Relational Model & Algebra

CPS 216

Advanced Database Systems

Announcements (January 13)

+ Homework #1 will be assigned on Thursday
< Reading assignment for this week
= Posted on course Web page
= Remember to register on H20 and join Duke CPS216

= Review due on Thursday night

Relational data model

< A database is a collection of relations (or tables)

< Each relation has a list of attributes (or columns)
® Set-valued attributes not allowed

< Each attribute has a domain (or type)

< Each relation contains a set of tuples (or rows)

® Duplicates not allowed

= Simplicity is a virtue!

Example
Student Conrse
SID |name age [GPA CID title
142 |Bart 10 (2.3 CPS216 |Advanced Database Systems
123 [Milhouse|10 |3.1 CPS230|Analysis of Algorithms
857 |Lisa 8 4.3 CPS214 [Computer Networks
456 [Ralph 8 2.3
Enroll
Ordering of rows doesn’t matter fig gégzm Why did Codd call them
(even though the output is 142 [cPs214 “relations”?
always in some order) 123 [CPS216
Each n-tuple relates # elements
857 |CPS216 f d 9 isely in th
857 |CPS230 1'0:] n O.mTH]S, pre;xseﬂy lll'l ‘ C”
456 |CPS214 mathematical sense of a relation

Schema versus instance

< Schema (metadata)
= Specification of how data is to be structured logically
® Defined at set-up
= Rarely changes
< Instance
= Content
® Changes rapidly, but always conforms to the schema
« Compare to type and object of type in a
programming language

6

Example

< Schema
= Student (SID integer, name string, age integer, GPA float)
= Course (CID string, title string)
= Enroll (SID integer, CID integer)
< Instance
= { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ...}
= { <CPSZ 16, Advanced Database Systems), scol?
= { (142, CPS216), (142, CPS214), ...}

Relational algebra operators

% Core set of operators:
= Selection, projection, cross product, union, difference, and
renaming
% Additional, derived operators:

= Join, natural join, intersection, etc.

Selection

< Input: a table R
< Notation: 0, (R)
= p is called a selection condition/predicate
< Purpose: filter rows according to some criteria

< Output: same columns as R, but only rows of R that
satisfy p

Selection example

< Students with GPA higher than 3.0

Opa > 3.0 (Student)

SID [name age |G
142 |Bart 10 |2
123 |Milhouse|10 |3.
I
2

[510 Jnome __lage J6PA |

1857 JLisa_Js 4.3

857 |Lisa 8
456 |Ralph 8

More on selection

< Selection predicate in general can include any
column of R, constants, comparisons such as =, <,
etc., and Boolean connectives A, V, and —
® Example: straight A students under 18 or over 21
OGPA > 4.0 A (age < 18V age > 21y (Student)
< But you must be able to evaluate the predicate over
a single row

= Example: student with the highest GPA
O P A= iSbwt-wetar bl (Student)

Projection

< Input: a table R
+ Notation: 7, (R)
® L is alist of columns in R
< Purpose: select columns to output

< Output: same rows, but only the columns in L

Projection example

% ID’s and names of all students

51D, mame (Stttelent)

SID |name age [GPA SID |name

142 |Bart 10 |2.3 142 |Bart
123 |Milhouse|10 (3.1 123 |Milhouse
857 |Lisa 8 4.3 857 |Lisa

456 |Ralph 8 208 456 |Ralph

More on projection

< Duplicate output rows must be removed
= Example: student ages
7 (Student)

age

Cross product

< Input: two tables R and §
% Notation: R X §

< Purpose: pairs rows from two tables

SID |name age [GPA m . .
a2 o102 3 < Output: for each row 7 in R and each row s in §,
123 [Milhouse]10 |3.1 output a row 75 (concatenation of and)
857 |Lisa 8 [4.3 s]
456 [Ralph 8 2.8
15 16
Cross product example A note on column ordering
% Student X Enroll < The ordering of columns in a table is considered
SID [name __|age [cPA S10 [cip unimportant (as is the ordering of rows)
142 |Bart 10 |2.3 142 [CPS216
123 [Milhouse|10 [3.1 142 |cps214 SID |name age |GPA [SID |CID SID |CID SID |name age |GPA
X 142 |Bart 10 |2.3 |142 [CPS216 142 |CPS216 (142 |Bart 10 |2.3
123 [CPS216
142 |Bart 10 |2.3 |142 [CPS214 142 |CPS214 (142 |Bart 10 |2.3
142 |Bart 10 |2.3 |123 [CPS216| __ [123 [CPS216 (142 |Bart 10 |2.3
s s i) = s el)
142 Bart 10 2.3 192 |CPSz16 12 :T]house 1 .1 lg :: 214 l; g 214 12 :"Thouse 1 .1
142 |Bart 10 [2.3 |142 [cPS214 3 [Milhouse |10 [3. 3 |CPS216 3 |[CPS216 (123 |Milhouse |10 [3.
142 |Bart 10 |2.3 [123 |CPS216
123 [Milhouse |10 [3.1 |142 |CPS216 . . .
s oo T 1 Tias Tepeata # That means cross product is commutative, i.e.,
123 |Milhouse[10 [3.1 [123 |[CPS216 R xS =S8XR for any R and S

Derived operator: join

< Input: two tables R and §
Notation: R4, §
= is called a join condition/predicate

< Purpose: relate rows from two tables according to
some criteria

< Output: for each row 7 in R and each row s in §,
output a row 7s if » and s satisfy p

% Shorthand for o, (RXS)

