
IVEE: An Information Visualization &
Exploration Environment

Christopher Ahlberg & Erik Wistrand

Department of Computer Science and SSKKII
Chalmers University of Technology

S-412 96 Göteborg
Phone: +46 31 772 5410

Email: {ahlberg,wistrand}@cs.chalmers.se

To be published in Proceedings of IEEE Viz’95

SSKKII
c/o Department of Linguistics

Göteborg University
S-412 96 Göteborg

Sweden

IVEE: An Information Visualization &
Exploration Environment

Christopher Ahlberg & Erik Wistrand

Department of Computer Science and SSKKII
Chalmers University of Technology

S-412 96 Göteborg
Phone: +46 31 772 5410

Email: {ahlberg,wistrand}@cs.chalmers.se

Abstract
The Information Visualization and Exploration Environ-

ment (IVEE) is a system for automatic creation of dynamic
queries applications. IVEE imports database relations and
automatically creates environments holding visualizations
and query devices. IVEE offers multiple visualizations such
as maps and starfields, and multiple query devices, such as
sliders, alphasliders, and toggles. Arbitrary graphical
objects can be attached to database objects in visualiza-
tions. Multiple visualizations may be active simultaneously.
Users can interactively lay out and change between types of
query devices. Users may retrieve details-on-demand by
clicking on visualization objects. An HTML file may be pro-
vided along with the database, specifying how details-on-
demand information should be presented, allowing for pre-
sentation of multimedia information in database objects.
Finally, multiple IVEE clients running on separate worksta-
tions on a network can communicate by letting one user´s
actions affect the visualization in an another IVEE client.

1 Introduction
The cognitive load while performing information

retrieval tasks is usually high. Finding the right query
formulation which will deliver a query result with high
result precision is cognitively difficult. The benefit of static
visualizations of data sets has long been known,
visualizations of for example demographic, geographic, and
economic data sets are commonplace today [25][9].
Allowing users to incrementally control animated
visualizations of databases, queries, and query results can
minimize the mental effort needed for:

• Finding the right query formulations
• Grasping relations between queries and query results
• Judging relations between individual query results.

Benefits of animated visualizations partially stem from
the fact that we can perform many perceptual tasks such as
detection of patterns and anomalies in pictures with little
conscious mental effort. Not until recently has the use of
these remarkable perceptual abilities found its way into
information retrieval systems [7][1][12][19].

Visual representations of databases allows for
presentation of many more database elements in single
screens than traditional text based methods. This in turn

allows for overviews in a way which is not possible with text
based query systems. A visualization might present
thousands of elements in one single screen, while a text
based system is limited to the magnitude of tens of elements.

1.1 Dynamic queries
Dynamic queries is a concept for information

exploration and database querying [1], defined as:

”a user controlled animated visualization of a query
process, including databases, queries, and query results.”

Using dynamic queries, users manipulate query devices
(e.g. rangesliders, toggles, and alphasliders) of various
kinds to construct queries to incrementally update (with near
immediate updates) a visualization of the current query
result. Users might increase the value of a query parameter
to see how the increase affects the size (recall) of the result
set. The relevance (precision) of the result set can be judged
quickly from the color of the visualization objects (i.e. the
result set), or from the location of the result set in the
visualization (indicating for example geographic proximity
or some other high level semantic property). Users might
also manipulate query devices to explore trends and patterns
in data, or to detect anomalies. This is usually done by
manipulating for example a rangeslider to observe if
excluding a certain part of a query range correlates with
visualization objects disappearing in some particular
pattern. The power of dynamic queries compared to other
query methods, such as form fill-in and natural language has
been confirmed in controlled experiments [1][27].

1.2 Other visual query techniques
The Information Visualizer from Xerox Parc utilizes

visualizations such as Cone Trees and the Perspective Wall
[16][18]. 3D visualizations allow users to detect clusters in
data sets and search for information in context of the whole
database. Hjemmeet.al [12] presents the LyberWorld
system which holds a visualization controlling a full text
retrieval process, partially based on Cone Trees. They
emphasize the use of visualizations for perceiving hidden
information carried by relations in complex data structures.
Spoerri [22] introduced the InfoCrystal, with a visualization
of the subresults from a complex query, and their relations
to the query terms. By inspecting the visualization, users can
quickly judge the relevance of the subqueries. Other

let users start working directly with their high level
exploration tasks.

Users of IVEE may use the tool at different levels:

• IVEE is used to explore a data set only using the
standard visualizations (starfields) and the
automatically created query devices.

• IVEE is used with modified visualizations and query
devices, with the configuration provided along with
the database (possibly created by another user).

• IVEE is used both to explore a data set and to
interactively update visualizations (attaching graphical
objects to database objects, varying color schemes)
and query devices (changing query devices used for
database querying, changing the layout).

IVEE examines the data in a user specified relation and
classifies it into datatypes (integers and strings) and size
(total number of values held in the attribute and number of
distinct values held in the attribute). The data is stored in an
internal IVEE database object (Figure 2). Attributes are
stored as straightforward vectors, with multiple indexing to
increase performance for various search tasks.

The user interface of IVEE holds two main components,
a query area holding a number of query devices (right area
in Figure 3) and a visualization area (left area in Figure 3),
holding a number of visualization. These user interface
objects are reflected in the architecture of IVEE in Figure 2.
Notice that IVEE can hold several instantiations of
visualizations, databases, and query areas.

Figure 2: The IVEE architecture.

3 Visualizations in IVEE
Another design goal for IVEE has been to provide users

with a rich collection of visualizations. Ours and many
others’ work on interactive visualization seem to point to
that successful visualization environments does not depend
on one single powerful visualization, quite contrary a whole
smörgåsbord of visualizations appropriate for various tasks
and datatypes is closer to a successful solution. Our
approach depends on a simple, yet powerful architecture. To
each object in a database relation a (possibly user defined)
graphical object is attached. This graphical object may be a
simple point of light or square as used in starfield
visualizations [2], a glyph from a predefined library to
create visualizations like those in [21], or arbitrary graphical

Database

User input

Communication
HandlerAnimation

Control

Query-
Center

Networked
clients Visualization

interesting examples of visualization systems are XGobi
[23] and the AT&T Data Visualization Sliders [11].

1.3 Dynamic queries examples
A number of interesting prototype dynamic queries

applications has been built for experimental purposes, such
as a dynamic periodic table [1] and a dynamic homefinder
[27]. These prototypes depended on domain specific
visualizations such as geographic maps and the periodic
table of elements. The FilmFinder [2] extended the scope of
dynamic queries by introducing the starfield display where
two ordinal variables from a database relation are plotted
against each other and used as an interactive visualization.

Figure 1: The FilmFinder dynamic queries prototype [2].

2 IVEE
Today, a form fill-in module is provided with most

commercial database management systems (DBMS). The
form fill-in module allows users to easily create forms for
both entering data into and querying a database. Similar to a
form fill-in module, a dynamic queries system could be
provided with a DBMS. The dynamic queries system would
allow for automatic creation of a visual query environment
from a database relation.

The Information Visualization and Exploration
Environment (IVEE) is an attempt at such a system1. IVEE
can automatically create dynamic queries environments
holding query devices and visualizations (Figure 3). IVEE
imports relations with named attributes, given on a
straightforward text format. The relations might originate
from database systems such as Oracle or spreadsheet
programs such as Microsoft Excel.

An important challenge for us was to design IVEE so
that users could get started with their visualization and
exploration tasks with as little effort as possible. Obviously
this is a generic goal for most software developed today.
However, visualization software is often quite complex and
requires users to go through many steps before the actual
exploration process can start. We want to demonstrate how
a visualization system can be designed to automate the task
of creating both visualizations and manipulation objects and

1. IVEE is available from ftp.cs.chalmers.se:/pub/IVEE. See also
the WWW-page http://www.cs.chalmers.se/SSKKII/ivee.html

objects in two or three dimensions to create full-fledged
interactive visualizations of objects such as buildings,
airplanes, or abstract objects such as Cone Trees [18] and
Tree-maps [14]. In the spirit of our goal to make IVEE easy
to get started with, users can start by specifying nothing
about polygons connected to database objects at all. This
will associate a square with each object. When user defined
polygons are specified this is done by providing them in a
file along with the database. The file might contain one
unique graphical object for each database object or a smaller
number of polygons and a mapping from database objects to
graphical objects. For a database of cars, motorcycles, and
trucks three complex graphical objects might be specified,
one for each type of database object.

