
1

SQL: Part I

CPS 216

Advanced Database Systems

2

Announcements (January 20)

Reading assignment for this week (Ailamaki et al.,
VLDB 2001) has been posted

Due Wednesday night

Hunt for related/follow-up work too!

Course project will be assigned this Thursday

Student presentation sign-up sheet will be circulated
this Thursday

Allows you to drop your lowest homework grade

Homework #1 due in two weeks

3

SQL

SQL: Structured Query Language
Pronounced “S-Q-L” or “sequel”

The standard query language support by most
commercial DBMS

A brief history
IBM System R

ANSI SQL89

ANSI SQL92 (SQL2)

SQL3 (still under construction after years!)

4

Creating and dropping tables
CREATE TABLE table_name
(…, column_namei column_typei, …);
DROP TABLE table_name;
Examples
create table Student (SID integer,

name varchar(30), email varchar(30),
age integer, GPA float);

create table Course (CID char(10), title varchar(100));
create table Enroll (SID integer, CID char(10));
drop table Student;
drop table Course;
drop table Enroll;
-- everything from -- to the end of the line is ignored.
-- SQL is insensitive to white space.
-- SQL is case insensitive (e.g., ...Course... is equivalent to
-- ...COURSE...)

5

Basic queries: SFW statement

SELECT A1, A2, …, An

FROM R1, R2, …, Rm

WHERE condition;

Also called an SPJ (select-project-join) query

Equivalent (not really!) to relational algebra query
πA1, A2, …, An

(σcondition (R1 × R2 × … × Rm))

6

Example: reading a table

SELECT * FROM Student;
Single-table query, so no cross product here

WHERE clause is optional

* is a short hand for “all columns”

2

7

Example: selection and projection

Name of students under 18
SELECT name FROM Student WHERE age < 18;

When was Lisa born?
SELECT 2004 – age
FROM Student
WHERE name = ’Lisa’;
SELECT list can contain expressions

• Can also use built-in functions such as SUBSTR, ABS, etc.

String literals (case sensitive) are enclosed in single
quotes

8

Example: join

SID’s and name’s of students taking courses with
the word “Database” in their titles

SELECT Student.SID, Student.name
FROM Student, Enroll, Course
WHERE Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND title LIKE ’%Database%’;
LIKE matches a string against a pattern
• % matches any sequence of 0 or more characters

Okay to omit table_name in table_name.column_name if
column_name is unique

9

Example: rename

SID’s of students who take at least two courses
Relational algebra query:
πe1.SID
((ρe1 Enroll) e1.SID = e2.SID ∧ e1.CID ≠ e2.CID (ρe2 Enroll))

SQL:
SELECT e1.SID AS SID
FROM Enroll AS e1, Enroll AS e2
WHERE e1.SID = e2.SID
AND e1.CID <> e2.CID;
AS keyword is completely optional

10

A more complicated example

Titles of all courses that Bart and Lisa are taking
together

FROM Student sb, Student sl, Enroll eb, Enroll el, Course c

WHERE sb.name = ’Bart’ AND sl.name = ’Lisa’

AND eb.SID = sb.SID AND el.SID = el.SID

AND eb.CID = el.CID

SELECT c.title

Tip: Write the FROM clause first, then WHERE, and then SELECT

AND eb.CID = c.CID;

11

Why SFW statements?

Out of many possible ways of structuring SQL
statements, why did the designers choose SELECT-
FROM-WHERE?

A large number of queries can be written using only
selection, projection, and cross product (or join)

Any query that uses only these operators can be written
in a canonical form: πL (σp (R1 ×… × Rm))

• Example: πR.A, S.B (R p1 S) p2 (πT.C σp3 T) =

πR.A, S.B, T.C σp1 ∧ p2 ∧ p3 (R × S × T)

SELECT-FROM-WHERE captures this canonical form

12

Set versus bag semantics

Set
No duplicates

Relational model and algebra use set semantics

Bag
Duplicates allowed

Number of duplicates is significant

SQL uses bag semantics by default

3

13

Set versus bag example

SID CID
142 CPS216
142 CPS214
123 CPS216
857 CPS216
857 CPS230
456 CPS214
... ...

SID
142
123
857
456
...

