorithm is essentially the same as the Z-buffer method with one exception
s

c
that is based on the observation that the voxel array is presorted in a fashion that allows scanning of it
omponent in an order of decreasing or increasing distance from the observer. Exploiting this presorted-

-
t
ness of the voxel arrays, traversal of the volume in the BTF algorithm is done in order of decreasing dis
ance to the observer. This avoids the need for a Z-buffer for hidden voxel removal considerations by

s
o
applying the painter’s algorithm by simply drawing the current voxel on top of previously drawn voxel
r by compositing the current voxel with the screen value [Farrell, Zappulla, and Yang 1984, Frieder,

Gordon, and Reynolds 1985].

The front-to-back (FTB) algorithm is essentially the same as BTF only that now the voxels are

b
traversed in increasing distance order. Front-to-back has the potential of a more efficient implementation
y employing a dynamic data structure for screen representation [Reynolds, Gordon, and Chen 1987] in

.
I
which only un-lit pixels are processed and newly-lit pixels are efficiently removed from the data structure
t should be observed that while in the basic Z-buffer method it is impossible to support the rendition

d
o
semitransparent materials since voxels are mapped to the screen in arbitrary order. Compositing is base
n a computation that simulates the passage of light through several materials. In this computation the



o
order of materials is crucial. Therefore, translucency can easily be realized in both BTF and FTB in which
bjects are mapped to the screen in the order in which the light traverses the scene.

e
t

Another method of volumetric projection is based on first transforming each slice from voxel-spac
o pixel-space using 3D affine transformation (shearing) [Hanrahan 1990] [Schroeder and Salem 1991]

s
and then projecting it to the screen in a FTB fashion, blending it with the projection formed by previous
lices [Drebin, Carpenter, and Hanrahan 1988]. Since transformations are destructive in terms of preserv-

ing data continuity, triangular or bicubic sampling filter are used in each sampling operation.

Westover [Westover 1989, Westover 1990] has introduced the splatting technique in which each
d

t
voxel is transformed into screen space and then shaded. Blurring, based on 2D lookup tables is performe
o obtain a set of points (footprint) that spreads the voxels energy across multiple pixels. These are then

r
i
composited with the image array. We have described [Sobierajski et al. 1990] a simplified splatting fo
nteractive volume viewing in which only voxels comprising the object’s surface are maintained. Render-

.
A
ing is based on the usage of a powerful transformation engine that is fed with multiple points per voxel

dditional speedup is gained by culling voxels that have a normal pointing away from the observer and
by adaptive refinement of image quality.

The ray casting algorithm casts a ray from each pixel on the screen into the volume data along the

Z
viewing vector until it accumulates an opaque value [Bakalash and Kaufman 1989, Farrell, Yang, and

appulla 1985, Tuy and Tuy 1984, Upson and Keeler 1988].

e
n

The simplest method for implementing resampling performs zero order interpolation to locate th
earest voxel while stepping along the discrete ray representation which is generated by a 3D line algo-

-
t
rithm [Schlusselberg, Smith, and Woodward 1986]. Alternatively, the volume is sampled at the intersec
ion points of the ray and the voxel faces, its value is interpolated, and then composited [Upson and

e
a
Keeler 1988]. A more precise algorithm uses higher order interpolation to estimate the appropriate valu
t evenly spaced sample points along the ray [Kajiya and Von Herzen 1984, Levoy 1988, Sabella 1988].

c
d

Ray casting methods, in which only primary rays are traced, have been applied to volumetri
atasets, such as those arising in biomedical imaging and scientific visualization applications (e.g., [Dre-

c
bin, Carpenter, and Hanrahan 1988, Upson and Keeler 1988]). Greene [Greene 1989] has applied ray
asting to estimate the illumination of a voxel model of stochastically growing plants. Levoy

d
c
[Levoy 1990b, Levoy 1990] has used the term ray tracing of volume data to refer to ray casting an
ompositing of even-spaced samples along the primary viewing rays.

t
p

Since ray casting follows only primary rays, it does not directly support the simulation of ligh
henomena such as reflection, shadows, and refraction. As an alternative we have developed the 3D ras-

-
s
ter ray tracer (RRT) [Yagel, Kaufman, and Zhang 1991, Yagel, Cohen, and Kaufman 1992] that recur
ively considers both primary and secondary rays and thus can create ‘‘photorealistic’’ images. It exploits

v
the voxel representation for the uniform representation and ray tracing of sampled and computed
olumetric datasets, traditional geometric scenes, or an intermixing thereof. For example, a scalpel super-

t
imposed on a CT image or radiation beams superimposed on a scanned tumor. Our approach operates in
wo major phases: a preprocessing voxelization phase and a discrete ray tracing phase. In the voxelization

,
u
phase, the volumetric data set is reconstructed and stored in a 3D raster. The geometric model is digitized
sing incremental 3D scan-conversion algorithms [Cohen and Kaufman 1990, Cohen and Kaufman 1991,

t
Kaufman 1987a, Kaufman 1987b, Mokrzycki 1988]. These algorithms convert the continuous represen-
ation of the model into a discrete representation that is intermixed with the sampled data within the 3D

-
t
raster. In the second phase, a variation of the conventional ray tracing algorithm is employed. In conven
ional ray tracing algorithms analytical rays, searching for the closest intersection, are intersected with the

t
object list However, in our approach 3D discrete rays, searching for the first surface voxels, are traversed
hrough the 3D raster. Encountering a non-transparent voxel represents a ray-surface hit.

-
t

Compared to conventional ray tracers, the 3D raster ray tracer (RRT) enjoys some obvious advan
ages. In conventional ray tracing, computation time grows with the number of objects [Fujimoto, Tanata,

a
and Iwata 1986], because in crowded scenes a ray may pierce a substantial number of objects and there is

considerable probability that a cell contains more than one object. Moreover, conventional ray tracers
are extremely sensitive to the type of objects comprising the scene; intersection calculation between a ray



and a parametric surface is significantly more complex than intersecting the ray with a sphere or a
s

c
polygon. In contrast, RRT completely eliminates the computationally expensive ray-object intersection
alculation, and instead relies solely on a fast discrete ray traversal mechanism and a single simple type of

r
t
object – the voxel. Consequently, RRT is practically independent of the number of objects in the scene o
he object’s complexity or type. RRT performance, however, is sensitive to resolution of the 3D raster.

o
Therefore, for a given resolution, ray tracing time is nearly constant and can even decrease as the number
f objects in the scene increases, as less stepping is necessary before an object is encountered.

d
r

Any change to a view-dependent parameter requires a traditional ray tracer to execute a full fledge
endering that consists of computing many view-independent attributes such as surface normal, texture

e
color, and light source visibility and illumination. In contrast, since RRT maintains information regarding
ach discrete point, the view-independent attributes can be precomputed during the voxelization phase and

e
i
stored within each voxel. Those attributes are readily accessible for multiple rendering of the fixed scen
n which viewing, lighting, and shading parameters change.

e
C

Ray tracing CSG (Constructive Solid Geometry) models is traditionally achieved by converting th
SG-tree into boundary representation (B-rep) in an extremely time consuming process. Alternatively, the

.
H
direct CSG-rendering approach delays the computation of the Boolean operations until the rendering stage

owever, the phenomena by which processing time increases more rapidly than the complexity of the
e

3
model remains the major hurdle confronting this approach. In contrast, as the spatial enumeration of th
D raster lends itself to voxel-by-voxel Boolean operation, RRT can easily support ray tracing of CSG

models that are efficiently synthesized and constructed during the voxelization phase.