To achieve the high performance graphics necessary for
dynamic queries and interactive 2 and 3D graphics, IVEE
utilizes an animation loop which adapts rendering strategies
to the current performance of the computer and user
behavior. Examples of rendering approximations are:

• Render objects at a lower resolution.
• Render shaded objects as wireframe models.
• Skip textual labels.
• Do not fully redraw the screen while performing

expensive queries.
• Store multiple views of the same graphical object.

IVEE offers a number of visualizations where the basic
one is the starfield [2]. A starfield is an interactive
scatterplot with additional features for zooming, panning,
details-on-demand, etc. Two ordinal variables from a
database relation are chosen as the axes in the starfield
(Figure 4).

The power of the starfield as a visualization of complex
databases is that it allows for displaying a large number of
database objects in one single screen. Each object is
represented by a small graphical object which can be coded

by color, brightness, shape, size, etc. The spatial location of
an element can effectively encode two properties of a
database object. The starfield provides important qualities
of visualizations such as:

• The overview provides starting points for search.
• Query results may be presented in the context of the

full database.
• Query result relevance can be judged quickly.
• Trends and anomalies can be explored effectively.
• Feedback can be provided continuously during queries.
• Works for many datasets.

Figure 4: Starfield visualization of the same environmental
database as in Figure 3. Users can zoom, pan, query, select-
details-on-demand and interactively change the attributes
that are visualized in the starfield.

Figure 3: Example of a dynamic queries environment created with IVEE, in this case an environmental database browser.
Users can browse and query a database of thousands of measurements of heavy metals in Sweden.

In addition to allowing each database object be
associated with a square in a starfield, IVEE supplies users
with several other possibilities for coding properties of
database objects into the starfield. Visualization elements
can be colored using two different schemes – users might
associate database values of an attribute with either:

• Colors of different hues (blue, yellow, red, etc.) which
is useful for coding nominal attributes.

• Colors of the same hue, but shifting in brightness
which is useful for coding continuous attributes.

When utilizing the latter scheme, users can specify a
certain part of the range of an attribute to be colored
differently – useful for indicating for example objects with
values in the top 5% range. Users can also associate glyphs
from a predefined library to nominal attribute values which
can effectively complement the use of color.

3.1 Geographic visualizations
The immediate extension of the starfield is to provide a

background map which can be used to create geographic
visualizations. IVEE users can specify such a visualization
context by providing background objects holding a number
of polygons defining an appropriate background.
Background objects are not attached to any database object.

Background objects might be geographic maps, but may
also very well be a structural drawing of a house. An
important property of geographic visualizations compared
to for example starfields is that they provide important and
often well-known context for the presentation of query
results. As background objects as well as other graphic
objects are provided on a vector format, arbitrary zooming
can be performed smoothly.

3.2 Other visualizations
So far, the visualizations described have not utilized the

possibility of associating arbitrary polygons with database
objects. An interesting example where this can be used is
node and link diagrams. Similarly to how a geographic map
is specified, users can specify a layout of nodes and links,
and each graphical object is associated with a database
object. By manipulating query devices (elaborated below),
users can select nodes of certain types, links for which an
associated value is within a given range, etc.

This is not an ideal way of creating node and link
diagrams. However, we do think it shows how the simple
yet powerful way of associating database objects with
complex polygons can be used to create interesting
visualizations. Similar visualizations which can be created
with IVEE are for example Tree-maps and Cone Trees.
Hierarchy visualizations are widespread and we plan to
incorporate functionality for handling those more smoothly.

Yet another class of visualizations that can be created are
those depending on complex three dimensional objects. In
Figure 5 a schematic visualization of a part of the computer
science department at Chalmers University of Technology
is presented – used in a dynamic queries interface for
searching for persons in the department. Background
objects as described above make up the outer structure of the
building and employees (database objects) are represented

by their offices. Manipulating query devices will grey out
those rooms not fulfilling the search criteria and allows for
detection of trends such as how professors with high salaries
are more often located in the top of the building!

Figure 5: Dynamic queries interface created with IVEE,
allowing users to browse some of the employees of the
computer science department at Chalmers. Each box in the
visualization corresponds to an office of a member of the
staff in the department.

3.3 Multiple visualization areas
IVEE allows multiple visualizations to be created

simultaneously, and when the query devices are
manipulated all the visualizations are updated interactively,
allowing for powerful exploration of data. Examples of how
this might be used is described in [10]. Users might observe
a cluster of points in a starfield. When zooming into the
cluster a geographic map is updated next to the starfield,
where the same points can be observed to all be situated in
the same geographic region.

Further, users might activate more than one page of
visualizations simultaneously. A notebook similar system
with tab buttons (similar to the ones in Microsoft Windows
and Motif) is used. By pushing the”New Visualization”
button, a new visualization area is created and the old one
stored in the background (Figure 6).

3.4 Visualization manipulation
Users can perform a number of operations on the

starfield:

• Zooming
• 3D manipulation
• Panning
• Filtering
• Selection of details-on-demand

In this section zooming, 3D manipulation, and panning
is discussed. Filtering and details-on-demand will be
discussed below. Zooming is performed either with the
mouse buttons (second mouse button to zoom in and third
mouse button to zoom out) or the zoom bars (Figure 6)[13].
Manipulating the zoom bar on either the X or the Y axis of
the visualization will either increase or decrease the size of
the area in view, i.e. zooming is performed in either of the

dimensions. Mouse button zooming allows for zooming in
both dimensions simultaneously, while the zoom bars are
appropriate for zooming each dimension separately.

Both zooming methods are useful, the former for
example when there is an obvious spatial relation in the
visualization which should be preserved, such as in a
geographic map, and the latter when no such spatial relation
exists, for example in a scatterplot. By dragging the area
between the sliderthumbs in the zoom bars, users can pan
the visualization without changing the zoom rate.

To rotate a 3D visualization users manipulate two sliders
(Figure 6) to rotate the view around each of the X and Y
spatial dimensions, similar to the slider approach described
in [8]. Zooming in 3D is performed with the mouse buttons,
as described above. However, the zoom bars are not enabled
when manipulating a 3D visualization, as there is no direct
mapping from a 2D range to a perspective view with the eye
placed at an arbitrary viewpoint.

4 QUERY DEVICES IN IVEE
Based on the classification of the user specified relation

IVEE selects query devices for each attribute. Query
devices are selected from rangesliders, alphasliders [3], and
toggles (all shown in context in Figure 6). Simple rules
decide which query devices are assigned to which attributes.
For example, for a string attribute with more than 10 distinct
items, an alphaslider is selected, otherwise a group of
toggles with a toggle for each distinct item is selected (of
course, the threshold 10 can be changed). For integers and
reals, rangesliders are selected, unless only 10 distinct items
exist in the attribute – then a group of toggles is selected.

A different strategy would be to allow users to manually
select which widget to use for each attribute. However,
while this strategy might lead to better specifications of
query environments, it would be to cumbersome for large
databases with many attributes. Also, users can change the
widget used for an attribute interactively while exploring a
database. This is performed by activating a menu attached to
the query device currently used for the attribute (Figure 6).
From the same menu users can move the query device up,
down, to the top, and to the bottom of the query area.
Regrouping widgets in another order than the one provided
implicitly by the order of the attributes in the database
relation is quite useful, especially for relations with a large
number of attributes.

4.1 Rangesliders
Rangesliders are useful for selecting range criteria for

integer attributes and other attributes with an order relation
(Figure 6). The rangeslider provides a natural representation
of the query it is representing, i.e. a range query. Increasing
or decreasing the range of an attribute allows for powerful
exploration of trends and anomalies. Rangesliders are also
very effective for relaxation of query parameters when the
result set can be observed immediately in a visualization.

