
CPS 216 Spring 2004
Homework #3
Assigned: Thursday, March 18
Due: Tuesday, April 6

Problem 1.

Consider an XML document (from a project called XMark) modeling the data maintained by
an Internet auction site in /home/dbcourse/examples/xml-xmark/auction.xml. The
main entities modeled are: items, persons, open auctions, closed auctions, and categories.

• iteminfo elements describe items that are for sale or that already have been sold.
Each item carries a unique identifier and bears properties like payment method (credit
card, money order, etc.), a reference to the seller, a description, etc., all encoded as
subelements. Each item belongs to a world region represented by the iteminfo’s
parent.

• Open auctions are auctions in progress. Their properties include the bid history (i.e.,
increases over time) along with references to the bidders, a reference to the seller, a
reference to the iteminfo being sold, etc.

• Closed auctions are auctions that are finished. Their properties include references to
the seller and the buyer, a reference to the respective iteminfo, the price, the
quantity of items sold, etc.

• Persons are characterized by name, email address, phone number, mail address, profile
of their interests, a set of open auctions they watch, etc.

• Categories feature a name and a description; they are used to implement classification
of items. A category graph links categories into a network.

The figure below illustrates the part of the document structure that is relevant to the problem:
site

regions people open_auctions closed_auctions

{africa,asia,...}

iteminfo

description

address

name

street

person

name

city country

zipcode

open_auction

bidder itemref seller

date

time personref

increase

initial

closed_auction

itemref

seller buyer

price

incategory

Fire up QuiP’s GUI and type in the following query
<result>{
 document("/home/dbcourse/examples/xml-xmark/auction.xml")
}</result>
to get an overview of the document. Please refer to the document “XML Programming Notes”
on the course Web site for instructions on running QuiP.

Write queries in XQuery to answer the following questions. You may test your queries in
QuiP’s GUI, but please use the batch mode to generate the output to turn in. Because QuiP
does not have a sophisticated optimizer, query performance may be heavily influenced by the
way you write your queries. If a particular query takes forever to run, consider reordering
loops and evaluating selections (filters) as early as possible.

For each question below, say (a), write your XQuery in a file named hw3-1-a.xquery, and
generate the output file hw3-1-a.xml by running quip hw3-1-a.xquery > hw3-1-
a.xml. Turn in printout of all your .xquery and output .xml files. If the output file is too
long, print out only the first page of the output.

(a) Find names of all items in “namerica” region.
(b) Find names of all items that belong to “category0.”
(c) Find names of all persons whose address is in “United States.”
(d) Find all buyers who paid for more than $50 in a closed auction. (Note: To get this

query working, you might want to consult the “QuiPified” XQuery examples
presented in lecture, which can be downloaded from the course Web site under the
“Lecture Notes” section.)

(e) Find names of all person who has bidden in an open auction for an item whose name
contains the string “cow.” (Note: To use the XPath built-in function contains() in
QuiP, you need to convert any node argument to a string explicitly, e.g.,
contains(string(name), “cow”).)

(f) Find names of all persons with address in “United States” who never bought
anything in closed auctions.

(g) For each open auction whose seller's name is “Venkatavasu Takano,” print out the
following information:
<open_auction id=“...”>
 <bidders total_number=“...”>
 <bidder_name>...</bidder_name>
 <bidder_name>...</bidder_name>
 ...
 </bidders>
</open_auction>

Problem 2.

Consider an XML document describing a thesaurus (from http://zthes.z3950.org/) in
/home/dbcourse/examples/xml-zthes/thatt.xml. The XML document contains a list
of terms. Each term has a list of relations with other terms. For example, the following excerpt
from thatt.xml means that the term INFORMATION ECONOMICS is related to terms
INFORMATION, INFORMATION INDUSTRY, INFORMATION SYSTEMS, and INFORMATION
THEORY:
<term>
 <termId>663</termId>
 <termName>INFORMATION ECONOMICS</termName>
 <termType>NT</termType>

 <relation>
 <relationType>BT</relationType>
 <termId>662</termId>
 <termName>INFORMATION</termName>
 </relation>
 <relation>
 <relationType>RT</relationType>
 <termId>664</termId>
 <termName>INFORMATION INDUSTRY</termName>
 </relation>
 <relation>
 <relationType>RT</relationType>
 <termId>666</termId>
 <termName>INFORMATION SYSTEMS</termName>
 </relation>
 <relation>
 <relationType>RT</relationType>
 <termId>667</termId>
 <termName>INFORMATION THEORY</termName>
 </relation>
</term>
The DTD for thatt.xml is thatt.dtd, in the same directory. The DTD contains more
detailed information on the structure and meaning of thatt.xml.

(a) Notice that thatt.xml contains lots of redundancy. Within a relation element, the
termId subelement specifies the id of the related term and termName specifies the
name of the related term. However, using the value of termId, we can find the term
element for the related term and look up its termName. Therefore, it is redundant to
store termName under relation.

To remove this redundancy, and to capture the constraint that a relation’s termId
must be a valid reference to some term’s termId, we have designed a new DTD in
thatt-new.dtd. The idea is to make the termId of a term an attribute of type ID,
and the termId of a relation an attribute of type IDREF. For example, the term
element for INFORMATION ECONOMICS would be reformatted as:
<term id="term-663" name="INFORMATION ECONOMICS" type="NT">
 <relation type="BT" term="term-662"/>
 <relation type="RT" term="term-664"/>
 <relation type="RT" term="term-666"/>
 <relation type="RT" term="term-667"/>
</term>

Your job is to write a program to convert thatt.xml into the new format. You have
the following options:

1. Write a Java program using SAX API to perform the conversion.
2. Write a Java program using DOM API to perform the conversion.
3. Write an XQuery to perform the conversion.
4. Write an XSLT program to perform the conversion.

Please refer to the document “XML Programming Notes” on the course Web site for
instructions on how to compile and run these programs and queries. You can test your

code first on a smaller input (thatt-short.xml), and compare it with the sample
output (thatt-new-short.xml). After you are done testing on the small document,
test on thatt.xml, and validate the output with thatt-new.dtd. Instructions on
how to validate an XML document can be found in “XML Programming Notes.”
Validation will automatically check the consistency of all IDREF’s.

You must implement two out of the four options. For each option you implement, turn
in a printout of the source code and the first twenty term elements in the result of
transforming thatt.xml. Show the raw output generated by your code; do not
manually edit the output (other than truncating it for printout).

(b) Design and create a relation schema to store the thesaurus data using the schema-
aware approach discussed in lecture. Your design should not have the redundancy
described in (a). Populate the tables with the data from thatt.xml. You should write
a program or script to convert the data into flat files and import them into DB2. Do
not use individual INSERT statements. The choice of programming/scripting language
and XML API is up to you. Instructions on how to load a DB2 database can be found
in the document “DB2 SQL Programming Notes” on the course Web site; examples
can be found in /home/dbcourse/examples/db-*/ directories.

Turn in the following:

• CREATE TABLE statements you used in creating the relational schema, with
keys and foreign keys properly declared.

• Printout of the program/script you used to generate DB2 data files for loading.
• Printout of the script you used to import data files into DB2.
• Printout of the result of running the following query for each table you have

loaded: SELECT * FROM table FETCH FIRST 10 ROWS ONLY;