We now turn to classify and compare existing volume viewing algorithms. In Section 3 we survey
n

3
recent advances in acceleration techniques for forward viewing (Section 3.1), backward viewing (sectio
.2) and hybrid viewing (Section 3.3). Section 4 is devoted to a topic that is gaining much popularity in

e
t
recent years: parallel algorithms for volume viewing. In Section 5 we briefly list special purpose hardwar
hat was developed to cope with volumes. We conclude with sections 6 and 7 that deal with viewing

volume intermixed with surfaces (Section 6) and volume viewing of irregular grids.

Classification of Volume Viewing Methods2.

Projection methods differ in several aspects which can be used for a their classification in various
s

o
ways. First, we have to observe whether the algorithm traverses the volume and projects its component
nto the screen (called also forward, object-order, or voxel-space projection) [Frieder, Gordon, and Rey-

-
b
nolds 1985, Gordon and Reynolds 1985, Westover 1989], does it traverse the pixels and solve the visi
ility problem for each one by shooting a sight ray into the scene (called also backward, image-order, or

,
U
pixel-space projection) [Kaufman and Bakalash 1988, Levoy 1988, Sabella 1988, Tuy and Tuy 1984

pson and Keeler 1988, Yagel 1991b, Yagel and Kaufman 1992], or does it perform some kind of a
hybrid traversal [Jackel and Strasser 1988, Upson and Keeler 1988].

Volume rendering algorithms can also be classified according to the partial voxel occupancy they
d

C
support. Most algorithms [Gordon and Reynolds 1985, Herman and Liu 1979, Reynolds, Gordon, an

hen 1987, Tuy and Tuy 1984, Yagel 1991b, Yagel and Kaufman 1992] assume uniform (binary) occu-

c
pancy, that is, a voxel is either fully occupied by some object or it is devoid of any object presence. In
ontrast to uniform voxel occupancy, methods based on partial voxel occupancy utilize intermediate voxel

i
values to represent partial voxel occupancy by objects of homogeneous material. This provides a mechan-
sm for the display of objects that are smaller than the acquisition grid or that are not aligned with it. Par-

t
m
tial volume occupancy can be used to estimate occupancy fractions for each of a set of materials tha

ight be present in a voxel [Drebin, Carpenter, and Hanrahan 1988] . Partial volume occupancy is also
-

f
assumed whenever gray-level gradient [Hoehne and Bernstein 1986a] is used as a measure for the sur
ace inclination. That is, voxel values in the neighborhood of a surface voxel are assumed to reflect the

b
relative average of the various surface types in them. As a side note we remark that this observation can
e used for antialiased voxelization of geometric objects. According to this idea, voxels intersected by the

geometric object are given, at the time of voxelization, the object value as well as a partial-occupancy



value. At rendering time the object value represents its material while the partial occupancy value is used
for gray-level normal estimation.

Volume rendering methods differ also in the way they regard the material of the voxels. Some
t

a
methods regarded all materials as opaque [Goldwasser 1986, Gordon and Reynolds 1985, Hoehne e
l. 1990, Reynolds, Gordon, and Chen 1987, Schlusselberg, Smith, and Woodward 1986, Trousset and

,
C
Schmitt 1987, Tuy and Tuy 1984] while others allow each voxel to have an opacity attribute [Drebin

arpenter, and Hanrahan 1988, Levoy 1988, Sabella 1988, Upson and Keeler 1988, Westover 1989,

t
Yagel 1991b, Yagel and Kaufman 1992]. Supporting variable opacities models the appearance of semi-
ransparent jell and requires composition of multiple voxels along each sight ray.

.
E

Yet another aspect of distinction between rendering methods is the number of materials they support
arly methods supported scenes consisting of binary-valued voxels while more recent methods usually

-
g
support multi-valued voxels. In the first case objects are represented by occupied voxels while the back
round is represented by void voxels [Frieder, Gordon, and Reynolds 1985, Herman and Liu 1979, Rey-

t
nolds, Gordon, and Chen 1987, Tuy and Tuy 1984]. In the latter approach, multi-valued voxels are used
o represent objects of nonhomogeneous material [Goldwasser 1986, Hoehne and Bernstein 1986b,

g
Schlusselberg, Smith, and Woodward 1986, Trousset and Schmitt 1987]. It should be observed that
iven a set of voxels having multiple values we can either regard them as fully occupied voxels of various

r
o
materials (i.e., each value represents a different material) or we can regard the voxel value as an indicato
f partial occupancy by a single material, however we can not have both. In order to overcome this limi-

t
a
tation, some researchers adopt the multiple-material approach as a basis for a classification process tha
ttaches a material-label to each voxel. Once each voxel has a material label, these researchers regard the

i

Table 1: Summary of volume rendering methods.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pixel vs. Opaque vs. Number of Value

Voxel Occupancy Translucent Materials Variationiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pixel Uniform Translucent Multiple Zero

[
[Hoehne et al. 1990],
Kaufman and

,
[
Bakalash 1988]

Yagel 1992 ]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i [Tuy and Tuy 1984] Pixel Uniform Opaque Binary Zeroiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

[
[Levoy 1988], Pixel Uniform Translucent Multiple Trilinear
Yagel 1991]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

a
[Frieder, Gordon, Voxel Uniform Opaque Multiple Zero
nd Reynolds 1985],

a
[Farrell, Zappulla,
nd Yang 1984],

,
[
[Goldwasser 1986]
Schlusselberg, Smith,

,
[
and Woodward 1986]
Meagher 1982]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i [Westover 1990] Voxel Partial Translucent Multiple Gausianiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

a
[Drebin, Carpenter,
nd Hanrahan 1988] Voxel Partial Translucent Multiple BiCubic iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

[Upson and
Keeler 1988] Hybrid Uniform Translucent Multiple Trilineariiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

[Jackel Strasser
1988] Hybrid Uniform Opaque Multiple Zero i
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-
r
original voxel values as partial occupancy indicators for the labeled material [Drebin, Carpenter, and Han
ahan 1988].

Finally, volume rendering algorithms can also be classified according to whether they assume con-

o
stant value across the voxel extent [Kaufman and Bakalash 1988] or do they assume (trilinear) variation
f the voxel value [Levoy 1988]. Table 1 summarizes the behavior of the major viewing algorithms

according to the classification topics described above.

