
1

Indexing: Part III

CPS 216

Advanced Database Systems

2

Announcements (February 10)

Reading assignments
Query processing survey (due next Monday)

Homework #2 will be assigned this Thursday

Recitation session this Friday

Midterm and course project proposal in 3½ weeks

3

Static hashing

What if a bucket is full?

key bucket
number

hash
function

h

bucket 0

bucket 1

bucket i

bucket
N-1

ki1
ki2
ki3
…

bucket i

h(k) = i

With records or
record pointers

bucket i
overflow

bucket i
overflow

…

Does it make sense to use a hash-based index
as a sparse index on a sorted table?

4

Performance of static hashing

Depends on the quality of the hash function!
Best (hopefully average) case: one I/O!

Worst case: all keys hashed into one bucket!

See Knuth vol. 3 for good hash functions

Rule of thumb: keep utilization at 50%-80%

How do we cope with growth?
Extensible hashing

Linear hashing

5

Extensible hashing (TODS 1979)

Idea 1: use i bits of output by hash function and 
dynamically increase i as needed

Problem: ++i = double the number of buckets!

Idea 2: use a directory

Just double the directory size

Many directory entries can point to the same bucket

Only split overflowed buckets

“One more level of indirection solves everything!”

i
0 1 1 0 1 0 1 1h(k)

6

Extensible hashing example (slide 1)

Insert k with h(k) = 0101

Bucket too full?

++local depth, split bucket, and ++global 
depth (double the directory size) if necessary

Allowing some overflow is fine too

0101

0
1

1000

1001
0011

1

1

1
Directory Buckets

Local
depth

Global
depth

(always the max
of local depths)



2

7

Extensible hashing example (slide 2)

Split again
No directory doubling this time

0
1

1000

1001
0101

1

2

1
Directory Buckets

00112

00
10
01
11

2
Directory

11100000

Insert 1110, 0000 

8

Extensible hashing example (slide 3)

Insert 0001

1110

1001
0101

2

2

Buckets

00112

00
10
01
11

2
Directory

1000
0000

2

0001

9

Extensible hashing example (slide 4)

1110

1001
0001

2

3

Buckets

00112

00
10
01
11

2
Directory

1000
0000

2

01013

000
100
010
110
001
101
011
111

3
Directory

Delete is just the reverse:
If bucket is too empty,
merge with sibling bucket,
– – local depth; 
if possible, – – global depth
and half the directory

10

Summary of extensible hashing

Pros
Handles growing files

No full reorganization

Cons
One more level of indirection

Directory size still doubles

Sometimes doubling is not enough!

01001101
11001101

3
00001101 Directory size ×16!

A quick and dirty fix?

11

Linear hashing (VLDB 1980)

Grow only when utilization exceeds a given 
threshold

No extra indirection
Some extra math to figure out the right bucket

Insert 0101
Threshold exceeded; grow!

0000
1010

1111

0 1

i = 1 Number of bits in use = d log2n e
n = 2 Number of primary buckets

0101

12

Linear hashing example (slide 2)

Grows linearly (hence the name)

Always split the (n – 2blog2nc)-th bucket (0-based index)
Intuitively, the first bucket with the lowest depth

Not necessarily the bucket being inserted into!

Insert 0001

0001

Insert 1100

1100

Threshold exceeded; grow!

0000 1111
0101

00 1

1010

10

i = 2
n = 3



3

13

Linear hashing example (slide 3)

0000
1100

0001
0101

00 01

1010

10

1111

11

i = 2
n = 4

1110

Insert 1110

Threshold exceeded; grow!

14

Linear hashing example (slide 4)

Look up 1110
Bucket 110 (6-th bucket) is not here

Then look in the (6 – 2blog2nc)-th bucket (= 2nd)

0000 0001
0101

000 01

1010
1110

10

1111

11

i = 3
n = 5

1100

100

15

Summary of linear hashing
Pros

Handles growing files
No full reorganization
No extra level of indirection

Cons
Still has overflow chains
May not be able to split an overflow chain right away because 
buckets must be split in sequence

empty empty empty full

full

full

full

empty empty empty

16

Hashing versus B-trees

Hashing is faster on average, but the worst case can 
be really bad

B-trees provide performance guarantees, and they 
are not that tall in practice

Hashing destroys order!

B-trees provide order and support range queries


