Indexing: Part I

CPS 216

Advanced Database Systems

Announcements (February 3)

% Reading assignment for this week
= R-tree (due Wednesday night)

= GiST (due next Monday night, but try to read it by
Thursday’s lecture)

< Homework #1 due today (midnight)
< Homework #2 will be assigned next Thursday
® Meanwhile, use the time to think about course project!

< No student presentation before midterm (so we can
catch up with lectures)

Basics

% Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = wvalue;
SELECT * FROM R, S WHERE R.A = S.B;
< Other search criteria, e.g.
= Range search
SELECT * FROM R WHERE A > wvalue;

= Keyword search
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Dense and sparse indexes

< Dense: one index entry for each search key value
+ Sparse: one index entry for each block

® Records must be clustered according to the search key
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Dense versus sparse indexes

% Index size
< Requirement on records

% Lookup

< Update

Primary and secondary indexes

% Primary index
= Created for the primary key of a table
= Records are usually clustered according to the primary key
= Can be sparse
< Secondary index
= Usually dense
< SQL
= PRIMARY KEY declaration automatically creates a primary index,
UNIQUE key automatically creates a secondary index

= Secondary index can be created on non-key attribute(s)

CREATE INDEX StudentGPAIndex ON Student(GPA);




ISAM

< What if an index is still too big?
= Put a another (sparse) index on top of that!
“ISAM (Index Sequential Access Method), more or less

Example: look up 197

100, 200, .., 901
Index blocks Jg)o, 123, .., 192| Izoo, I |901, 996|
2 5 H
100, 108,|| 123, 129, 192, 197,|| 200, 202, 901, 907,| [ 996, 997,
119, 121 ..

Data blocks

Updates with ISAM

Example: insert 107 100, 200, ., 901
Example: delete 129

Index blocks ~ [100, 123, ., 192] 200, . | ... foo1, ., ooe|

100, 108,(f 123, i 192, 197,|f 200, 202, 901, 907, 996, 997,
119, 121 |f ..

Data blocks

Overflow block

B*-tree

< Disk-based: one node per block; large fan-out

% Balanced (more or less): good performance

guarantee

Max fan-out: 4
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Sample B*-tree nodes

Max fan-out: 4
Non-leaf

to keys to keys to keys to keys
k<120 120<£ <150 150<£ <180 180<#

to records with these £ values;
or, store records directly in leaves

B -tree balancing properties

% All leaves at the same lowest level

% All nodes at least half full (except root)

Max # Max # Min # Min #
pointers _ keys active pointers  keys
Non-leaf f  f-1 [f/2] [fl2]-1
Root f f-1 2 1
Leaf f o f-1 Lf/2] Lf/2]

Lookups

SELECT * FROM R WHERE £
SELECT * FROM R WHERE £

179;
32;

Max fan-out: 4

Not found




Range query

SELECT * FROM R WHERE £ > 32 AND £ < 179;

Max fan-out: 4

And follow next-leaf pointers

Insertion

% Insert a record with search key value 32

Max fan-out: 4

Look up where the
inserted key
should go...
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And insert it right there

Another insertion example

+ Insert a record with search key value 152

Max fan-out: 4

Oops, node is already full!




Node splitting

Max fan-out: 4

Yikes, this node is
also already full!
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% In the worst case, node splitting can “propagate” all the way
root of the tree (not illustrated here)
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= Splitting the root causes the tree to grow “up” by one level

Deletion

# Delete a record with search key value 130

Max fan-out: 4

If a sibling has more
than enough keys,
Look up the key steal one!

to be deleted...

And delete it
Oops, node is too empty!




Stealing from a sibling

Max fan-out: 4

Remember to fix the key
in the least common ancestor
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Another deletion example

% Delete a record with search key value 179

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

Max fan-out: 4

Remember to delete the
appropriate key from parent
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% Deletion can “propagate” all the way up to the root of the tree (not
illustrated here)
® When the root becomes empty, the tree “shrinks” by one level
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Performance analysis

< How many I/O’s are required for each operation?
= ) (more or less), where 4 is the height of the tree
® Plus one or two to manipulate actual records
= Plus O(h) for reorganization (should be very rare if f is large)
= Minus one if we cache the root in memory
< How big is 5?

Roughly logg,, ... N, where N is the number of records

B-tree properties guarantee that fan-out is least // 2 for all non-
root nodes

Fan-out is typically large (in hundreds)—many keys and pointers
can fit into one block

= A 4-level B*-tree is enough for typical tables

B -tree in practice

< Complex reorganization for deletion often is not
implemented (e.g., Oracle, Informix)

% Most commercial DBMS use B*-tree instead of
hashing-based indexes because B*-tree handles
range queries

The Halloween Problem

% Story from the early days of System R...

UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;

= There is a B*-tree index on Payrollsalary)
® The update never stopped (why?)

< Solutions?




Building a B*-tree from scratch

+ Naive approach
= Start with an empty B*-tree

® Process each record as a BT -tree insertion

% Problem
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Bulk-loading a B -tree

+ Sort all records (or record pointers) by search key
® Just a few passes (assuming a big enough memory)
= More sequential I/O’s
% Now we already have all leaf nodes!
% Insert each leaf node in order
= No need to look for the proper place to insert

® Only the rightmost path is affected; keep it in memory

:1]?@,,%0
| s 4

| o |
Sorted leaves ACCOACCOCCOCCOCCCICICICI0CI0] -

N
§

Other B*-tree tricks

< Compressing keys
= Head compression: factor out common key prefix and
store it only once within an index node
= Tail compression: choose the shortest possible key value
during a split
® In general, any order-preserving key compression
& Why does key compression help?
< Improving binary search within an index node
® Cache-aware organization
= Micro-indexing

% Using B*-tree to solve the phantom problem (later)
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B*-tree versus ISAM

% ISAM is more static; B*-tree is more dynamic
< ISAM is more compact (at least initially)

= Fewer levels and I/O’s than B*-tree
< Overtime, ISAM may not be balanced

= Cannot provide guaranteed performance as B*-tree does
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BT -tree versus B-tree

% B-tree: why not store records (or record pointers) in
non-leaf nodes?

= These records can be accessed with fewer I/O’s

% Problems?

Coming up next

% Other tree-based indexs: R-trees and variants, GiST

< Hashing-based indexes: extensible hashing, linear
hashing, etc.

< Text indexes: inverted-list index, suffix arrays