A severe problem in the voxel-space projection is that at some viewing points, holes might appear in
s

(
the scene. To solve this problem one can regard each voxel in our implementation as a group of point
depending on the viewpoint) [Sobierajski et al. 1993] or maintain a ratio of √dd between a voxel and a1: 3

s
t
pixel [Cline et al. ]. Another solution is based on a hybrid of voxel-space and pixel-space projection
hat is based on traversing the volume in a BTF fashion but computing pixel colors by intersecting the

K
voxel with a scan line (plane) and then integrating the colors in the resulting polygon [Upson and

eeler 1988]. Since this computation is relatively time consuming it is more suitable to small datasets. It

s
is also possible to apply to each voxel a blurring function to obtain a 2D footprint that spreads the
ample’s energy onto multiple image pixels which are latter composed into the image [Westover 1990].

i
A major disadvantage in the splatting approach is that it tends to blur the edges of objects and reduce the
mage contrast. Another deficiency in the voxel-space projection method is that it must traverse and pro-

(
ject all the voxels in the scene. We have suggested the use of a normal based culling in order to reduce
possibly by half) the amount of processed voxels [Sobierajski et al. 1993]. On the other hand, since

o
voxel-space projection operates in object-space, it is most suitable to various parallelization schemes based
n object space subdivision [Goldwasser and Reynolds 1987, Ohashi, Uchiki, and Tokoro 1985, West-

r
i
over 1989]. For more information on hardware implementation of volume viewing, the interested reade
s referred to [Kaufman et al. 1990, Schreiter and Zimmerman 1988] for more details.

g
u

The main disadvantages of the pixel-space projection scheme are aliasing (specially when assumin
niform value across voxel extent) and the difficulty to parallelize it. While the computation involved in

e
i
tracing rays can be performed in parallel, memory becomes the bottleneck. Since rays traverse the volum
n arbitrary directions it seems to be no way to distribute voxels between memory modules to guarantee

l
i
contention free access [Levoy 1989]. Yagel [Yagel 1991a, Yagel 1991b] have proposed a a paralle
mplementation of ray-casting on a special purpose architecture that is based on slice-wise memory modu-

larization and limited data re-orientation operations.

Methods for Accelerating Volume Viewing3.

Either forward projection or backward projection requires the scanning of the volume buffer which
-

r
is a large buffer of size proportional to the cubic of the resolution. Consequently, volume rendering algo
ithms are time-consuming algorithms. This paper focuses on techniques for expediting these algorithms.

3.1. Expediting Forward Viewing

The Z-buffer projection algorithm, although surprisingly simple, is inherently very inefficient and
s

r
when naively implemented, produces low quality images. The inefficiency attribute of this method i
ooted in the vector-by-matrix multiplications it calculates and the accesses to the Z-buffer itN N3 3

-
s
requires. Inferior image quality is caused by this method’s inability to support compositing of semitran
parent materials, due to the arbitrary order in which voxels are transformed. In addition, transforming a

set of discrete points is a source for various sampling artifacts such as holes and jaggies.

Some methods have been suggested to reduce the amount of computations needed for the transfor-
-

q
mation by exploiting the spatial coherency between voxels. These methods are: recursive ’divide and con
uer’ [Goldwasser 1986, Meagher 1982], precalculated tables [Frieder, Gordon, and Reynolds 1985], and

incremental transformation [Kaufman 1989, Machiraju, Yagel, and Schwiebert 1992].



The first method exploits coherency in voxel space by representing the 3D volume by an octree. A
e

r
group of neighboring voxels having the same value (or similar, up to a threshold value) may, under som
estrictions, be grouped into a uniform cubic subvolume. This aggregate of voxels can be transformed and

s
e
rendered as a uniform unit instead of processing each of its voxels. In addition, since each octree node ha
ight equally-sized octants, given the transformation of the parent node, the transformation of its sub-

t
octants can be efficiently computed. If we look at the 2D example of quadtrees and we denote the
ransformation of the two vertices and (where is the quadrant size) by

[
[x ,y ] [x +d ,y +d ] d

xdd ,yd] [xdd,ydd] [xd+(xdd−xd)/2, yd+(ydd−yd)/2]d d d dthen the center point is transformed to: a computation that is
s

a
much more efficient than the straightforward transformation. This method requires, in 3D, three division
nd six additions per coordinate transformation.

The table-driven transformation method is based on the observation that volume transformation
einvolves the multiplication of the matrix elements with integer values which are always in the rang

, where is the volume resolution. Therefore, in a short preprocessing stage each matrix element
t
[1..N ] N

tab [N ] tab [k ] = t *k , 1≤k <Nij ij i j i jis stored in table such that . During the transformation stage,

l
coordinate by matrix multiplication is replaced by table lookup. This method requires, in 3D, nine table
ookup operations and nine additions, per coordinate transformation.

n
o

Finally, the incremental transformation method is based on the observation that the transformatio
f a voxel can be incrementally computed given the transformed vector of the voxel

[
[x +1,y ,z ] [xd, yd, zd]

x , y , z ]at . This is because

11 12 13]

T

[x +1, y , z ] * T = [x , y , z ] * T + [1,0,0] * T = [xd, yd, zd] + [t , t , t

o begin the incremental process we need one matrix by vector multiplication to compute the
-

i
updated position of the first grid point. The remaining grid points are incrementally transformed, requir
ng three additions per coordinate. However, to employ this approach, all volume elements, including the

e
w
empty ones, have to be transformed. This approach is therefore more suitable to parallel architectur

here it is desired to keep the computation pipeline busy [Machiraju, Yagel, and Schwiebert 1992]. This
sapproach is especially attractive for vector processors since the transformations of the set of voxel

, called beam and denoted by , can be computed from[x +1,1,z ], [x +1,1,z ],...,[x +1,N ,z ] [x +1, 1..N , z ]
[x , 1..N , z ]the transformation of the vector by adding, to each element in this vector, the same three

constants: ( ).t , t , t 3

S
11 12 1

o far we have been looking at methods that ease the computation burden associated with the
.transformation. However, consulting the Z-buffer times is also a source of significant slow downN 3

–
t
The back-to-front (BTF) algorithm is essentially the same as the Z-buffer method with one exception
he order in which voxels are scanned. It is based on the observation that the voxel array is spatially

t
presorted. This attribute allows the renderer to scan the volume in an order of decreasing distance from
he observer. By exploiting this presortedness of the voxel arrays, one can draw the volume in a back-

r
f
to-front order, that is, in order of decreasing distance to the observer. This avoids the need for a Z-buffe
or hidden voxel removal by applying the painter’s algorithm. That is, the current voxel is simply drawn

e
s
on top of previously drawn voxels. If compositing is performed, the current voxel is composited with th
creen value [Farrell, Zappulla, and Yang 1984, Frieder, Gordon, and Reynolds 1985]. The front-to-back

-
t
(FTB) algorithm is essentially the same as BTF, only that now the voxels are traversed in increasing dis
ance order.

As mentioned above in the basic Z-buffer method it is impossible to support the rendition of semi-
-

c
transparent materials because voxels are mapped to the screen in an arbitrary order. In contrast, translu
ency can easily be realized in both BTF and FTB because in these methods objects are mapped to the

screen in viewing order.

Another approach to forward projection is based on first transforming the volume from voxel-space

t
to pixel-space by employing a decomposition of the 3D affine transformation into five 1D shearing
ransformations [Hanrahan 1990]. Then, the transformed voxel is projected onto the screen in an FTB

-
b
order, which supports the blending of voxels with the projection formed by previous (farther) voxels [Dre
in, Carpenter, and Hanrahan 1988]. The major advantage of this approach is its ability (using simple



i
averaging techniques) to overcome some of the sampling problems causing the production of low quality
mages. In addition, this approach replaces the 3D transformation by five 1D transformations which

require only one floating-point addition each.

Another solution to the image quality problem mentioned above is splatting [Westover 1990], in
p

t
which each voxel is transformed into screen space and then it is shaded. Blurring, based on 2D looku
ables, is performed to obtain a set of points (a cloud) that spreads the voxel’s energy across multiple pix-

r
els called footprint. These are then composited with the image array. However this algorithm which
equires extensive filtering is time consuming. We have described [Sobierajski et al. 1990] a simplified

e
o
approximation to the splatting method for interactive volume viewing in which only voxels comprising th
bject’s surface are maintained. Each voxel is represented by several 3D points (a 3D footprint). Render-

r
v
ing is based on the usage of a contemporary geometry engine that is fed with those multiple points pe
oxel. Additional speedup is gained by culling voxels that have a normal pointing away from the

o
observer. Finally, adaptive refinement of image quality is also supported: when the volume is manipulated
nly one point per voxel is rendered, interactively producing a low quality image. When the volume

e
p
remains stationary and unchanged, for some short period, the rendering system renders the rest of th
oints to increase image quality.

