Indexing: Part III

CPS 216

Advanced Database Systems

Announcements (February 10)

% Reading assignments

= Query processing survey (due next Monday)
< Homework #2 will be assigned this Thursday
% Recitation session this Friday

% Midterm and course project proposal in 3% weeks

Static hashing

With records or

record pointers

bucket 0

bucket 1

hash buck
key —>| function f— "¢ bet\
numbper’ >
h bucket 7]

‘What if a bucket is full?

bucket
N-1

Does it make sense to use a hash-based index
as a sparse index on a sorted table?

Performance of static hashing

< Depends on the quality of the hash function!
= Best (hopefully average) case: one I/O!
® Worst case: all keys hashed into one bucket!
® See Knuth vol. 3 for good hash functions
+ Rule of thumb: keep utilization at 50%-80%
< How do we cope with growth?
= Extensible hashing

® Linear hashing

Extensible hashing (TODS 1979)

% Idea 1: use 7 bits of output by hash function and
dynamically increase 7 as needed

& [olil1ToliTofu]1]
7

% Problem: ++7 = double the number of buckets!

% Idea 2: use a directory
= Just double the directory size
= Many directory entries can point to the same bucket
® Only split overflowed buckets

“One more level of indirection solves everything!”

Extensible hashing example (slide 1)

% Insert £ with A(k) = 0101

Global Directory Buckets
depcth T 1
(always the max 0 1000
of local depths) 1 Local
depth
\ 11 1001
001b101

% Bucket too full?

= ++]ocal depth, split bucket, and + + global
depth (double the directory size) if necessary

= Allowing some overflow is fine too

Extensible hashing example (slide 2)

< Insert 1110, 0000

Dircctory/ Buckets Directory
LINgA~ 1 1000 femg 00
1 111Gy I~ (1)0
1
/7 \ 2l 1001 /// "
0101
21 0011 ‘//’///,

+ Split again

= No directory doubling this time

Extensible hashing example (slide 3)

< Insert 0001

Buckets

21 1000
0000
\ Directory
2l 1110 21N 00
01
| —
2l 1001 |_— 1
010 1{]{\(! 1
21 0011

Extensible hashing example (slide 4)

Buckets
2l 1000
0000
Directory / \ Directory

000 2l 1110 00
100/’//:::::3 i
010 A
110 1001 / /11
vor———1 o001 /
101
01109 2l o011 Delete is just the reverse:
111— If bucket is too empty,

merge with sibling bucket,
— — local depth;
if possible, — — global depth

0101

and half the directory

Summary of extensible hashing

< Pros
= Handles growing files
= No full reorganization

< Cons

10

Linear hashing (V'LDB 1980)
% Grow only when utilization exceeds a given
threshold

% No extra indirection

= Some extra math to figure out the right bucket

Insert 0101
0 1 Threshold exceeded; grow!
0000 1111
1010 0101

i =1 Number of bits in use = [log,~ |
7 = 2 Number of primary buckets

Linear hashing example (slide 2)

% Grows linearly (hence the name)
+ Always split the (2 — 2U°¢2))-th bucket (0-based index)
®= Intuitively, the first bucket with the lowest depth

= Not necessarily the bucket being inserted into!

Insert 0001 Insert 1100

00 1 10 Threshold exceeded; grow!
0000 1111 1010
1100 0101
1
=Y 0001
n=73

Linear hashing example (slide 3)

Insert 1110
Threshold exceeded; grow!

00 01 10 11
0000 0001 1010 1111
1100 0101 1110

i=2
n=4

Linear hashing example (slide 4)

% Look up 1110
= Bucket 110 (6-th bucket) is not here
= Then look in the (6 — 2l:])-th bucket (= 2nd)

000 01 10 11 100
0000 0001 1010 1111 1100
0101 1110
i=3
n=>5

Summary of linear hashing

< Pros
= Handles growing files
= No full reorganization
= No extra level of indirection

< Cons

Hashing versus B-trees

