
CPS 216 Spring 2004 
Homework #4 
Assigned: Tuesday, April 13 
Due: Tuesday, April 20 
 
Problem 1. 
 
How many possible plans are there for an n-way join query R1  R2  …  Rn, if we use 
only one type of asymmetric binary join operator in our plans? Your answer should be a 
closed-form or recurrence formula in terms of n. Also, compute your answer for n = 7. 
 
Remember to consider all bushy plans—not just left-deep ones. For example, three possible 
plans for n = 3 are shown below. There are a total of 12 plans for n = 3. 
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Problem 2. 
 
Consider tables R(A, B, C), S(C, D), and T(D, E). Transform the following query into an 
equivalent query that: 

• Contains no cross products; 
• Performs projections and selections as early as possible. 

 
(a) πR.B, S.D, T.E σ(R.A=10) and (R.C = S.C) and (S.D = T.D) and (R.A > T.E) (R × S × T) 

 
Suppose we have the following statistics: 
 

• | R | = 1,000; | πA R | = 1,000; | πB R | = 100; | πC R | = 500; 
• | S | = 5,000; | πC S | = 300; | πD S | = 10; 
• | T | = 4,000; | πD T | = 4,000; | πE T | = 1,500. 

 
Estimate the number of the rows returned by the following queries: 
 

(b) σA=10 R 
(c) σA=10 and B = “Bart” R 
(d) σA=10 or B = “Bart” R 
(e) R  S 
(f) R  S  T 

 
For the following question, further suppose that: 

• Each disk/memory block can hold up to 10 rows; 
• All tables are stored compactly on disk (10 rows per block) in no particular order; 



• No indexes are available; 
• 11 memory blocks are available for query processing. 

 
(g) What is the best execution plan (in terms of number of I/O’s performed) you can come 

up with for the query σR.B = “Bart” and S.D = 100 (R  S)? Describe your plan and show the 
calculation of its I/O cost. 

 
Problem 3. 
 
Consider the following relational schema and SQL query. The database stores information 
about employees, departments, and company finances (organized on a per-department basis). 
 
CREATE TABLE Emp(eid INT NOT NULL PRIMARY KEY, 
                 did INT, salary INT, hobby CHAR(20)); 
CREATE TABLE Dept(did INT NOT NULL PRIMARY KEY, 
                  name CHAR(20), floor INT, phone CHAR(10)); 
CREATE TABLE Finance(did INT NOT NULL PRIMARY KEY, 
                     budget FLOAT, sales FLOAT, expenses FLOAT); 
SELECT d.name, f.budget 
FROM Emp e, Dept d, Finance f 
WHERE e.did = d.did AND d.did = f.did 
AND d.floor = 1 
AND e.salary > 59000 
AND e.hobby = ‘yodeling’; 
 

(a) Identify a logical plan (using relational algebra operators) that reflects the order of 
operations a decent query optimizer would choose. 

(b) List all join orders (i.e., the orders in which pairs of tables are joined to compute the 
query result) considered by a query optimizer that follows the heuristic of considering 
only left-deep plans without cross products. 

(c) Suppose that the following information is available: 
• There are primary (clustering) indexes on all primary keys. 
• There are secondary (non-clustering) indexes on Emp(did), Emp(salary), and 

Dept(floor). 
• There are a total of 50,000 employees and 5,000 departments (each with 

corresponding financial information) in the database. 
• The system’s statistics indicate that employee salaries range from 10,001 to 

60,000 (inclusive), employees enjoy 200 different hobbies, and the company 
has two floors in the building. 

For each of the query’s base tables (Emp, Dept, and Finance), estimate the number of 
rows that would be initially selected if all selection predicates were pushed down as 
much as possible. 

(d) Suppose that the database system has only one join method available—index nested-
loop join. Using the same information in (c), which of the join orders considered by the 
optimizer in (b) has the lowest estimated cost? 

 



Problem 4. 
 
For this problem, you are going to experiment with the query optimizer in IBM DB2. You 
can see the execution plan chosen by the optimizer using the following command in shell: 

dynexpln -d dbcourse -q ”query” -g -t 
Here, query is a string containing the SQL query (with no terminating “;”) that you wish to 
optimize. The output should be fairly self-explanatory. For the questions below, write 
meaningful queries over the system catalog tables including syscat.tables, 
syscat.columns, syscat.indexes, etc. To see what information is available in these 
tables, you can use the describe command: 

db2 “describe select * from table” 
It describes the schema of the specified table. 
 

(a) Write a query for which the optimizer chooses a nested-loop join (NLJOIN). 
(b) Write a query for which the optimizer chooses a sort-merge join (MSJOIN). 
(c) Write a join query involving three tables. Note the join order chosen by the optimizer. 
(d) Write another join query that joins the same three tables as in (c), for which the 

optimizer chooses a join order that is different from the one in (c). You may use 
different selection and join conditions. 

(e) Try several queries involving equality and range selection conditions on 
syscat.tables.tableid. Based on the estimated cardinality of output (found in 
dynexpln output), can you guess whether DB2 has a histogram on this column? If 
not, what is DB2’s strategy for estimating selectivity factors? 

 
For (a)-(d), turn in a script of running dynexpln on these queries. You do not need to run the 
queries themselves. For (e), turn in a short answer. 