Another efficient implementation of the splatting algorithm, called hierarchical splatting [Laur and
r

a
Hanrahan 1991] uses a pyramid data structure to hold a multiresolution representation of the volume. Fo

volume of resolution the pyramid data structure consists of a sequence of volumes. The firstN logN3

volume contains the original dataset, the next volume in the sequence is half the resolution of the previous

t
one. Each of its voxels contains the average of eight voxels in the higher resolution volume. According
o the desired image quality, this algorithm scans the appropriate level of the pyramid in a BTF order.

p
Each element is splatted using the appropriate sized splat. The splats themselves are approximated by
olygons which can efficiently be rendered by graphics hardware.

3.2. Expediting Backward Viewing

Backward viewing of volumes, based on casting rays, has three major variations: parallel (ortho-
,

i
graphic) ray casting, perspective ray casting, and ray tracing. The first two are variations of ray casting
n which only primary rays, that is, rays from the eye through the screen, are followed. These two

d
s
methods have been widely applied to volumetric datasets, such as those arising in biomedical imaging an
cientific visualization applications (e.g., [Drebin, Carpenter, and Hanrahan 1988, Upson and

r
t
Keeler 1988]). Levoy [Levoy 1990b, Levoy 1990] has used the term ray tracing of volume data to refe
o ray casting and compositing of even-spaced samples along the primary viewing rays.

e
e

Ray casting can further be divided into methods that support only parallel viewing, that is, when th
ye is at infinity and all rays are parallel to one viewing vector. This viewing scheme is used in applica-

b
tions that could not benefit from perspective distortion such as biomedicine. Alternatively, ray casting can

e implemented to support also perspective viewing.

Since ray casting follows only primary rays, it does not directly support the simulation of light

t
phenomena such as reflection, shadows, and refraction. As an alternative we have developed the 3D ras-
er ray tracer (RRT) [Yagel, Cohen, and Kaufman 1992] that recursively considers both primary and

e
u
secondary rays and thus can create ‘‘photorealistic’’ images. It exploits the voxel representation for th
niform representation and ray tracing of sampled and computed volumetric datasets, traditional geometric

scenes, or intermixing thereof.

The examination of existing methods for speeding up the process of ray casting reveals that most of

c
them rely on one or more of the following principles: (1) pixel-space coherency (2) object-space
oherency (3) inter-ray coherency and (4) space-leaping. We now turn to describe each of those in more

1

detail.

. Pixel-space coherency
There is a high coherency between pixels in image space. That is, it is highly probable that between



)
c
two pixels having identical or similar color we will find another pixel having the same (or similar
olor. Therefore it is observed that it might be the case that we could avoid sending a ray for such

2

obviously identical pixels.

. Object-space coherency
The extension of the pixel-space coherency to 3D states that there is coherency between voxels in

s
h
object space. Therefore, it is observed that it should be possible to avoid sampling in 3D region
aving uniform or similar values.

3. Inter-ray coherency
There is a great deal of coherency between rays in parallel viewing, that is, all rays, although having

e
v
different origin, have the same slope. Therefore, the set of steps these rays take when traversing th
olume are similar. We exploit this coherency so as to avoid the computation involved in navigating

4

the ray through voxel space.

. Space-leaping
The passage of a ray through the volume is two phased. In the first phase the ray advances through

s
a
the empty space searching for an object. In the second phase the ray integrates colors and opacitie
s it penetrates the object (in the case of multiple or concave objects these two phases can repeat).

t
Commonly, the second phase involves one or a few steps, depending on the object’s opacity. Since
he passage of empty space does not contribute to the final image it is observed that skipping the

T

empty space could provide significant speed up without affecting image quality.

he adaptive image supersampling, exploits the pixel-space coherency. It was originally developed
.

F
for traditional ray-tracing [Bergman et al. 1986] and later adapted to volume rendering [Levoy 1990a]

irst, rays are cast from only a subset of the screen pixels (e.g., every other pixel). ‘‘Empty pixels’’ resid-
t

a
ing between pixels with similar value are assigned an interpolated value. In areas of high image gradien
dditional rays are cast to resolve ambiguities.

van Walsum et al [van Walsum et al. 1991] have used the voxel-space coherency. In his method the
e

d
ray starts sampling the volume in low frequency (i.e., large steps between sample points). If a large valu
ifference is encountered between two adjacent samples, additional samples are taken between them to

y
l
resolve ambiguities in these high frequency regions. Recently, this basic idea was extended to efficientl
ower the sampling rate in either areas where only small contributions of opacities are made, or in regions

s
o
where the volume is homogeneous [Danskin and Hanrahan 1992]. This method efficiently detects region
f low presence or low variation by employing a pyramid of volumes that decode the minimum and max-

imum voxel value in a small neighborhood, as well as the distance between these measures.

The template-based method [Yagel 1991b, Yagel and Kaufman 1992] utilizes the inter-ray
s

n
coherency. Observing that, in parallel viewing, all rays have the same form it was realized that there i
o need to reactivate the discrete line algorithm for each ray. Instead, we can compute the form of the ray

e
r
once and store it in a data structure called ray-template. All rays can then be generated by following th
ay template. The rays, however, differ in the exact positioning of the appropriate portion of the template,

t
an operation that has to be performed very carefully. For this purpose a plane that is parallel to one of
he volume faces is chosen to serve as a base-plane for the template placement. The image is projected

a
c
by sliding the template along that plane emitting a ray at each of its pixels. This placement guarantees
omplete and uniform tessellation of the volume.

The template-based algorithm starts by finding the base-plane, the image extent, and a ray-template.

a
The base-plane is that one of the three object space planes onto which the image is projected to the largest
rea. From this plane, and within the projected region of the volume, parallel rays are cast into the volume

e
a
by repeating the sequence of steps specified by the ray-template. The result of the second phase of th
lgorithm is a projection of the volume on the base-plane. The third phase of the algorithm transforms

t
a
the projected image from the base-plane to the screen-plane. The regularity and simplicity of this efficien
lgorithm make it very attractive for hardware implementation [Yagel 1991a] and for massively parallel

computers such as the CM-2 [Schroeder and Stoll 1992].



So far we have seen methods that exploit some type of coherency to expedite volumetric ray casting.

u
However, the most prolific and effective branch of volume rendering acceleration techniques involve the
tilization of the fourth principle mentioned above – speeding up ray casting by providing efficient means

to traverse the empty space.

The hierarchical representation (e.g., octree) decomposes the volume into uniform regions that can
-

f
be represented by nodes in a hierarchical data structure. An adjusted ray traversal algorithm skips the (uni
orm) empty space by maneuvering through the hierarchical data structure [Levoy 1990b, Samet and

d
t
Webber 1988]. It was also observed that traversing the hierarchical data structure is inefficient compare
o the traversal of regular grids. A combination of the advantages of both representations is the uniform

r
3
buffer. The ‘‘uniformity information’’ decoded by the octree can be stored in the empty space of a regula
D raster. That is, voxels in the uniform buffer contain either a data value or information indicating to

,
o
which size empty octant they belong. Rays which are cast into the volume encounter either a data voxel
r a voxel containing ‘‘uniformity information’’ which instructs the ray to perform a leap forward that

n
brings it to the first voxel beyond the uniform region [Cohen and Shefer 1993]. This approach saves the
eed to perform a tree search for the appropriate neighbor – an operation that is the most time consuming

and the major disadvantage in the hierarchical data structure.