πSID Enroll

Enroll

SELECT SID
FROM Enroll;

SID
142
142
123
857
857
456
...

14

A case for bag semantics

Efficiency
Saves time of eliminating duplicates

Which one is more useful?
πGPA Student
SELECT GPA FROM Student;

The first query just returns all possible GPA’s

The second query returns the actual GPA distribution

Besides, SQL provides the option of set semantics
with DISTINCT keyword

15

Operational semantics of SFW

SELECT [DISTINCT] E1, E2, …, En
FROM R1, R2, …, Rm
WHERE condition;
For each t1 in R1:

For each t2 in R2: … …
For each tm in Rm:

If condition is true over t1, t2, …, tm:
Compute and output E1, E2, …, En

If DISTINCT is present
Eliminate duplicate rows in output

t1, t2, …, tm are often called tuple variables

16

Example: forcing set semantics

SID’s of students who take at least two courses
SELECT e1.SID AS SID
FROM Enroll AS e1, Enroll AS e2
WHERE e1.SID = e2.SID
AND e1.CID <> e2.CID;

• What if Bart takes CPS216 and CPS214?

• Changing <> to > may help in this case

• But what if Bart takes CPS216, CPS214, and CPS230?

SELECT DISTINCT e1.SID AS SID
...

• Duplicate SID values are removed from the output

17

SQL set and bag operations

UNION, EXCEPT, INTERSECT
Set semantics

Exactly like set ∪, −, and ∩ in relational algebra

UNION ALL, EXCEPT ALL, INTERSECT ALL
Bag semantics

Think of each row as having an implicit count (the
number of times it appears in the table)

Bag union: sum up the counts from two tables

Bag difference: proper-subtract the two counts

Bag intersection: take the minimum of the two counts

18

Examples of bag operations

fruit
apple
apple
orange

fruit
apple
orange
orange

Bag1 Bag2

Bag1 UNION ALL Bag2
fruit
apple
apple
orange
apple
orange
orange

Bag1 EXCEPT ALL Bag2
fruit
apple

Bag1 INTERSECT ALL Bag2
fruit
apple
orange

4

19

Examples of set versus bag operations

Enroll(SID, CID), ClubMember(club, SID)
(SELECT SID FROM ClubMember)
EXCEPT
(SELECT SID FROM Enroll);

• SID’s of students who are in clubs but not taking any classes

(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll);

• SID’s of students who are in more clubs than classes

20

Table expression

Use query result as a table
In set and bag operations, FROM clauses, etc.

A way to “nest” queries

Example: names of students who are in more clubs
than classes

(SELECT SID FROM ClubMember)
EXCEPT ALL
(SELECT SID FROM Enroll)

SELECT DISTINCT name
FROM Student,

(

) AS S
WHERE Student.SID = S.SID;

21

Summary of SQL features covered so far

Basic CREATE/DROP TABLE
SELECT-FROM-WHERE statements (select-project-join
queries)

Set and bag operations

Nesting queries using table expressions

So far, not much more than relational algebra

Next: aggregation

22

Aggregates

Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

Example: number of students under 18, and their
average GPA

SELECT COUNT(*), AVG(GPA)
FROM Student
WHERE age < 18;
COUNT(*) counts the number of rows

23

GROUP BY

SELECT … FROM … WHERE …
GROUP BY list_of_columns;

Example: find the average GPA for each age group
SELECT age, AVG(GPA)
FROM Student
GROUP BY age;

24

Operational semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;
Compute FROM (×)

Compute WHERE (σ)

Compute GROUP BY: group rows according to the
values of GROUP BY columns

Compute SELECT for each group (π)
One output row per group in the final output

5

25

Example of computing GROUP BY
SELECT age, AVG(GPA) FROM Student GROUP BY age;

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
... SID name age GPA

142 Bart 10 2.3
123 Milhouse 10 3.1
857 Lisa 8 4.3
456 Ralph 8 2.3
...

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

Compute SELECT for each group

age AVG_GPA
10 2.7
8 3.3
... ...

26

Aggregates with no GROUP BY

An aggregate query with no GROUP BY clause
represent a special case where all rows go into one
group
SELECT AVG(GPA) FROM Student;

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
...