4.2 Alphasliders
The alphaslider is a widget for selecting items from long

lists of for example strings [3]. The rationale behind the
alphaslider is its small size - it allows for selection from lists

of thousands of elements in a small screen area Figure 6.
Screen area is precious in a visual query system where most
screen space should be used for the visualization of data.
The alphaslider can not only be used for selection of specific
strings, it is also very useful for browsing categorical
variables while observing the query result set in a
visualization. For example in the FilmFinder [2] this could
be used for browsing the directors attributes while observing
result sets showing up in the upper corner of the display,
indicating films to be new and popular.

4.3 Toggles
Toggles are the last of the widgets currently used for

query formulation in IVEE (Figure 6). Toggles are useful
when only a few alternatives exist for an attribute and these
alternatives should be presented on the screen explicitly.
Users may select multiple values for an attribute with a
group of toggles.

4.4 Query evaluation and tight coupling
Queries are composed from the conjunction of all the

query components defined by the query devices. Query
devices in their initial state let through all database objects,
i.e. they do not affect the result of the query. Manipulating a
device immediately affects not only the visualization, but
also the other query devices – the query mechanism is
tightly coupled [4]. A query device manipulation restricts
the query range of the other query devices to only include
criteria existing in the remaining elements of the database.
This useful for two purposes:

• To guide querying when searching for specific
elements in the database – for example after having
selected Ingemar Bergman with the director slider for
a film database only actresses appearing in an Ingemar
Bergman film will be selectable with the actresses
slider.

• To facilitate browsing of categorical variables. A
typical use of the alphaslider is to browse a categorical
variable, such as sample number for a statistical data
set. After having selected a subset of the samples with
some other query device, users can browse the samples
– without looking at the alphaslider – and focus on the
visualization. When an interesting pattern is found in
the visualization users can look at the alphaslider to
find out the identification of the particular sample.
This strategy is not nearly as useful if most of the
alternatives on slider cause an empty visualization, i.e.
an empty query result.

5 Details-on-demand
Equally important to users being provided with effective

overviews of data is that they are able to retrieve full and
rich descriptions of specific database elements. Only
showing details when they are requested is instrumental for
the concept of dynamic queries. To draw the objects in for
example a starfield visualization only requires IVEE to
access two or three attributes in each potentially very large
database object. IVEE users select details-on-demand by
clicking on a visualization object with the left mouse button

(Figure 6). Upon moving the mouse cursor over a selectable
object feedback is provided indicating its selectability. In
addition to the ”ordinary” data in a database object
consisting of integers, reals, and strings, IVEE can hold file
pointers to multimedia objects, such as images, speech,
video, etc., on standard formats such as GIF and MPEG.

IVEE has a predefined approach to presenting data in
database objects when they are selected. However, users can
create much richer presentations by providing a HTML-
based formatting document. IVEE utilizes the public
domain HTML-widget in the NCSA Mosaic distribution.
Along with a database, users may supply a file like the one
in Figure 7. This is the standard HTML format, except for
the placeholders indicating where database attribute values
should be filled in. The placeholders consist of a ´#´
character followed by the attribute name. The HTML file
may contain pointers to images, sound, video, and other
local HTML files.

<head>
<title>Film description</title>
<body>
<h1>#Title</h1>

 Category: #Subject
 The film is #Length minutes long
 #Actor makes a great appearance
 #Actress is as beautiful as ever
 The great director is #Director
 Popularity: #Popularity
 Did it get an award? #Awards

Figure 7: HTML description of the details-on-demand
window in Figure 6.

Being able to receive details-on-demand is not only
important for examining individual database objects, it is
also useful as a starting point for search. The overview
provided by for example a starfield helps users overview
potentially very large amounts of data. However, a
complementary approach to starting a search from the
overview is to start with a specific database object which
might have been found in the visualization or by initially
specifying a strict set of criteria leaving one or a few objects
selected. This approach has the advantage of not
overloading users with a large abstract set of complex data.
Instead they can apply their knowledge of one specific
element [26].

IVEE allows for this approach to searching through the
details-on-demand popup-window. Users can click with the
left mouse button on any of the boldface texts in the
window, and thereby setting the value of the appropriate
query device to the marked value.

6 Multiple databases
The initial assumption of IVEE is that the database

consists of one single relation. For databases consisting of
several relations this constraint can sometimes be overcome
by creating a universal relation which allows a whole set of
relations to be regarded as one single relation [15].
However, this approach is not always ideal, and accordingly
users can load several database relations (sharing at least
two attributes which can be visualized) simultaneously into
IVEE. Each relation is given its own dedicated set of query
devices, and each attribute of relation is given its own
dedicated query device – i.e. IVEE does not attempt to join
similar attributes which appear in several relations
(although this might in some cases be useful).

ToggleboxActivated query device
configuration menu

Starfield

Details-on-demand
window

Zoom bar Visualization tabs RangesliderAlphaslider

Rotation-
slider

Figure 6: Reproduction of the FilmFinder in [2], created with IVEE.

Allowing several database relations to share the same
manipulable visualization creates a powerful external
representation for tasks such as the matching of objects in
the respective relations. A good example is two relations,
one holding job opportunities and one holding job
applicants. Both might be visualized in for example a map
or a starfield, and users (e.g. job agency employees) can
manipulate query devices for both relations to find
reasonable subsets and then visually scan the visualization
to find matching opportunities/applicants.

7 Distributed exploring
In many interesting application areas for systems such as

IVEE there are many people interested in the same data set.
Above the task of matching of jobs and skills was
mentioned, an other example might be analysis of nearly
any statistical data set. Unless these people are at the same
site, or even in the same corridor, they are most likely to run
into the situation of having to discuss querying and analysis
of their data set over the telephone. For the job/skill
matching situation which we have examined extensively, a
common situation is that employment agency employees
have to discuss cases (persons, jobs) over the phone with
their colleagues [24]. The traditional text based system
currently used does not offer any help for this situation.

IVEE allows several persons to visualize and explore the
same data set simultaneously. By starting several (at least
two) clients of IVEE, loaded with the same database, and
then requesting these to be connected through a UNIX
socket (Figure 2), several users can manipulate the same
visualization. Each client is responsible for the actual
visualization and the corresponding local database, but
operations such as querying, zooming, details-on-demand,
etc., are distributed to all other connect clients. Only
transmitting user actions and not actual query results allow
this approach to be possible even without a high speed
connection. The scheme allows several people to share a
common view of a data set while communicating over a
traditional communication system, e.g. the telephone.
Currently we have only a rough implementation of socket
communication between IVEE clients and many problems
remain to be solved such as how several cursors can be
managed, what to do when two users simultaneously
perform contradicting actions, etc.

8 FUTURE WORK
We plan to continue to develop IVEE, and extend its

functionality with for example:

• More query devices. The existing ones can be
extended in functionality, but new ones need to be
introduced to cover other kinds of queries than those
described above.

• More types of visualizations. Hierarchies of various
kinds are common and a large number of hierarchy
visualizations exists. We want to extend the support in
IVEE for those.

• Arbitrary boolean combinations of query components.
Currently the query mechanism only supports
AND:ing of all query components. For some situations

it would be meaningful to be able to create more
complex queries.

• Visualization wizard. Users of IVEE are faced with a
large number of choices for visualization configuration
parameters (today manipulated in a popup window).
We would like to battle this problem by introducing a
visualization wizard similar to the graph wizard in
Microsoft Excel which can provide structure.

• Our current HTML document support does not extend
to communication with world wide web (WWW)
servers beyond our own department. If such
functionality was introduced, IVEE could be an
excellent base for visualization and interaction with
the WWW.

• An obvious constraint on a tool such as IVEE is the
size of the database it can handle. IVEE can currently
handle a database consisting of 5000-6000 objects
with some 10-15 attributes each running on a SGI Indy
100MHz machine. A necessary area of further research
is to explore datastructures for pushing this to 50-
100’000 objects.

• Another typical problem in a tool based on scatterplots
for displaying data is overlapping points which hold
exactly the same X and Y values in the display.