When a volume consists of one object surrounded by empty space, a common and simple method to
d

b
skip most of this empty space uses the well known technique of bounding-boxes. The object is surrounde

y a tightly fit box (or other easy-to-intersect object such as sphere). Rays are intersected with the bound-

t
ing object and start their actual volume traversal from this intersection point as opposed to starting from
he volume boundary. The PARC (Polygon Assisted Ray Casting) approach [Avila, Sobierajski, and

d
a
Kaufman 1992] strives to have a better fit by allowing a convex polyhedral envelope to be constructe
round the object. PARC utilizes available graphics hardware to render the front faces of the envelope (to

s
t
determine, for each pixel, the ray entry point) and back faces (to determine the ray exit point). The ray i
hen traversed from entry to exit point. A ray that does not hit any object is not traversed at all.

s
p

It is obvious that the empty space does not have to be sampled – it has only to be crossed as fast a
ossible. Therefore, we have proposed [Yagel et al. 1991, Yagel, Cohen, and Kaufman 1992] to utilize

)
a
one fast and crude line algorithm in the empty space (e.g., 3D integer-based 26-connected line algorithm
nd another, slower but more accurate (e.g., 6-connected integer or 3D DDA floating point line algo-

e
rithm), in the vicinity and interior of objects. The effectiveness of this approach depends on its ability to
fficiently switch back and forth between the two line algorithm, and its ability to efficiently detect the

‘
proximity of occupied voxels. This is achieved by surrounding the occupied voxels by a one-voxel-deep
‘cloud’’ of flag-voxels, that is, all empty voxels neighboring an occupied voxel are assigned, in a prepro-

s
cessing stage, a special ‘‘vicinity flag’’. A crude ray algorithm is employed to rapidly traverse the empty
pace until it encounters a vicinity voxel. This flags the need to switch to a more accurate ray traversal

n
algorithm. Encountering later an empty voxel (i.e., unoccupied and not carrying the vicinity flag) can sig-
al a switch back to the rapid traversal of empty space.

The proximity-clouds method [Cohen and Shefer 1993, Zuiderveld, Koning, and Viergever 1992] is
s

m
based on the extension of this idea even further. Instead of having a one-voxel-deep vicinity cloud thi

ethod computes, in a preprocessing stage, for each empty voxel, the distance to the closest occupied
s

u
voxel. When a ray is sent into the volume it can either encounter an occupied voxel, to be handled a
sual, or a ‘‘proximity voxel’’ carrying the value . This suggests that the ray can take a -step leap for-

w
n n

ard, being assured that there is no object in the skipped span of voxels. The effectiveness of this algo-

n
rithm is obviously dependent on the ability of the line traversal algorithm to efficiently jump arbitrary
umber of steps [Cohen and Shefer 1993].

Recently, Yagel and Shi [Yagel and Shi 1993] have reported on a method for speeding up the pro-

i
cess of volume rendering a sequence of images. It is based on exploiting coherency between consecutive
mages to shorten the path rays take through the volume. This is achieved by providing each ray with the

-
i
information needed to leap over the empty space and commence volume traversal at the vicinity of mean
ngful data. The algorithm starts by projecting the volume into a C-buffer (Coordinate-buffer) which

tstores, at each pixel location, the object-space coordinates of the first non empty voxel visible from tha



pixel. For each change in the viewing parameters, the C-buffer is transformed accordingly. In the case of

h
rotation the transformed C-buffer goes through a process of eliminating coordinates that possibly became
idden [Gudmundsson and Randen 1990]. The remaining values in the C-buffer serve as an estimate of

3

the point where the new rays should start their volume traversal.

.3. Progressive Refinement

One practical solution to the rendering time problem is the generation of partial images that are pro-

s
gressively refined as the user interacts with the crude image. Both forward and backward approach can
upport progressive refinement. In the case of forward viewing this technique is based on a pyramid data

r
r
structure. First, the smaller volume in the pyramid is rendered using large-footprint splats. Later, highe
esolution components of the pyramid are rendered [Laur and Hanrahan 1991].

n
l

Providing progressive refinement in backward viewing is achieved by first sampling the screen i
ow resolution. The regions in the screen where no rays were emitted from receive a value interpolated

s
r
from some close pixels that were assigned rays. Later more rays are cast and the interpolated value i
eplaced by the more accurate result [Levoy 1990a]. Additionally, rays that are intended to cover large

screen areas can be traced in the lower-resolution components of a pyramid [Levoy and Whitaker 1990].

Not only screen-space resolution can be progressively increased. Sampling rate and stopping criteria

[
can also be refined. An efficient implementation of this technique was reported by Danskin and Hanrahan
Danskin and Hanrahan 1992].

s4 Parallel Algorithm.

The sheer amount of data that arises even from a not too fine resolution volume representation is
s

a
enormous. A most obvious solution to reduce the total rendering time is to employ parallel architecture
nd algorithms.

Some implementations of direct volume rendering have recently been reported for a variety of paral-
-

t
lel architectures. A few of them exist on experimental parallel processors, such as the DASH parallel sys
em [Neih and Levoy 1992], the Princeton Engine [Schroeder and Stoll 1992], the G2 processor [Leung

4
[
and Synott 1992], the PixelPlane 5 processor [Yoo et al. 1992, Yoo et al. 1992], and the UWGSP
Jong et al. 1992] processor. Other reported implementations have been conducted on commercially avail

[
able parallel machines such as the AMT DAP [Cameron and Underill 1992], Connection Machine CM-2
Schroeder and Salem 1991, Schroeder and Stoll 1992], MasPar MP-1 [Vezina, Fletcher, and Robert-

[
son 1992, Wittenbrink and Somani 1993], Fujitsu AP- 100 [Corrie and Mackerras 1992], Intel iPSC-2
Montani, Perego, and Scopingo 1992], CRAY [Elvins 1992, Machiraju, Yagel, and Schwiebert 1992],

[
nCUBE [Elvins 1992], BBN TC2000 [Challinger 1992], Silicon Graphics multiprocessor workstation
Fruhauff 1992, Machiraju, Yagel, and Schwiebert 1992], transputers [Yazdy et al. 1990], IBM Power

Visualization System (PVS) [Machiraju and Yagel 1993], and network of Suns [Westover 1990].

The viewing algorithms adopted in the afore-mentioned implementations are many and varied. Both
d

a
traditional direct volume rendering methods, namely feed-forward and backward-feed as well as an hybri
pproach, was adapted for parallel processors. In the next three subsection we describe some of the exist-

4

ing parallel algorithms for volume rendering.

.1.1. Parallel Forward Viewing Methods

-
m

Multiple-transformation methods and splatting have been commonly employed for parallel imple
entations. By converting the three-dimensional view matrix into a series of one-dimensional shears and

l
[
scales along the orthogonal axis, both Schroeder and Salem [Schroeder and Stoll 1992] and Vezina et. a
Vezina, Fletcher, and Robertson 1992] implemented feed-forward rendering on SIMD processors. A



n
o
one-dimensional shear leads to regular communication along the shear axis and hence the decompositio
f the transformation into shears. In [Vezina, Fletcher, and Robertson 1992] the implementation was con-

i
ducted on a Maspar MP-1. Beams of voxels are provided to a toroidally connected processors. This
mplementation relies on the efficient interconnection network of the MP-1 for optimal communications

a
performance. In the other implementation [Schroeder and Salem 1991] no efforts were made to perform
ny explicit distribution or virtualization on the CM-2. Indirect addressing was employed and data

s
f
exchange was avoided until the composition phase of the algorithm. This implementation however suffer
rom two disadvantages, namely that more number of one-dimensional resampling passes are required and

perspective viewing is not handled.