SID name age GPA
142 Bart 10 2.3
857 Lisa 8 4.3
123 Milhouse 10 3.1
456 Ralph 8 2.3
...

Group all rows
into one group

AVG_GPA
3

Compute aggregate
over the group

27

Restriction on SELECT

If a query uses aggregation/group by, then every
column referenced in SELECT must be either

Aggregated, or

A GROUP BY column

This restriction ensures that any SELECT expression
produces only one value for each group

28

Examples of invalid queries

SELECT SID, age FROM Student GROUP BY age;

Recall there is one output row per group

There can be multiple SID values per group

SELECT SID, MAX(GPA) FROM Student;

Recall there is only one group for an aggregate query
with no GROUP BY clause

There can be multiple SID values

Wishful thinking (that the output SID value is the one
associated with the highest GPA) does NOT work

29

HAVING

Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

SELECT … FROM … WHERE … GROUP BY …
HAVING condition;

Compute FROM (×)

Compute WHERE (σ)

Compute GROUP BY: group rows according to the values
of GROUP BY columns

Compute HAVING (another σ over the groups)

Compute SELECT (π) for each group that passes HAVING

30

HAVING examples

Find the average GPA for each age group over 10
SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING age > 10;
Can be written using WHERE without table expressions

List the average GPA for each age group with more than a
hundred students

SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING COUNT(*) > 100;
Can be written using WHERE and table expressions

6

31

Summary of SQL features covered so far

Basic CREATE/DROP TABLE
SELECT-FROM-WHERE statements

Set and bag operations

Table expressions

Aggregation and grouping
More expressive power than relational algebra

Next: NULL’s

32

Incomplete information

Example: Student (SID, name, age, GPA)

Value unknown
We do not know Nelson’s age

Value not applicable
Nelson has not taken any classes yet; what is his GPA?

33

Solution 1

A dedicated special value for each domain (type)
GPA cannot be –1, so use –1 as a special value to
indicate a missing or invalid GPA

Leads to incorrect answers if not careful
• SELECT AVG(GPA) FROM Student;

Complicates applications
• SELECT AVG(GPA) FROM Student

WHERE GPA <> -1;

Remember the pre-Y2K bug?
• 09/09/99 was used as a missing or invalid date value

34

Solution 2

A valid-bit for every column
Student (SID, name, name_is_valid,

age, age_is_valid,
GPA, GPA_is_valid)

Still complicates applications
• SELECT AVG(GPA) FROM Student

WHERE GPA_is_valid;

35

SQL’s solution

A special value NULL
Same for every domain

Special rules for dealing with NULL’s

Example: Student (SID, name, age, GPA)
h 789, “Nelson”, NULL, NULL i

36

Rules for NULL’s

When we operate on a NULL and another value
(including another NULL) using +, –, etc., the result
is NULL

Aggregate functions ignore NULL, except COUNT(*)
(since it counts rows)

7

37

Three-valued logic

When we compare a NULL with another value
(including another NULL) using =, >, etc., the
result is UNKNOWN
TRUE = 1, FALSE = 0, UNKNOWN = 0.5
x AND y = min(x, y)
x OR y = max(x, y)
NOT x = 1 – x
WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE

UNKNOWN is insufficient

38

Unfortunate consequences

SELECT AVG(GPA) FROM Student;
SELECT SUM(GPA)/COUNT(*) FROM Student;

Not equivalent

Although AVG(GPA) = SUM(GPA)/COUNT(GPA) still

SELECT * FROM Student;
SELECT * FROM Student WHERE GPA = GPA;

Not equivalent

Be careful: NULL breaks many equivalences

39

Another problem

Example: Who has NULL GPA values?
SELECT * FROM Student WHERE GPA = NULL;

• Does not work; never returns anything

(SELECT * FROM Student)
EXCEPT ALL
(SELECT * FROM Student WHERE GPA = GPA)

• Works, but ugly

Introduced built-in predicates IS NULL and IS NOT NULL
• SELECT * FROM Student WHERE GPA IS NULL;

40

Summary of SQL features covered so far

Basic CREATE/DROP TABLE
SELECT-FROM-WHERE statements

Set and bag operations

Table expressions

Aggregation and grouping

NULL’s

Next: subqueries, modifications, constraints, and
views