9 CONCLUSIONS
IVEE is an interactive visualization and query system

based on the concept of dynamic queries. The IVEE
architecture is based on the simple concept of attaching
more or less complex graphical objects to database objects
in visualizations. Graphical objects might be simple colored
points of light, glyphs selected from a predefined library, or
arbitrary sets of polygons in two and three dimensions. This
allows IVEE users to fairly easily import database relations
and create complex visualizations. The visualizations can be
interactively queries, filtered, zoomed, and panned.

A major research area for our group right now is to look
at how dynamic queries techniques can be utilized in the
situation of matching jobs and skills. IVEE has allowed us
rapidly prototype dynamic queries interfaces for evaluating
visualizations for this job/skill matching application
(starfields, geographic maps, and text output) and explore
techniques for guiding query composition in direct
manipulation systems [4].

Other applications of IVEE have been to create a
visualization system for exploring data on spoken language,
used by researchers in linguistics [6], and a system for
browsing environmental data – as shown in Figure 3. The
Human-Computer Interaction Laboratory at University of
Maryland are currently using IVEE for their projects.

We believe that it is instrumental for work on
visualization and information exploration to be close to end-
users and real applications. New technology such as large
high resolution screens, fast graphics, new input devices,
and high capacity network connections makes large
promises for exiting information visualization applications.
Working with end-users and their problems helps us find
meaningful use of these new technologies and also helps us
push our own creativity further.

10 ACKNOWLEDGEMENTS
This work was in part supported by NUTEK, grant no:

5321-93-2760, and Arbetsmiljöfonden, grant no: 94-0525.
The authors want to thank Staffan Truvé, Jens Allwood,

and Johan Hagman for fruitful discussions during the
development of IVEE. Ann Rose and Catherine Plaisant at
the HCIL, University of Maryland, has provided us with
valuable comments and proposals sprung out of their use of
IVEE. We also want to thank Ben Shneiderman for
continued support and encouragement in the work with
dynamic queries.

REFERENCES
[1] Ahlberg, C., Williamson, C., Shneiderman, B.

(1992), Dynamic Queries for Information
Exploration: An Implementation and Evaluation.
Proceedings ACM CHI'92: Human Factors in
Comp. Systems, pages 619-626. Also in
Shneiderman, B. (Ed.), Sparks of Innovation in
Human-Computer Interaction, Ablex, Norwood,
N.J, 1993.

[2] Ahlberg, C., Shneiderman, B. (1994), Visual
Information Seeking: Tight Coupling of Dynamic
Query Filters with Starfield Displays.Proceedings
ACM CHI'94: Human Factors in Comp. Systems,
pages 313-317. Also in Baecker, R., Grudin J.,
Buxton, W., and Greenberg, S.,Readings in Human-
Computer Interaction: Toward the Year 2000 (2nd
Edition), Morgan Kaufmann Publishers, San
Francisco, CA, 1994.

[3] Ahlberg, C., Shneiderman, B. (1994), The
Alphaslider: A Compact and Rapid Selector.
Proceedings ACM CHI'94: Human Factors in
Comp. Systems, pages 365-371.

[4] Ahlberg, C., Truvé, S. (1995),Tight Coupling:
Guiding User Actions in a Direct Manipulation
Based Information Retrieval System, Proceedings of
EHCI’95: Engineering for Human-Computer
Interaction, C. Unger, ed., IFIP Transactions series,
Chapman & Hall.

[5] Ahlberg, C., Wistrand, E. (1995), IVEE: An
Environment for Automatic Creation of Dynamic
Queries Applications,Proceedings of ACM CHI’95:
Human Factors in Comp. Systems.

[6] Allwood, J., Ahlberg, C. (1995), Visualizing Spoken
Interaction,Proceedings of the 15th Scandinavian
Conference of Linguistics, Oslo University.

[7] Card, S., Robertson, G., Mackinlay, J. (1991), The
Information Visualizer, an Information Workspace,
Proceedings ACM CHI'91: Human Factors in
Comp. Systems, pages 181-188.

[8] Chen, M., Mountford, J., Sellen, A. (1988), A Study
in Interactive 3-D Rotation Using 2-D Control
Devices,Proceedings ACM SIGGRAPH’88, pages
121-129.

[9] Cleveland, W. (1994), The Elements of Graphing
Data, Hobart Press, Summit N.J. 297 pages.

[10] Cleveland, W. (1993), Visualizing Data, Hobart
Press, Summit N.J., 360 pages.

[11] Eick, S. (1994), Data Visualization Sliders,
Proceedings ACM SIGGRAPH Symposium on User
Interface Software and Technology’94 proceedings.

[12] Hemmje, M., Kunkel, C., Willet, A. (1993),
LyberWorld – A Visualization User Interface
Supporting Fulltext Retrieval,Proceedings ACM
SIGIR’93 Conference, pages 249-257.

[13] Jog, N and Shneiderman, B. (1994), Interactive
Smooth Zooming of an Information Visualization.
Technical report CAR-TR-714, CS-TR-3286, ISR-
TR-94-94, University of Maryland.

[14] Johnson, B., Shneiderman, B. (1991), Tree-maps: A
Space-Filling Approach to the Visualization of
Hierarchical Information Structures,Proceedings
IEEE Visualization’91, pages 284-291.

[15] Kim, H., Korth, H., Silberschatz, A. (1988),
PICASSO: A Graphical Query Language,Software
– Practice and Experience, Vol 18(3), 169-203.

[16] Mackinlay, J., Robertson, G., Card, S. (1991), The
Perspective Wall: Detail and Context Smoothly
Integrated,Proceedings of ACM CHI'91: Human
Factors in Computing Systems, pages 173-179.

[17] Robertson, G., Card, S., Mackinlay, J. (1989), The
Cognitive Coprocessor Architecture for Interactive
User Interfaces, Proceedings of the ACM
SIGGRAPH Symposium on User Interface Software
and Technology’89, pages 10-18.

[18] Robertson, G., Mackinlay, J., Card, S. (1991) Cone
Trees: Animated 3D Visualizations of Hierarchical
Information,Proceedings of ACM CHI'91: Human
Factors in Computing Systems, pages 189-194.

[19] Robertson, G., Card, S., and Mackinlay, J. (1993),
Information Visualization Using 3-D Interactive
Animation, Communications of the ACM 36, 4,
pages 56-71.

[20] Shneiderman, B. (1994), Dynamic Queries for
Visual Information Seeking, IEEE Software
(November 1994).

[21] Smith, S., Bergeron, D., Grinstein, G. (1990),
Stereophonic and Surface Sound Generation for
Exploratory Data Analysis,Proceedings of ACM
CHI’90 Conference on Human Factors in
Computing Systems, pages 125-132.

[22] Spoerri, A. (1993), InfoCrystal: A visual tool for
information retrieval & management, Proceedings
ACM Conference on Information & Knowledge
Management’93, Washington D.C.

[23] Swayne, D. F., Cook, D., Buja, A. (1992), User's
Manual for XGobi, a Dynamic Graphics Program
for Data Analysis, Bellcore Technical
Memorandum.

[24] Thomée, S., Allwood, C-M. (1995), Usability and
database search at employment agencies, forth-
coming SSKKII Technical Report, Göteborg
University, Sweden.

[25] Tufte, E. (1983),The Visual Display of Quantitative
Information, Graphics Press, Cheshire, Connecticut,
pages 197.

[26] Williams, M. (1984), What makes RABBIT run?
International Journal of Man-Machine Studies 21,
pages 333-352.

[27] Williamson, C., Shneiderman, B. (1992), The
Dynamic HomeFinder: Evaluating dynamic queries
in a real-estate information exploration system,
Proceedings ACM SIGIR’92 Conference, pages
339-346, 1992.

ToggleboxActivated query device
configuration menu

Starfield

Details-on-demand
window

Zoom bar Visualization tabs RangesliderAlphaslider

Rotation-
slider

 Ahlberg & Wistrand, Figure 6: Reproduction of the FilmFinder in [2], created with IVEE.

 Ahlberg & Wistrand, Figure 5: Dynamic queries interface created with IVEE, allowing users to browse some of
the employees of the computer science department at Chalmers.