Join example

+ Info about students, plus CID’s of their courses

Staudent ™5y, 1 510 = paronsip Enroll

SID |name age |GPA SID [CID

142 [Bart 10 |2.3 142 [CPS216

123 |Milhouse |10 3.1 >d 142 [CPS214
Student SID = 123 |cPs216
Enroll SID,

SID |name age |GPA |SID [CID
142 |Bart 10 |2.3 [142 [CPS216

Derived operator: natural join

< Input: two tables R and §
% Notation: R > §

Natural join example

& Student >\ Enroll = T, (Student <, Enroll)

= 1D, name, age, Gpa, c1p (StHAent D, 11> = gy sip Enroll)

o, . SID |name age |GPA SID [CID
< Purpose: relate rows from two tables, and T e 12 Tcosane
= Enforce equality on all common attributes 123 |Milhousel10 |3.1 > 128 GRS21
123 [cps216
= Eliminate one copy of common attributes
< Shorthand for 7, (R >, S) 510 Tname Jage [67A i
. . . . 142 [Bart [10 [2.3 cPs216
L]
L is the union of all attributes from R and §, with TRl T lbs EsoTd
duplicates removed
= p equates all attributes common to R and §
123 [MiThouse |10 [3.1 cPs216
L. |
21 22
Union Difference

< Input: two tables R and §
% Notation: RU §

® R and § must have identical schema
% Output:

® Has the same schema as R and §

® Contains all rows in R and all rows in §, with duplicates
eliminated

< Input: two tables R and §
< Notation: R — §

® R and § must have identical schema
< Output:

® Has the same schema as R and §

= Contains all rows in R that are not found in §

Derived operator: intersection

< Input: two tables R and §
% Notation: RN §
® R and § must have identical schema
< Output:
® Has the same schema as R and §
= Contains all rows that are in both R and §
« Shorthand forR — (R — §)
% Also equivalent to § — (§ — R)
% And toRp< S

Renaming

< Input: a table R

% Notation: pg (R), or g4, 4, .5 (R)

 Purpose: rename a table and/or its columns

< Output: a renamed table with the same rows as R
< Used to

= Avoid confusion caused by identical column names

= Create identical columns names for natural joins

Renaming example

% SID’s of students who take at least two courses
Enroll <, Enroll

Toap (Enroll > gy tmrerrz e E770/)

Tsip1

DqSIDl = SID2 A CID1 # CID2

pEﬂml/l(SlDl, CID1) pEnm/lZ(SIDZ, CID2)

Enroll Enroll

Summary of core operators

+ Selection: g, (R)

% Projection: 7, (R)

< Cross product: R X §

% Union: RU S

< Difference: R — §

% Renaming: p g4, 4, .., (R)

= Does not really add to processing power

Summary of derived operators

& Join: R <, §
% Natural join: R >4 §

< Intersection: RN §

< Many more

® Semijoin, anti-semijoin, quotient, ...

An exercise

< CID’s of the courses that Lisa is NOT taking

All CID’s CID’s of the courses
that Lisa IS taking
Teip e
Cozlme l>|<
Enrol/ Undme = “Lisa”
Student

A trickier exercise

< SID’s of students who take exactly one course
= Those who take at least one course

= Those who take at least two courses
= Take the difference! _

T

TsiD Tsip1

Enroll P>51p1 = 5102 A CID1 % CID2
o T PEwran(siD1, cip1y PEnroli2(SID2, CID2)

When (and why) is “—" needed?
Envroll Enroll

Monotone operators

< If some old output rows must be removed

What happens

to the output?

Add more rows

to the input...

® Then the operator is non-monotone
< Otherwise the operator is monotone

® That is, old output rows remain “correct” when more
rows are added to the input

® Formally, R C R’ implies Re/Op(R) C RelOp(R’)

30

Classification of relational operators

% Selection: g,(R) Monotone
< Projection: 7, (R) Monotone

< Cross product: R X § Monotone

% Join: R, § Monotone
% Natural join: R><IS Monotone
% Union: RU S Monotone
% Difference: R — § Non-monotone (not w.r.t. §)

% Intersection: RN § Monotone

32

Why is “—” needed for “exactly one”?

< Composition of monotone operators produces a
monotone query

® Old output rows remain “correct” when more rows are
added to the input

< Exactly-one query is non-monotone
= Say Nelson is currently taking only CPS216
® Add another record to Enroll: Nelson takes CPS214 too
= Nelson is no longer in the answer

% So it must use difference!

Why do we need core operator X?

< Difference
= The only non-monotone operator
% Cross product
® The only operator that adds columns
< Union
® The only operator that allows you to add rows?
= A more rigorous proof?
% Selection? Projection?

* Homework problem ©

Why is r.a. a good query language?

< Declarative?
® Yes, compared with older languages like CODASYL
® But operators are inherently procedural
< Simple
= A small set of core operators who semantics are easy to
grasp
< Complete?

= With respect to what?

Relational calculus

% {eSID | e € Envoll \
—(3e’ € Enroll: ¢ SID = ¢.SID A ¢’.CID # ¢.CID } or
{ e.SID | e € Envoll \
Ve’ € Enroll: ¢ SID # ¢.SID V ¢.CID = ¢.CID }
% Relational algebra = “safe” relational calculus
= Every query expressible as a safe relational calculus query is also
expressible as a relational algebra query
= And vice versa
< Example of an unsafe relational calculus query
= { s.name | —(s € Student) }

= Cannot evaluate this query just by looking at the database

Turing machine?

< Relational algebra has no recursion
= Example of something not expressible in relational
algebra: Given relation Parent(parent, child), who are
Bart’s ancestors?
< Why not recursion?
= Optimization becomes undecidable
® You can always implement it at the application level

= Recursion is added to SQL nevertheless