Splatting is another reconstruction technique which has gained attention in the parallel volume

W
rendering community. The earliest splatting implementation was conducted on a network of SUNs by

estover [Westover 1990]. Voxels are enumerated in a front-to-back or back-to-front order and a subset
of these is sent to processes which are executed on a network of Suns. These processes transform andN 2

N .splat the voxels onto image sheets which are then sent to compositing processes

Machiraju and Yagel implement a similar splatting algorithm on a IBM Power Visualization System
y

e
(PVS) [Machiraju and Yagel 1993]. In this method a computational scheme is utilized which allows ver
fficient transformations based on incremental vectorized computation. Also, the volume is statically

,
s
divided into an ordered set of slabs (of slices). Each of the slices in a slab is independently transformed
haded, splatted and composited with the existing local image. A tree-like algorithm is used to hierarchi-

o
cally combine all these local images to create the final image. Thus, inter-node communication is required
nly in this final stage. The amount of communication required is low and this implementation scales

well with increased number of processors.

In Neumann’s implementation on the Pixel Planes 5 architecture [Yoo et al. 1992] graphics proces-

r
sors transform and shade the voxels, while the rendering processors implement splatting and receive the
equisite instruction stream from the graphics processors. Each rendering processor is assigned a subsec-

r
tion of the screen. Only voxels which map to that screen area are sent to this renderer. A sorting step is
equired for generating the splat instructions for appropriate renderers. A graphics processor waits for the

s
t
a circulating token to reach it before it can send the next slice for rendering. While waiting, it transform
he next assigned slice. One disadvantage of this implementation is the sorting which is required for each

4

of the slices.

.1.2. Parallel Backward Viewing Methods

e
r

Backward-feed or image space methods have received a lot of attention in the parallel volum
endering community. Neih and Levoy’s [Neih and Levoy 1992] contribution lies in the development of a

i
hybrid data distribution scheme. The screen is divided into several regions which are again subdivided
nto tiles. Each node of the DASH multicomputer is assigned a portion of the screen. If a node finishes

n
raycasting and finds another region undone, it grabs the next undone tile in a scanline order. To alleviate
on-local access the volume is distributed in a round-robin fashion among the nodes. The efficient caching

subsystem of the DASH multiprocessor is relied upon to fetch non-local data.

Montani et. al.’s implementation of a ray-tracer on the Intel iPSC/2 used a purely static data distri-
-

c
bution scheme [Montani, Perego, and Scopingo 1992]. The scanlines are divided among clusters of pro
essors in an interleaved fashion. The entire volume data is replicated on all clusters with each node of

-
d
the cluster getting a slab of slices. Rays are traced by each node with in its subvolume using a ray
ataflow approach, wherein a ray is split into several portions and each portion is traced individually.

l
Later when each node is finished all these portions are combined to obtain the color. Such a scheme can
ead to a load balanced and scalable implementation and the data distribution scheme maps well to the

Hypercube interconnection network.

Fruhaff’s implementation on a multiprocessor Silicon Graphics workstation [Fruhauff 1992] is simi-

r
lar in spirit to Schroeder and Salem’s implementation on CM-2. The volume is rotated along the viewing
ays and then parallel rays are cast. A dynamic data distribution scheme is used to assign the slices to the



various nodes An efficient incremental transformation method, was used for transforming each slice.

Corrie and Mackerras employed the Fujitsu AP1000 MIMD multiprocessor to implement a ray-

r
caster [Corrie and Mackerras 1992]. A master slave paradigm was used to dynamically distribute square
egions of pixels to slave cells. An adaptive distribution scheme is obtained by having the slave cells

-
t
notify the master when they spend more than their allocated time to render the assigned image. The mas
er then subdivides the image region further and distributes the new sub-regions to idle cells. To support

such a dynamic scheme the volume is replicated among clusters of neighboring cells.

The template based viewing method [Yagel 1991b] has been successfully implemented in [Cameron
.

P
and Underill 1992, Schroeder and Stoll 1992] on SIMD machines. Both implementations are very similar

arallel rays are traced in a lock step fashion by all nodes of the SIMD node. Each node is mapped to a

t
voxel in both implementations. Shading, interpolation and compositing is done by each processor along
he ray. After a set of rays have been completely traced, new rays are traced by conducting shifts along

one axis.

Recently, the CellFlow method [Law, Yagel, and Jayasimha 96. , Law and Yagel 1995] , has been
y

b
implemented on some distributed shared memory architectures. It is based on exploiting coherenc
etween frames in an animation sequence. Once the data is distributed among processors, it is observed

s
s
that, if the animation is rather smooth, the amount of additional information needed for the next frame i
mall. Lookahead of possible data needed for the next frame is used to provide effective latency hiding by

4

performing communication in the background.

.1.3. Parallel Hybrid Methods

Hybrid methods have not drawn the same amount of attention as forward backward feed methods.

r
Only two reported implementations [Machiraju and Yagel 1993, Wittenbrink and Somani 1993] and one
ecent work [Law and Yagel 96. , Law and Yagel 1996] are known. Wittenbrink and Somani’s method is

d
applicable to affine transformations. They decompose the transformation into a series of shears used to
etermine the address of a voxel in the transformed space. This address is used for interpolating in object

m
space and obtaining the the sample value. The advantage of this address computation scheme is that com-

unication required for interpolation is nearest neighbor and regular. In the final stages another communi-
cation step is required for actually rearranging the transformed volume.

In [Machiraju and Yagel 1993], a hybrid method was implemented on the IBM Power Visualization
e

t
System (PVS). The volume data is subdivided into sub-cubes and assigned to different processors. Th
ransformed extents of these sub-cubes are determined in the image space. These image extents are then

-
t
traversed in scanline order and interpolated in object space. An efficient inverse incremental transforma
ion is employed to obtain points in object space.

Recently [Law and Yagel 96. , Law and Yagel 1996], the Active Ray method, which exploits

t
coherency in object-space, was implemented. The data is divided into cells that are distributed randomly
o processors. Rays are intersected with the cell boundaries and are placed in a queue associated with the

s
q
cell they intersect first. These cells are brought into memory by demand in a front-to-back order. Ray
ueued at a cell that was brought into the processor’s memory are advanced in the cell. They either stop

b
due to opacity accumulation, or are queued at the cell they enter next. This hybrid method benefits from
oth the advantages of image order (e.g., early ray termination) and object order (e.g., regular space

traversal) approaches.



Special Purpose Hardware5.

An obvious way to accelerate volume rendering is to build a special purpose hardware well suited
d

h
for this task. Several attempts have been launched, however, no one have gained market acceptance an
ave mostly remained research attempts.