IVEE: An Information Visualization &
Exploration Environment

Christopher Ahlberg & Erik Wistrand

Department of Computer Science and SSKKII
Chalmers University of Technology

S-412 96 Göteborg
Phone: +46 31 772 5410

Email: {ahlberg,wistrand}@cs.chalmers.se

To be published in Proceedings of IEEE Viz’95

SSKKII
c/o Department of Linguistics

Göteborg University
S-412 96 Göteborg

Sweden

IVEE: An Information Visualization &
Exploration Environment

Christopher Ahlberg & Erik Wistrand

Department of Computer Science and SSKKII
Chalmers University of Technology

S-412 96 Göteborg
Phone: +46 31 772 5410

Email: {ahlberg,wistrand}@cs.chalmers.se

Abstract
The Information Visualization and Exploration Environ-

ment (IVEE) is a system for automatic creation of dynamic
queries applications. IVEE imports database relations and
automatically creates environments holding visualizations
and query devices. IVEE offers multiple visualizations such
as maps and starfields, and multiple query devices, such as
sliders, alphasliders, and toggles. Arbitrary graphical
objects can be attached to database objects in visualiza-
tions. Multiple visualizations may be active simultaneously.
Users can interactively lay out and change between types of
query devices. Users may retrieve details-on-demand by
clicking on visualization objects. An HTML file may be pro-
vided along with the database, specifying how details-on-
demand information should be presented, allowing for pre-
sentation of multimedia information in database objects.
Finally, multiple IVEE clients running on separate worksta-
tions on a network can communicate by letting one user´s
actions affect the visualization in an another IVEE client.

1 Introduction
The cognitive load while performing information

retrieval tasks is usually high. Finding the right query
formulation which will deliver a query result with high
result precision is cognitively difficult. The benefit of static
visualizations of data sets has long been known,
visualizations of for example demographic, geographic, and
economic data sets are commonplace today [25][9].
Allowing users to incrementally control animated
visualizations of databases, queries, and query results can
minimize the mental effort needed for:

• Finding the right query formulations
• Grasping relations between queries and query results
• Judging relations between individual query results.

Benefits of animated visualizations partially stem from
the fact that we can perform many perceptual tasks such as
detection of patterns and anomalies in pictures with little
conscious mental effort. Not until recently has the use of
these remarkable perceptual abilities found its way into
information retrieval systems [7][1][12][19].

Visual representations of databases allows for
presentation of many more database elements in single
screens than traditional text based methods. This in turn

allows for overviews in a way which is not possible with text
based query systems. A visualization might present
thousands of elements in one single screen, while a text
based system is limited to the magnitude of tens of elements.

1.1 Dynamic queries
Dynamic queries is a concept for information

exploration and database querying [1], defined as:

”a user controlled animated visualization of a query
process, including databases, queries, and query results.”

Using dynamic queries, users manipulate query devices
(e.g. rangesliders, toggles, and alphasliders) of various
kinds to construct queries to incrementally update (with near
immediate updates) a visualization of the current query
result. Users might increase the value of a query parameter
to see how the increase affects the size (recall) of the result
set. The relevance (precision) of the result set can be judged
quickly from the color of the visualization objects (i.e. the
result set), or from the location of the result set in the
visualization (indicating for example geographic proximity
or some other high level semantic property). Users might
also manipulate query devices to explore trends and patterns
in data, or to detect anomalies. This is usually done by
manipulating for example a rangeslider to observe if
excluding a certain part of a query range correlates with
visualization objects disappearing in some particular
pattern. The power of dynamic queries compared to other
query methods, such as form fill-in and natural language has
been confirmed in controlled experiments [1][27].

1.2 Other visual query techniques
The Information Visualizer from Xerox Parc utilizes

visualizations such as Cone Trees and the Perspective Wall
[16][18]. 3D visualizations allow users to detect clusters in
data sets and search for information in context of the whole
database. Hjemmeet.al [12] presents the LyberWorld
system which holds a visualization controlling a full text
retrieval process, partially based on Cone Trees. They
emphasize the use of visualizations for perceiving hidden
information carried by relations in complex data structures.
Spoerri [22] introduced the InfoCrystal, with a visualization
of the subresults from a complex query, and their relations
to the query terms. By inspecting the visualization, users can
quickly judge the relevance of the subqueries. Other

let users start working directly with their high level
exploration tasks.

Users of IVEE may use the tool at different levels:

• IVEE is used to explore a data set only using the
standard visualizations (starfields) and the
automatically created query devices.

• IVEE is used with modified visualizations and query
devices, with the configuration provided along with
the database (possibly created by another user).

• IVEE is used both to explore a data set and to
interactively update visualizations (attaching graphical
objects to database objects, varying color schemes)
and query devices (changing query devices used for
database querying, changing the layout).

IVEE examines the data in a user specified relation and
classifies it into datatypes (integers and strings) and size
(total number of values held in the attribute and number of
distinct values held in the attribute). The data is stored in an
internal IVEE database object (Figure 2). Attributes are
stored as straightforward vectors, with multiple indexing to
increase performance for various search tasks.

The user interface of IVEE holds two main components,
a query area holding a number of query devices (right area
in Figure 3) and a visualization area (left area in Figure 3),
holding a number of visualization. These user interface
objects are reflected in the architecture of IVEE in Figure 2.
Notice that IVEE can hold several instantiations of
visualizations, databases, and query areas.

Figure 2: The IVEE architecture.

3 Visualizations in IVEE
Another design goal for IVEE has been to provide users

with a rich collection of visualizations. Ours and many
others’ work on interactive visualization seem to point to
that successful visualization environments does not depend
on one single powerful visualization, quite contrary a whole
smörgåsbord of visualizations appropriate for various tasks
and datatypes is closer to a successful solution. Our
approach depends on a simple, yet powerful architecture. To
each object in a database relation a (possibly user defined)
graphical object is attached. This graphical object may be a
simple point of light or square as used in starfield
visualizations [2], a glyph from a predefined library to
create visualizations like those in [21], or arbitrary graphical

Database

User input

Communication
HandlerAnimation

Control

Query-
Center

Networked
clients Visualization

interesting examples of visualization systems are XGobi
[23] and the AT&T Data Visualization Sliders [11].

1.3 Dynamic queries examples
A number of interesting prototype dynamic queries

applications has been built for experimental purposes, such
as a dynamic periodic table [1] and a dynamic homefinder
[27]. These prototypes depended on domain specific
visualizations such as geographic maps and the periodic
table of elements. The FilmFinder [2] extended the scope of
dynamic queries by introducing the starfield display where
two ordinal variables from a database relation are plotted
against each other and used as an interactive visualization.

Figure 1: The FilmFinder dynamic queries prototype [2].

2 IVEE
Today, a form fill-in module is provided with most

commercial database management systems (DBMS). The
form fill-in module allows users to easily create forms for
both entering data into and querying a database. Similar to a
form fill-in module, a dynamic queries system could be
provided with a DBMS. The dynamic queries system would
allow for automatic creation of a visual query environment
from a database relation.

The Information Visualization and Exploration
Environment (IVEE) is an attempt at such a system1. IVEE
can automatically create dynamic queries environments
holding query devices and visualizations (Figure 3). IVEE
imports relations with named attributes, given on a
straightforward text format. The relations might originate
from database systems such as Oracle or spreadsheet
programs such as Microsoft Excel.

An important challenge for us was to design IVEE so
that users could get started with their visualization and
exploration tasks with as little effort as possible. Obviously
this is a generic goal for most software developed today.
However, visualization software is often quite complex and
requires users to go through many steps before the actual
exploration process can start. We want to demonstrate how
a visualization system can be designed to automate the task
of creating both visualizations and manipulation objects and

1. IVEE is available from ftp.cs.chalmers.se:/pub/IVEE. See also
the WWW-page http://www.cs.chalmers.se/SSKKII/ivee.html

objects in two or three dimensions to create full-fledged
interactive visualizations of objects such as buildings,
airplanes, or abstract objects such as Cone Trees [18] and
Tree-maps [14]. In the spirit of our goal to make IVEE easy
to get started with, users can start by specifying nothing
about polygons connected to database objects at all. This
will associate a square with each object. When user defined
polygons are specified this is done by providing them in a
file along with the database. The file might contain one
unique graphical object for each database object or a smaller
number of polygons and a mapping from database objects to
graphical objects. For a database of cars, motorcycles, and
trucks three complex graphical objects might be specified,
one for each type of database object.

