Relational Model & Algebra

CPS 216

Advanced Database Systems

Announcements (January 13)

% Homework # 1 will be assigned on Thursday
< Reading assignment for this week
= Posted on course Web page
= Remember to register on H20 and join Duke CPS216

® Review due on Thursday night

Relational data model

< A database is a collection of relations (or tables)

% Each relation has a list of attributes (or columns)
= Set-valued attributes not allowed

< Each attribute has a domain (or type)

< Each relation contains a set of tuples (or rows)

= Duplicates not allowed

= Simplicity is a virtue!

Example

Student Course
SID [name age |GPA CID title
142 [Bart 10 |2.3 CPS216 [Advanced Database Systems

123 [Milhouse (10 (3.1 CPS230 |Analysis of Algorithms
857 [Lisa 8 4.3 CPS214 |Computer Networks
456 [Ralph |8 [2.3
Enroll
Ordering of rows doesn’t matter ﬁg grl’Zzls Why did Codd call them
(even though the output is 142 |CPS214 “relations”?
always in some order) 123 [cPs216
857 |CPS216
857 |CPS230
456 |CPS214

Schema versus instance

 Schema (metadata)
= Specification of how data is to be structured logically
= Defined at set-up
= Rarely changes
< Instance
= Content
= Changes rapidly, but always conforms to the schema
= Compare to type and object of type in a
programming language

Example

% Schema
= Student (SID integer, name string, age integer, GPA float)
= Course (CID string, title string)
= Enroll (SID integer, CID integer)

< Instance
= { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ...}
= { (CPSZIG, Advanced Database Systems), ool
= { (142, CPS216), (142, CPS214), ...}

Relational algebra operators

% Core set of operators:
= Selection, projection, cross product, union, difference, and
renaming
% Additional, derived operators:

= Join, natural join, intersection, etc.

Selection

< Input: a table R
< Notation: o, (R)
= is called a selection condition/predicate
< Purpose: filter rows according to some criteria

< Output: same columns as R, but only rows of R that
satisfy p

Selection example

% Students with GPA higher than 3.0

Ocpa > 3.0 (Student)

SID [name __Jage [GPA [510 [name —Jage [GPA |

142 |Bart 10
123 |Milhouse |10
857 |Lisa 8
456 [Ralph 8

NEEBERS
W [w |- |w

More on selection

% Selection predicate in general can include any
column of R, constants, comparisons such as =, <,
etc., and Boolean connectives A, V, and —

= Example: straight A students under 18 or over 21
OGPA > 40 A tage < 18V age > 21) (Staudlent)

% But you must be able to evaluate the predicate over

a single row

® Example: student with the highest GPA

Projection

< Input: a table R
< Notation: m; (R)
= L is a list of columns in R
< Purpose: select columns to output

< Output: same rows, but only the columns in L

Projection example

% ID’s and names of all students

51D, name (Stitdent)

SID [name age |GPA SID [name

142 |Bart 10 (2.3 142 |Bart

123 |Milhouse[10 (3.1 123 |Milhouse
857 |Lisa 8 4.3 857 |Lisa

456 |Ralph 8 2o8 456 |Ralph

More on projection

< Duplicate output rows must be removed
= Example: student ages
7 (Student)

age

SID |name age |GPA

142 [Bart 10 (2.3
123 |Milhouse[10 (3.1
857 |Lisa 8 4.3

2:8

456 [Ralph 8

Cross product

< Input: two tables R and §
< Notation: R X §
< Purpose: pairs rows from two tables

< Output: for each row r in R and each row s in §,
output a row 75 (concatenation of 7 and s)

Cross product example

% Student X Enroll

SID |name age |GPA SID [CID

142 [Bart 10 [2.3 142 [cPs216

123 [Milhouse |10 [3.1 142 |cps214
X 123 [CPS216

SID |name age |GPA [SID |CID

142 |Bart 10 |2.3 [142 [CPS216
142 |Bart 10 2.3 |142 |[CPS214
142 |Bart 10 |2.3 [123 |CPS216
123 [Milhouse |10 [3.1 |142 |CPS216
123 |Milhouse |10 [3.1 |142 |CPS214
123 [Milhouse |10 [3.1 |123 |CPS216

A note on column ordering

% The ordering of columns in a table is considered
unimportant (as is the ordering of rows)

SID |name age |[GPA |SID [CID SID [CID SID |name age |GPA
142 |Bart 10 |2.3 |142 |CPS216 142 |CPS216 (142 |Bart 10 2.3
142 |Bart 10 |2.3 [142 [CPS214 142 |CPS214 (142 |Bart 10 |2.3
142 |Bart 10 |2.3 |123 |CPS216| __ (123 |CPS216[142 |Bart 10 |2.3
123 [Milhouse[10 [3.1 [142 |CPS216| ~— [142 |[CPS216[123 |Milhouse|10 |[3.1
123 |Milhouse |10 (3.1 |142 |[CPS214 142 |CPS214[123 |Milhouse|10 |3.1
123 |Milhouse |10 (3.1 |123 |CPS216 123 |CPS216 (123 |Milhouse|10 |3.1

% That means cross product is commutative, i.e.,

Rx§ =58XR forany R and §

Derived operator: join

< Input: two tables R and §
 Notation: R >, §
= is called a join condition/predicate