Insight [Meagher 1985] employs an octree data structure which is a hierarchical form that enables
-

f
the rendering process to traverse only the non-empty voxels. While octrees are suitable for relatively uni
orm and regular objects such as in solid modeling, they cease to be effective when the application calls

-
t
for complex objects and/or many colors/densities as in medical imaging. Consequently, all other architec
ures store the volumetric data as a 3D array, while gaining speedup by employing diverse parallelism

s
p
mechanisms. PARCUM [Jackel 1985] takes advantage of a memory interleaving scheme that allow
arallel retrieval of macro-voxels (e.g., a group of voxels). Cube [Kaufman and Bakalash 1988]

u
3×3×3

ses a unique skewed memory organization that allows parallel read/write of axial beams. The Voxel Pro-
cessor [Goldwasser et al. 1989] and 3DP [Ohashi, Uchiki, and Tokoro 1985] achieve parallelism by4

dividing the volumetric space into sub-cubes and pipelining the merging of the sub-results in a hierarchi-

o
cal fashion. The Flipping Cube architecture [Yagel 1991b] relies on a modular memory that stores a slice
f voxels in each module.

One of the major decisions in hardware design is the rendering algorithm to be used. Cube [Kauf-
i

a
man and Bakalash 1988], PARCUM [Jackel 1985], Flipping Cube [Yagel 1991b], and SCOPE [Uchik
nd Tokoro 1985] use backward mapping. In Cube, the cast rays are parallel to the main axis. An

-
m
extended architecture of Cube, Cube-3, for perspective and arbitrary viewing has also been devised [Kauf

an, Bakalash, and Cohen 1990]. Flipping Cube supports real-time parallel (orthographic) rendering
g

i
from arbitrary direction while SCOPE supports perspective viewing as well. PARCUM uses ray castin
n the macro-voxel level and employs a Z-buffer for projecting the macro-voxel itself. Insight

t[Meagher 1985], 3DP [Ohashi, Uchiki, and Tokoro 1985], and the Voxel Processor [Goldwasser e4

al. 1989] use forward mapping that directly transforms the object coordinates into screen space in a
t

p
back-to-front (BTF) traversal [Frieder, Gordon, and Reynolds 1985] for hidden voxel removal. Insigh
erforms octree based recursive BTF traversal of the scene. The Voxel Processor uses recursive BTF to

eproject sub-cubes and then merges the 2D mini-pictures in BTF fashion. 3DP traverses beams that ar4

p xarallel to the screen axis in BTF order employing a Z-buffer for the projection of the beam itself.

6 Viewing Intermixed Volume and Surfaces.

The surface-based approach favors a geometric object representation and thus only supports render-

s
ing of analytically-defined surfaces. Therefore, the volumetric data must be first transformed into
urface-based description by applying a surface reconstruction algorithm [Fuchs, Kedem, and Usel-

t
ton 1977, Sunguroff and Greenberg 1978]. The opposite approach is the voxel-based approach in which
he voxel is the only primitive used for object representation. Geometric objects are converted from their

-
r
continuous mathematical definition into a volumetric representation by employing scan conversion algo
ithms [Kaufman and Shimony 1986, Kaufman 1987b, Kaufman 1988]. This volumetric representation

is merged directly with the sampled voxel-based data.

Compromising between these two extremes of surface-only and volume-only approaches, are the

a
point-based approach and the hybrid approach. The point-based approach, extends the surface-based
pproach by adding a point primitive to the set of geometric objects [Johnson and Mosher 1989]. This

,
a
primitive consists of a 3D location, a normal value used by a geometry engine for illumination calculation
nd some additional data values (e.g., color, opacity, density). When synthetic objects are scan converted

d
v
into voxel representation the normal value can easily be calculated for each voxel. However, sample
olumetric data do not contain information about the surface inclination. Thus, a pre-processing stage of

e
normal restoration is needed in order to convert each non-empty voxel to a point. This is usually done by
xamining a close neighborhood of the voxels in order to extract a surface and calculate its normal [Cline

et al. 1988, Herman and Udupa 1981, Hoehne and Bernstein 1986a].



Since common volumetric data sets consist of millions of voxels and as contemporary graphic
.

T
hardware can not cope with such a magnitude of objects, a reduction in the amount of points is desired

his reduction is achieved by feeding the graphic engine only with those points (voxels) which are visi-

t
ble, that is, those voxels comprising the outer layer of the objects. One way to extract these voxels from
he volume is by thresholding; voxels belonging to an object are assigned the value ’1’ while the others

e
are assigned a ’0’. The ’1’ voxels bordering with at least one ’0’ voxel are those possibly visible [Cline
t al. 1988]. A more efficient and accurate method is based on starting from a seed point on the surface

and then tracking its neighbors until the entire surface is extracted [Frieder et al. 1985].

It should be noted that the point-based approach makes use of the point primitive only for display
-

t
purpose, while all the other volumetric manipulations are performed on the volume itself. Some opera
ions require only minor alterations of the point list (e.g., scalpeling), while others require more extensive

p
changes (e.g., cut planes), or even a total rebuilding of the point-list (e.g., change in the translucency
arameters). The point primitive can be rendered either by using a geometry engine to render it as a point

p
in 3D space [Cline et al. 1988] or by applying a splatting technique that computes the contribution of the
rojected point to a neighborhood of pixels [Westover 1989].

d
d

The fourth approach to the intermixing problem is the hybrid approach which supports the hybri
ata model by rendering each part of it separately and then combining the surface rendered and the

-
m
volume rendered images into a final 2D pixel image. Two flavors of this approach are described, the Z

erging and the ray-merging.

The Z-merging algorithm [Kaufman, Yagel, and Cohen 1990] employs two separate (and possibly
t

w
parallel) rendering processes - one executes (any) volume rendering algorithm on the volumetric data se

hile the other performs (any) traditional surface-based rendering on the geometric model. Each render-
.

T
ing process produces two buffers consisting of the shaded image along with the corresponding Z-buffer

he two image buffers are combined according to their depth values. It should be noted that after the

r
image is rendered for the first time, the system waits for a change that requires re-rendering and then
enders only the necessary model. For example, when a surgeon simulates the positioning of a prosthesis,

g
he can interactively move the (geometric) prosthesis over a static (volumetric) organ since only the
eometric model is repeatedly re-rendered. Another flavor of the hybrid approach is the ray-merging

l
p
method which simultaneously traces rays through both the volumetric data set and the synthetic mode
roducing two vectors of samples. These two vectors are combined to produce the final image value

[Goodsell, Mian, and Olson 1989, Levoy 1990].

Viewing Irregular Grids7.

There are many types of grids. We deal only with those composed of cells that are bounded by a set

p
of general simple polygons (i.e., non intersecting, without holes, potential concave, and possibly non-
lanar). We distinguish between rectilinear, structured, and unstructured grids [Speray and Ken-

.
T
non 1990]. Rectilinear grids are composed of a set of connected cells of rectangular prism (brick) shape

he set of voxels completely tessellates a rectangular cartesian sub-space. Imposing a requirements on the
-

c
voxels to be homogeneous rectangular prisms yields the regular grids which are very common in biomedi
al applications when scanning resolutions are unequal in all dimensions. Imposing a restriction on the

voxels to be cubical yields the cartesian grids which are the most common volumes.

Structured grid, commonly found in Computational Fluid Dynamic (CFD) applications, result from
A

s
applying non-linear transformation to a rectilinear grid, yielding a grid composed of hexahedral voxels.
tructured grid is not necessarily convex and may have holes, but we assume it is connected. When the

e
c
grids do not have an implicit neighborhood (connectivity) information, like in the previous grid types, w
all it an unstructured grid. In the general case, each cell can be an arbitrary polyhedra, however, in this

paper we restrict our discussion to unstructured grids composed of tetrahedral cells.