To achieve the high performance graphics necessary for
dynamic queries and interactive 2 and 3D graphics, IVEE
utilizes an animation loop which adapts rendering strategies
to the current performance of the computer and user
behavior. Examples of rendering approximations are:

• Render objects at a lower resolution.
• Render shaded objects as wireframe models.
• Skip textual labels.
• Do not fully redraw the screen while performing

expensive queries.
• Store multiple views of the same graphical object.

IVEE offers a number of visualizations where the basic
one is the starfield [2]. A starfield is an interactive
scatterplot with additional features for zooming, panning,
details-on-demand, etc. Two ordinal variables from a
database relation are chosen as the axes in the starfield
(Figure 4).

The power of the starfield as a visualization of complex
databases is that it allows for displaying a large number of
database objects in one single screen. Each object is
represented by a small graphical object which can be coded

by color, brightness, shape, size, etc. The spatial location of
an element can effectively encode two properties of a
database object. The starfield provides important qualities
of visualizations such as:

• The overview provides starting points for search.
• Query results may be presented in the context of the

full database.
• Query result relevance can be judged quickly.
• Trends and anomalies can be explored effectively.
• Feedback can be provided continuously during queries.
• Works for many datasets.

Figure 4: Starfield visualization of the same environmental
database as in Figure 3. Users can zoom, pan, query, select-
details-on-demand and interactively change the attributes
that are visualized in the starfield.

Figure 3: Example of a dynamic queries environment created with IVEE, in this case an environmental database browser.
Users can browse and query a database of thousands of measurements of heavy metals in Sweden.

In addition to allowing each database object be
associated with a square in a starfield, IVEE supplies users
with several other possibilities for coding properties of
database objects into the starfield. Visualization elements
can be colored using two different schemes – users might
associate database values of an attribute with either:

• Colors of different hues (blue, yellow, red, etc.) which
is useful for coding nominal attributes.

• Colors of the same hue, but shifting in brightness
which is useful for coding continuous attributes.

When utilizing the latter scheme, users can specify a
certain part of the range of an attribute to be colored
differently – useful for indicating for example objects with
values in the top 5% range. Users can also associate glyphs
from a predefined library to nominal attribute values which
can effectively complement the use of color.

3.1 Geographic visualizations
The immediate extension of the starfield is to provide a

background map which can be used to create geographic
visualizations. IVEE users can specify such a visualization
context by providing background objects holding a number
of polygons defining an appropriate background.
Background objects are not attached to any database object.

Background objects might be geographic maps, but may
also very well be a structural drawing of a house. An
important property of geographic visualizations compared
to for example starfields is that they provide important and
often well-known context for the presentation of query
results. As background objects as well as other graphic
objects are provided on a vector format, arbitrary zooming
can be performed smoothly.

3.2 Other visualizations
So far, the visualizations described have not utilized the

possibility of associating arbitrary polygons with database
objects. An interesting example where this can be used is
node and link diagrams. Similarly to how a geographic map
is specified, users can specify a layout of nodes and links,
and each graphical object is associated with a database
object. By manipulating query devices (elaborated below),
users can select nodes of certain types, links for which an
associated value is within a given range, etc.

This is not an ideal way of creating node and link
diagrams. However, we do think it shows how the simple
yet powerful way of associating database objects with
complex polygons can be used to create interesting
visualizations. Similar visualizations which can be created
with IVEE are for example Tree-maps and Cone Trees.
Hierarchy visualizations are widespread and we plan to
incorporate functionality for handling those more smoothly.

Yet another class of visualizations that can be created are
those depending on complex three dimensional objects. In
Figure 5 a schematic visualization of a part of the computer
science department at Chalmers University of Technology
is presented – used in a dynamic queries interface for
searching for persons in the department. Background
objects as described above make up the outer structure of the
building and employees (database objects) are represented

by their offices. Manipulating query devices will grey out
those rooms not fulfilling the search criteria and allows for
detection of trends such as how professors with high salaries
are more often located in the top of the building!

Figure 5: Dynamic queries interface created with IVEE,
allowing users to browse some of the employees of the
computer science department at Chalmers. Each box in the
visualization corresponds to an office of a member of the
staff in the department.

3.3 Multiple visualization areas
IVEE allows multiple visualizations to be created

simultaneously, and when the query devices are
manipulated all the visualizations are updated interactively,
allowing for powerful exploration of data. Examples of how
this might be used is described in [10]. Users might observe
a cluster of points in a starfield. When zooming into the
cluster a geographic map is updated next to the starfield,
where the same points can be observed to all be situated in
the same geographic region.

Further, users might activate more than one page of
visualizations simultaneously. A notebook similar system
with tab buttons (similar to the ones in Microsoft Windows
and Motif) is used. By pushing the”New Visualization”
button, a new visualization area is created and the old one
stored in the background (Figure 6).

3.4 Visualization manipulation
Users can perform a number of operations on the

starfield:

• Zooming
• 3D manipulation
• Panning
• Filtering
• Selection of details-on-demand

In this section zooming, 3D manipulation, and panning
is discussed. Filtering and details-on-demand will be
discussed below. Zooming is performed either with the
mouse buttons (second mouse button to zoom in and third
mouse button to zoom out) or the zoom bars (Figure 6)[13].
Manipulating the zoom bar on either the X or the Y axis of
the visualization will either increase or decrease the size of
the area in view, i.e. zooming is performed in either of the

dimensions. Mouse button zooming allows for zooming in
both dimensions simultaneously, while the zoom bars are
appropriate for zooming each dimension separately.

Both zooming methods are useful, the former for
example when there is an obvious spatial relation in the
visualization which should be preserved, such as in a
geographic map, and the latter when no such spatial relation
exists, for example in a scatterplot. By dragging the area
between the sliderthumbs in the zoom bars, users can pan
the visualization without changing the zoom rate.

To rotate a 3D visualization users manipulate two sliders
(Figure 6) to rotate the view around each of the X and Y
spatial dimensions, similar to the slider approach described
in [8]. Zooming in 3D is performed with the mouse buttons,
as described above. However, the zoom bars are not enabled
when manipulating a 3D visualization, as there is no direct
mapping from a 2D range to a perspective view with the eye
placed at an arbitrary viewpoint.

4 QUERY DEVICES IN IVEE
Based on the classification of the user specified relation

IVEE selects query devices for each attribute. Query
devices are selected from rangesliders, alphasliders [3], and
toggles (all shown in context in Figure 6). Simple rules
decide which query devices are assigned to which attributes.
For example, for a string attribute with more than 10 distinct
items, an alphaslider is selected, otherwise a group of
toggles with a toggle for each distinct item is selected (of
course, the threshold 10 can be changed). For integers and
reals, rangesliders are selected, unless only 10 distinct items
exist in the attribute – then a group of toggles is selected.

A different strategy would be to allow users to manually
select which widget to use for each attribute. However,
while this strategy might lead to better specifications of
query environments, it would be to cumbersome for large
databases with many attributes. Also, users can change the
widget used for an attribute interactively while exploring a
database. This is performed by activating a menu attached to
the query device currently used for the attribute (Figure 6).
From the same menu users can move the query device up,
down, to the top, and to the bottom of the query area.
Regrouping widgets in another order than the one provided
implicitly by the order of the attributes in the database
relation is quite useful, especially for relations with a large
number of attributes.

4.1 Rangesliders
Rangesliders are useful for selecting range criteria for

integer attributes and other attributes with an order relation
(Figure 6). The rangeslider provides a natural representation
of the query it is representing, i.e. a range query. Increasing
or decreasing the range of an attribute allows for powerful
exploration of trends and anomalies. Rangesliders are also
very effective for relaxation of query parameters when the
result set can be observed immediately in a visualization.