< Purpose: relate rows from two tables according to
some criteria

< Output: for each row r in R and each row s in §,
output a row 7s if » and s satisfy p

% Shorthand for

Join example

< Info about students, plus CID’s of their courses

Student D451115!@71[,51[) = Enroll SID Enroll

SID |name age |GPA SID |CID
142 |Bart 10 |2.3 142 |CPS216
123 |Milhouse |10 (3.1 >4 142 |CPS214
Student SID = 123 |cPS216
Enroll SID,

SID |name age |GPA [SID |CID
142 |Bart 10 |2.3 [142 |CPS216

142 |CPS214

Milhouse|10 .1 |123 |[CPS216

Derived operator: natural join

< Input: two tables R and §

% Notation: R > §

< Purpose: relate rows from two tables, and
= Enforce equality on all common attributes
= Eliminate one copy of common attributes

< Shorthand for 7, (R >,)

= L is the union of all attributes from R and §, with
duplicates removed

= p equates all attributes common to R and §

Natural join example

< Student >\ Enroll = T, (Student <, Enroll)

= TD, nane, age, GPA, ¢ (SPUANT DA, 1 11> — gy sip Enroll)

SID |name age |GPA SID |CID
142 |Bart 10 2.3 142 |CPS216
123 |Milhouse |10 (3.1 142 |CPS214
> 123 |CPS216
SID |name age |GPA CID
142 |Bart 10 |2.3 CPS216
142 [Bart 10 (2.3 CPS214
123 [Milhouse|10 (3.1 CPS216
21
Union

< Input: two tables R and §
< Notation: RU §

® R and § must have identical schema
< Output:

® Has the same schema as R and §

= Contains all rows in R and all rows in §, with duplicates
eliminated

Difference

< Input: two tables R and §
% Notation: R — §

® R and § must have identical schema
< Output:

® Has the same schema as R and §

= Contains all rows in R that are not found in §

Derived operator: intersection

< Input: two tables R and §
% Notation: RN §

® R and § must have identical schema
% Output:

® Has the same schema as R and §

= Contains all rows that are in both R and §

Renaming

< Input: a table R

% Notation: pg (R), or s, 4, .5 (R)

< Purpose: rename a table and/or its columns

< Output: a renamed table with the same rows as R
< Used to

= Avoid confusion caused by identical column names

= Create identical columns names for natural joins

Renaming example

% SID’s of students who take at least two courses

Summary of core operators

+ Selection: 0, (R)

% Projection: 7, (R)

% Cross product: R X §

% Union: RU S

% Difference: R — §

< Renaming: p g4, 4, ., (R)

= Does not really add to processing power

Summary of derived operators

& Join: R, §
% Natural join: Rp>< S

< Intersection: R N §

< Many more

= Semijoin, anti-semijoin, quotient, ...

An exercise

% CID’s of the courses that Lisa is NOT taking

A trickier exercise

< SID’s of students who take exactly one course

29

Monotone operators

What happens
RelOp B
to the output?
Add more rows

to the input...

< If some old output rows must be removed
® Then the operator is non-monotone
< Otherwise the operator is monotone

® That is, old output rows remain “correct” when more
rows are added to the input

® Formally, R C R’ implies Re/Op(R) C RelOp(R’)

30

Classification of relational operators

% Selection: g,(R) Monotone
< Projection: 7, (R) Monotone

< Cross product: R X § Monotone

% Join: R, § Monotone
% Natural join: R><IS Monotone
% Union: RU S Monotone
% Difference: R — § Non-monotone (not w.r.t. §)

% Intersection: RN § Monotone

32

Why is “—” needed for “exactly one”?

< Composition of monotone operators produces a
monotone query

= Old output rows remain “correct” when more rows are
added to the input

< Exactly-one query is non-monotone
= Say Nelson is currently taking only CPS216
® Add another record to Enroll: Nelson takes CPS214 too
= Nelson is no longer in the answer

+ So it must use difference!

Why do we need core operator X?

+ Difference
® The only non-monotone operator

% Cross product

< Union

% Selection? Projection?
* Homework problem ©

11

Why is r.a. a good query language?

% Declarative?
® Yes, compared with older languages like CODASYL
= But operators are inherently procedural
< Simple
= A small set of core operators who semantics are easy to
grasp
< Complete?

= With respect to what?

Relational calculus

@ {eSID | ¢ € Enroll N\
—(3e’ € Enroll: ¢ SID = ¢.SID A ¢'.CID # ¢.CID } or
{eSID | ¢ € Enroll N
Ve’ € Enroll: ¢ SID # ¢.SID V ¢.CID # ¢.CID }

% Relational algebra = “safe” relational calculus

= Every query expressible as a safe relational calculus query is also
expressible as a relational algebra query

= And vice versa
< Example of an unsafe relational calculus query
= {s.name | =G € Student) }

= Cannot evaluate this query just by looking at the database

Turing machine?

% Relational algebra has no recursion
= Example of something not expressible in relational
algebra: Given relation Parent(parent, child), who are
Bart’s ancestors?
< Why not recursion?
= Optimization becomes undecidable
® You can always implement it at the application level

® Recursion is added to SQL nevertheless

12