One major advantage of tetrahedral grids is that the faces of voxels are simple convex and planar

o
polygons (triangles) and the basic cell is always convex. Dealing with the various types of tetrahedra is an
rder of magnitude easier that figuring out all configurations of even hexahedral cells [Williams 1992a],



g
not the mention arbitrary polyhedra. Another major advantage of a tetrahedral grid is that other types of
rids can be converted to it. Structured grids can very easily be converted into tetrahedral grids. One way

-
d
is to convert each hexahedra into 5 tetrahedra, however this is not a uniform division which may intro
uce the cracking problem [Shirley and Tuchman 1990]. We either have to coherently divide each cell

a
according to the way we divided its neighbors or alternatively we could divide the hexahedra uniformly
long each axis, yielding 12 tetrahedra , or uniformly along all axes, yielding 24 tetrahedra. General

t
unstructured grids can also be converted into tetrahedral grid by applying some tetrahedration algorithm to
he set of grid points. (e.g., a Delaunay triangulation) [Max, Hanrahan, and Crawfis 1990].

r
t

The most obvious way to render irregular grids is to re-sample them into a regular grid and rende
hem with available methods. One way of re-sampling is to send rays and save the samples in a 3D

.
I
buffer. Another possibility is to intersect the irregular grid with the boxes that comprise the regular grid
n each box, compute the size of the volumes (partially) residing inside the box, and compose a weighted

-
f
sum of their contribution. Note that this time consuming re-sampling process has to be done very care
ully in order to maintain data integrity and quality. In many applications, cells vastly vary in their size;

,
t
maintaining the resolution of the smallest cells may require an impractical regular grid resolution. Finally
he re-sampling process has to be repeated for most changes in the viewing parameters (definitely for

zoom-in and probably for eye position also).

Direct rendering methods have been developed to render irregular volumes. These methods can be
a

s
classified as object order or image order. Object order methods traverses and enumerates all voxels of
olid and determines, for each voxel, the affected pixels on a screen. Image order techniques, on the other

e
hand, scans the screen elements and determine, for each pixel, which voxels of a solid affect it. There
xist also some methods that combine the two traversal schemes into a hybrid approach as described later.

c
The algorithm described in this paper belongs to the hybrid category. Since we deal with voxel objects we
all the first approach voxel-space, and conversely we call the second pixel-space approach.

7.1. Voxel-Space Methods

Voxel-space methods are also called projective or feed-forward methods. The viewing transformation
h

i
matrix is applied to all voxels (enumerated in some order), thus providing an intermediate volume whic
s then projected to a two dimensional screen. These methods rely on three basic operations:

(
(i) Transformation of the voxel vertices from object to image space.
ii) Sorting the transformed voxels in depth order.

.(iii) Rendering each voxel in a back-to-front or front-to-back order

Phase (i) implementation is straight forward but phase (ii) poses some major difficulties. In general,

c
it is not always possible to sort even a collection of tetrahedral cells and certainly not arbitrary (possibly
oncave) polyhedra. Only acyclic meshes and tetrahedral meshes generated by Delaunay triangulation can

-
c
be depth sorted. Max et al [Max, Hanrahan, and Crawfis 1990] have presented a topological sort for acy
lic grids composed of convex polyhedra with planar faces (see also [Williams 1992a]). Phase (iii) can

g
e
also be implemented various ways. One way is to render only the front faces of the tetrahedra, assignin
ach vertex with the integrated value from that vertex to the back of the tetrahedra [Shirley and Tuch-

i
man 1990]. Alternatively, front and back faces of the tetrahedra are rendered separately and the value is
ntegrated between the far and near points [Max, Hanrahan, and Crawfis 1990]. Finally, splatting can be

[
employed [Williams 1992b]. An alternative not yet explored is the extension of the V-buffer algorithm
Upson and Keeler 1988] to polyhedral cells. In this method each transformed cell is intersected by a

t
plane defined by each screen scan-line. The resulting polygon is divided into spans in which integration
akes place. We propose a similar technique that intersects the whole transformed mesh with planes that

are parallel to the screen.

The major advantage of the voxel based approach is that many operations can be performed by
e

r
available graphics hardware. Vertex transformation (i) can be done by graphics hardware as well as som
endering operations [Shirley and Tuchman 1990]. Additionally, voxel-based methods tend to run faster

than pixel-based methods. However, this approach suffers from few advantages; first is that the whole



process have to be repeated since unlike rectilinear grids the sorting (phase ii) is view dependent. A more

a
serious difficulty is that the sort operation can be applied only to limited types of grids as mentioned
bove. We present an algorithm that overcomes this last difficulty.

7.2. Pixel-Space Methods

Pixel-based method, also called, backward-feed methods or ray-casting have been adapted for
r

g
rendering volumes [Brewster et al. 1984, Levoy 1988]. These methods have been applied to irregula
rids [Garrity 1990] in an algorithm that casts ray(s) from each screen-pixel. For each ray the algorithm

(
performs:
i) Find the first cell the ray intersect.

t
(
(ii) Searches between the cell neighbors for the exit poin
iii) Between the entry and exit points, sample and interpolating values, and compose them with the

(
cumulative ray value.
iv) Unless it is the last voxel along the ray, use the exit point as the entry point to the next cell and

return to step (ii).

This approach suffers from several difficulties. First, the calculation of (i) as well as the determina-

p
tion if a cell is last (step (iv)) in the case of non convex grid can be very difficult and time consuming. A
ossible solution is to embed the boundary cells in a regular space-subdivision grid [Garrity 1990]. A

d
i
major difficulty in the pixel-space approach that in order to perform step (ii) efficiently neighborhoo
nformation is required. For unstructured grid, the algorithm must be preceded, therefore, by a process that

p
associates with each cell information regarding its neighbors. Quality of images is low due to point sam-
ling in both image and object spaces. We may completely miss small cells or cells that fit between rays

-
s
in perspective viewing. A possible direction for research will explore methods for rendering cylinder
haped (or cone-shaped in perspective) rays rather than rays that simulate lines. Finally, pixel-space

7

rendering is expected to be slow, specially when phase (ii) involves sampling in arbitrarily shaped voxels.

.3. Hybrid Methods

Hybrid Methods have been investigated [Upson and Keeler 1988]. In these methods the volumes are
.

E
traversed in object order. The contribution of a set of voxels to a pixel is then computed in image order

ach transformed cell is intersected by a plane defined by each screen scan-line. The resulting polygon is
-

l
divided into spans in which integration takes place. This methods was extended to investigated for irregu
ar grids by [Giertsen 1992]. Recently [Yagel et al. 1996], we introduced an efficient method for render-

v
ing unstructured grids that is based on incremental slicing and hardware polygon rendering. For a given
iew direction, the grid vertices are transformed to image space using available graphics hardware. We

,
p
then incrementally compute the 2D polygon-meshes that result from letting a set of equidistant planes
arallel to the screen plane, intersect (slice) the transformed grid. Finally, we use the graphics hardware to

o
p
render (interpolate-fill) the polygon-meshes and composite them in a front-to-back order. This method als
rovides adaptive control and progressive image generation.

s
a
The resulting polygon is divided into spans in which integration takes place. As in [6], our approach i
lso based on incremental slicing; however, our method can employ available rendering hardware to

e
r
achieve interactive rendering, is not sensitive to image resolution, and supports adaptive and progressiv
endering.
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