4.2 Alphasliders
The alphaslider is a widget for selecting items from long

lists of for example strings [3]. The rationale behind the
alphaslider is its small size - it allows for selection from lists

of thousands of elements in a small screen area Figure 6.
Screen area is precious in a visual query system where most
screen space should be used for the visualization of data.
The alphaslider can not only be used for selection of specific
strings, it is also very useful for browsing categorical
variables while observing the query result set in a
visualization. For example in the FilmFinder [2] this could
be used for browsing the directors attributes while observing
result sets showing up in the upper corner of the display,
indicating films to be new and popular.

4.3 Toggles
Toggles are the last of the widgets currently used for

query formulation in IVEE (Figure 6). Toggles are useful
when only a few alternatives exist for an attribute and these
alternatives should be presented on the screen explicitly.
Users may select multiple values for an attribute with a
group of toggles.

4.4 Query evaluation and tight coupling
Queries are composed from the conjunction of all the

query components defined by the query devices. Query
devices in their initial state let through all database objects,
i.e. they do not affect the result of the query. Manipulating a
device immediately affects not only the visualization, but
also the other query devices – the query mechanism is
tightly coupled [4]. A query device manipulation restricts
the query range of the other query devices to only include
criteria existing in the remaining elements of the database.
This useful for two purposes:

• To guide querying when searching for specific
elements in the database – for example after having
selected Ingemar Bergman with the director slider for
a film database only actresses appearing in an Ingemar
Bergman film will be selectable with the actresses
slider.

• To facilitate browsing of categorical variables. A
typical use of the alphaslider is to browse a categorical
variable, such as sample number for a statistical data
set. After having selected a subset of the samples with
some other query device, users can browse the samples
– without looking at the alphaslider – and focus on the
visualization. When an interesting pattern is found in
the visualization users can look at the alphaslider to
find out the identification of the particular sample.
This strategy is not nearly as useful if most of the
alternatives on slider cause an empty visualization, i.e.
an empty query result.

5 Details-on-demand
Equally important to users being provided with effective

overviews of data is that they are able to retrieve full and
rich descriptions of specific database elements. Only
showing details when they are requested is instrumental for
the concept of dynamic queries. To draw the objects in for
example a starfield visualization only requires IVEE to
access two or three attributes in each potentially very large
database object. IVEE users select details-on-demand by
clicking on a visualization object with the left mouse button

(Figure 6). Upon moving the mouse cursor over a selectable
object feedback is provided indicating its selectability. In
addition to the ”ordinary” data in a database object
consisting of integers, reals, and strings, IVEE can hold file
pointers to multimedia objects, such as images, speech,
video, etc., on standard formats such as GIF and MPEG.

IVEE has a predefined approach to presenting data in
database objects when they are selected. However, users can
create much richer presentations by providing a HTML-
based formatting document. IVEE utilizes the public
domain HTML-widget in the NCSA Mosaic distribution.
Along with a database, users may supply a file like the one
in Figure 7. This is the standard HTML format, except for
the placeholders indicating where database attribute values
should be filled in. The placeholders consist of a ´#´
character followed by the attribute name. The HTML file
may contain pointers to images, sound, video, and other
local HTML files.

<head>
<title>Film description</title>
<body>
<h1>#Title</h1>

 Category: #Subject
 The film is #Length minutes long
 #Actor makes a great appearance
 #Actress is as beautiful as ever
 The great director is #Director
 Popularity: #Popularity
 Did it get an award? #Awards

Figure 7: HTML description of the details-on-demand
window in Figure 6.

Being able to receive details-on-demand is not only
important for examining individual database objects, it is
also useful as a starting point for search. The overview
provided by for example a starfield helps users overview
potentially very large amounts of data. However, a
complementary approach to starting a search from the
overview is to start with a specific database object which
might have been found in the visualization or by initially
specifying a strict set of criteria leaving one or a few objects
selected. This approach has the advantage of not
overloading users with a large abstract set of complex data.
Instead they can apply their knowledge of one specific
element [26].

IVEE allows for this approach to searching through the
details-on-demand popup-window. Users can click with the
left mouse button on any of the boldface texts in the
window, and thereby setting the value of the appropriate
query device to the marked value.

6 Multiple databases
The initial assumption of IVEE is that the database

consists of one single relation. For databases consisting of
several relations this constraint can sometimes be overcome
by creating a universal relation which allows a whole set of
relations to be regarded as one single relation [15].
However, this approach is not always ideal, and accordingly
users can load several database relations (sharing at least
two attributes which can be visualized) simultaneously into
IVEE. Each relation is given its own dedicated set of query
devices, and each attribute of relation is given its own
dedicated query device – i.e. IVEE does not attempt to join
similar attributes which appear in several relations
(although this might in some cases be useful).

ToggleboxActivated query device
configuration menu

Starfield

Details-on-demand
window

Zoom bar Visualization tabs RangesliderAlphaslider

Rotation-
slider

Figure 6: Reproduction of the FilmFinder in [2], created with IVEE.

Allowing several database relations to share the same
manipulable visualization creates a powerful external
representation for tasks such as the matching of objects in
the respective relations. A good example is two relations,
one holding job opportunities and one holding job
applicants. Both might be visualized in for example a map
or a starfield, and users (e.g. job agency employees) can
manipulate query devices for both relations to find
reasonable subsets and then visually scan the visualization
to find matching opportunities/applicants.

7 Distributed exploring
In many interesting application areas for systems such as

IVEE there are many people interested in the same data set.
Above the task of matching of jobs and skills was
mentioned, an other example might be analysis of nearly
any statistical data set. Unless these people are at the same
site, or even in the same corridor, they are most likely to run
into the situation of having to discuss querying and analysis
of their data set over the telephone. For the job/skill
matching situation which we have examined extensively, a
common situation is that employment agency employees
have to discuss cases (persons, jobs) over the phone with
their colleagues [24]. The traditional text based system
currently used does not offer any help for this situation.

IVEE allows several persons to visualize and explore the
same data set simultaneously. By starting several (at least
two) clients of IVEE, loaded with the same database, and
then requesting these to be connected through a UNIX
socket (Figure 2), several users can manipulate the same
visualization. Each client is responsible for the actual
visualization and the corresponding local database, but
operations such as querying, zooming, details-on-demand,
etc., are distributed to all other connect clients. Only
transmitting user actions and not actual query results allow
this approach to be possible even without a high speed
connection. The scheme allows several people to share a
common view of a data set while communicating over a
traditional communication system, e.g. the telephone.
Currently we have only a rough implementation of socket
communication between IVEE clients and many problems
remain to be solved such as how several cursors can be
managed, what to do when two users simultaneously
perform contradicting actions, etc.

8 FUTURE WORK
We plan to continue to develop IVEE, and extend its

functionality with for example:

• More query devices. The existing ones can be
extended in functionality, but new ones need to be
introduced to cover other kinds of queries than those
described above.

• More types of visualizations. Hierarchies of various
kinds are common and a large number of hierarchy
visualizations exists. We want to extend the support in
IVEE for those.

• Arbitrary boolean combinations of query components.
Currently the query mechanism only supports
AND:ing of all query components. For some situations

it would be meaningful to be able to create more
complex queries.

• Visualization wizard. Users of IVEE are faced with a
large number of choices for visualization configuration
parameters (today manipulated in a popup window).
We would like to battle this problem by introducing a
visualization wizard similar to the graph wizard in
Microsoft Excel which can provide structure.

• Our current HTML document support does not extend
to communication with world wide web (WWW)
servers beyond our own department. If such
functionality was introduced, IVEE could be an
excellent base for visualization and interaction with
the WWW.

• An obvious constraint on a tool such as IVEE is the
size of the database it can handle. IVEE can currently
handle a database consisting of 5000-6000 objects
with some 10-15 attributes each running on a SGI Indy
100MHz machine. A necessary area of further research
is to explore datastructures for pushing this to 50-
100’000 objects.

• Another typical problem in a tool based on scatterplots
for displaying data is overlapping points which hold
exactly the same X and Y values in the display.

9 CONCLUSIONS
IVEE is an interactive visualization and query system

based on the concept of dynamic queries. The IVEE
architecture is based on the simple concept of attaching
more or less complex graphical objects to database objects
in visualizations. Graphical objects might be simple colored
points of light, glyphs selected from a predefined library, or
arbitrary sets of polygons in two and three dimensions. This
allows IVEE users to fairly easily import database relations
and create complex visualizations. The visualizations can be
interactively queries, filtered, zoomed, and panned.

A major research area for our group right now is to look
at how dynamic queries techniques can be utilized in the
situation of matching jobs and skills. IVEE has allowed us
rapidly prototype dynamic queries interfaces for evaluating
visualizations for this job/skill matching application
(starfields, geographic maps, and text output) and explore
techniques for guiding query composition in direct
manipulation systems [4].

Other applications of IVEE have been to create a
visualization system for exploring data on spoken language,
used by researchers in linguistics [6], and a system for
browsing environmental data – as shown in Figure 3. The
Human-Computer Interaction Laboratory at University of
Maryland are currently using IVEE for their projects.

We believe that it is instrumental for work on
visualization and information exploration to be close to end-
users and real applications. New technology such as large
high resolution screens, fast graphics, new input devices,
and high capacity network connections makes large
promises for exiting information visualization applications.
Working with end-users and their problems helps us find
meaningful use of these new technologies and also helps us
push our own creativity further.

10 ACKNOWLEDGEMENTS
This work was in part supported by NUTEK, grant no:

5321-93-2760, and Arbetsmiljöfonden, grant no: 94-0525.
The authors want to thank Staffan Truvé, Jens Allwood,

and Johan Hagman for fruitful discussions during the
development of IVEE. Ann Rose and Catherine Plaisant at
the HCIL, University of Maryland, has provided us with
valuable comments and proposals sprung out of their use of
IVEE. We also want to thank Ben Shneiderman for
continued support and encouragement in the work with
dynamic queries.

REFERENCES
[1] Ahlberg, C., Williamson, C., Shneiderman, B.

(1992), Dynamic Queries for Information
Exploration: An Implementation and Evaluation.
Proceedings ACM CHI'92: Human Factors in
Comp. Systems, pages 619-626. Also in
Shneiderman, B. (Ed.), Sparks of Innovation in
Human-Computer Interaction, Ablex, Norwood,
N.J, 1993.

[2] Ahlberg, C., Shneiderman, B. (1994), Visual
Information Seeking: Tight Coupling of Dynamic
Query Filters with Starfield Displays.Proceedings
ACM CHI'94: Human Factors in Comp. Systems,
pages 313-317. Also in Baecker, R., Grudin J.,
Buxton, W., and Greenberg, S.,Readings in Human-
Computer Interaction: Toward the Year 2000 (2nd
Edition), Morgan Kaufmann Publishers, San
Francisco, CA, 1994.

[3] Ahlberg, C., Shneiderman, B. (1994), The
Alphaslider: A Compact and Rapid Selector.
Proceedings ACM CHI'94: Human Factors in
Comp. Systems, pages 365-371.

[4] Ahlberg, C., Truvé, S. (1995),Tight Coupling:
Guiding User Actions in a Direct Manipulation
Based Information Retrieval System, Proceedings of
EHCI’95: Engineering for Human-Computer
Interaction, C. Unger, ed., IFIP Transactions series,
Chapman & Hall.

[5] Ahlberg, C., Wistrand, E. (1995), IVEE: An
Environment for Automatic Creation of Dynamic
Queries Applications,Proceedings of ACM CHI’95:
Human Factors in Comp. Systems.

[6] Allwood, J., Ahlberg, C. (1995), Visualizing Spoken
Interaction,Proceedings of the 15th Scandinavian
Conference of Linguistics, Oslo University.

[7] Card, S., Robertson, G., Mackinlay, J. (1991), The
Information Visualizer, an Information Workspace,
Proceedings ACM CHI'91: Human Factors in
Comp. Systems, pages 181-188.

[8] Chen, M., Mountford, J., Sellen, A. (1988), A Study
in Interactive 3-D Rotation Using 2-D Control
Devices,Proceedings ACM SIGGRAPH’88, pages
121-129.

[9] Cleveland, W. (1994), The Elements of Graphing
Data, Hobart Press, Summit N.J. 297 pages.

[10] Cleveland, W. (1993), Visualizing Data, Hobart
Press, Summit N.J., 360 pages.

[11] Eick, S. (1994), Data Visualization Sliders,
Proceedings ACM SIGGRAPH Symposium on User
Interface Software and Technology’94 proceedings.

[12] Hemmje, M., Kunkel, C., Willet, A. (1993),
LyberWorld – A Visualization User Interface
Supporting Fulltext Retrieval,Proceedings ACM
SIGIR’93 Conference, pages 249-257.

[13] Jog, N and Shneiderman, B. (1994), Interactive
Smooth Zooming of an Information Visualization.
Technical report CAR-TR-714, CS-TR-3286, ISR-
TR-94-94, University of Maryland.

[14] Johnson, B., Shneiderman, B. (1991), Tree-maps: A
Space-Filling Approach to the Visualization of
Hierarchical Information Structures,Proceedings
IEEE Visualization’91, pages 284-291.

[15] Kim, H., Korth, H., Silberschatz, A. (1988),
PICASSO: A Graphical Query Language,Software
– Practice and Experience, Vol 18(3), 169-203.

[16] Mackinlay, J., Robertson, G., Card, S. (1991), The
Perspective Wall: Detail and Context Smoothly
Integrated,Proceedings of ACM CHI'91: Human
Factors in Computing Systems, pages 173-179.

[17] Robertson, G., Card, S., Mackinlay, J. (1989), The
Cognitive Coprocessor Architecture for Interactive
User Interfaces, Proceedings of the ACM
SIGGRAPH Symposium on User Interface Software
and Technology’89, pages 10-18.

[18] Robertson, G., Mackinlay, J., Card, S. (1991) Cone
Trees: Animated 3D Visualizations of Hierarchical
Information,Proceedings of ACM CHI'91: Human
Factors in Computing Systems, pages 189-194.

[19] Robertson, G., Card, S., and Mackinlay, J. (1993),
Information Visualization Using 3-D Interactive
Animation, Communications of the ACM 36, 4,
pages 56-71.

[20] Shneiderman, B. (1994), Dynamic Queries for
Visual Information Seeking, IEEE Software
(November 1994).

[21] Smith, S., Bergeron, D., Grinstein, G. (1990),
Stereophonic and Surface Sound Generation for
Exploratory Data Analysis,Proceedings of ACM
CHI’90 Conference on Human Factors in
Computing Systems, pages 125-132.

[22] Spoerri, A. (1993), InfoCrystal: A visual tool for
information retrieval & management, Proceedings
ACM Conference on Information & Knowledge
Management’93, Washington D.C.

[23] Swayne, D. F., Cook, D., Buja, A. (1992), User's
Manual for XGobi, a Dynamic Graphics Program
for Data Analysis, Bellcore Technical
Memorandum.

[24] Thomée, S., Allwood, C-M. (1995), Usability and
database search at employment agencies, forth-
coming SSKKII Technical Report, Göteborg
University, Sweden.

[25] Tufte, E. (1983),The Visual Display of Quantitative
Information, Graphics Press, Cheshire, Connecticut,
pages 197.

[26] Williams, M. (1984), What makes RABBIT run?
International Journal of Man-Machine Studies 21,
pages 333-352.

[27] Williamson, C., Shneiderman, B. (1992), The
Dynamic HomeFinder: Evaluating dynamic queries
in a real-estate information exploration system,
Proceedings ACM SIGIR’92 Conference, pages
339-346, 1992.

ToggleboxActivated query device
configuration menu

Starfield

Details-on-demand
window

Zoom bar Visualization tabs RangesliderAlphaslider

Rotation-
slider

 Ahlberg & Wistrand, Figure 6: Reproduction of the FilmFinder in [2], created with IVEE.

 Ahlberg & Wistrand, Figure 5: Dynamic queries interface created with IVEE, allowing users to browse some of
the employees of the computer science department at Chalmers.

