Indexing: Part IV

CPS 216

Advanced Database Systems

Announcements (February 12)

% Reading assignments
= Query processing survey (due next Monday)
® Variant indexes (due next Wednesday)
+ Homework #2 assigned today
® Due February 26 (in two weeks)
< Homework #1
= Sample solution available next Tuesday
® Grades will be posted on Blackboard
% Recitation session tomorrow (will announce by email too)
= D240 1-2pm
< Midterm and course project proposal in 3 weeks

% Message board

Keyword search

Google... I [Association for

The Internet Movie Limages | G| CPS 216: Advanced pputing Machinery
Database (IMDb). .. ry Database Systems ded in 1947,
earch | I'f (Fall 2001) Lis the worlds
... Search the Internet ucky Course Information educational and
Movie Database. For d Search | | Course Description / tific computing
more search options. kes | Langy Time and Place / ty. Today, our
please visit Search Books bers—...
central... FT Resources: Staff... T
|
I database AND search] [Search ||

What are the documents containing both “database” and “search”?

Keywords x documents

All documents

'7
@0&\ O & é&«
g & & &
All keywords % < <° <
“a” 1 1 1 1
“cat” 1 1 0 0
“database” 0 0 1 0
“dog” 0 | 1 [0 1
“search” 0 0 1 0

1 means keyword appears in the document
0 means otherwise

< Inverted lists: store the matrix by rows
+ Signature files: store the matrix by columns

With compression, of course!

Inverted lists

+ Store the matrix by rows
+ For each keyword, store an inverted list
® (keyword, doc-id-list)
= (“database”, {3, 7, 142, 857, ...})
= (“search”, {3,9, 192,512, ...})
= It helps to sort doc-id-list (why?)
% Vocabulary index on keywords
= B*-tree or hash-based

< How large is an inverted list index?

Using inverted lists

< Documents containing “database”

= Use the vocabulary index to find the inverted list for
“database”

= Return documents in the inverted list
< Documents containing “database” AND “search”

= Return documents in the intersection of the two inverted
lists

<+ OR? NOT?

What are “all” the keywords?

< All sequences of letters (up to a given length)?
= .. that actually appear in documents!
< All words in English?
+ Plus all phrases?
= Alternative: approximate phrase search by proximity
< Minus all stop words
® They appear in nearly every document; not useful in search
= Example: a, of, the, it
< Combine words with common stems
® They can be treated as the same for the purpose of search

= Example: database, databases

Frequency and proximity

% Frequency
» (keyword, { {doc-id, number-of-occurrences),
(doc-id, number-of-occurrences),
1)
+ Proximity (and frequency)
 (keyword, { (doc-id, {position-of-occurrence,,
position-of-occurrence,, ...),
(doc-id, (position-of-occurrnece,, ...)),

.
= When doing AND, check for positions that are near

Signature files

+ Store the matrix by columns and compress them
< For each document, store a w-bit signature

< Each word is hashed into a w-bit value, with only s
< w bits turned on

+ Signature is computed by taking the bit-wise OR of

the hash values of all words on the document

Does docy contain

hash(“database”) = 0110 doc, contains “database”: 0110 “database”?
hash(“dog”) = 1100 doc, contains “dog”: 1100
hash(“cat”) = 0010 doc, contains “cat” and “dog”: 1110

@ Some false positives; no false negatives

10

Bit-sliced signature files

% Motivation

= To check if a document contains a e G
word, we only need to check the 1 ololo
bits that are set in the word’s hash 2 oloo
value 3 ofo]t

= So why bother retrieving all w bits 4 ijo
of the signature? : +

” 0lolo

< Instead of storing » signature

T T
)) Slice 7 ... Slice 0
files, store w bit slices

Only check the slices that Bigslicedbignacure files

correspond to the set bits in the Starting to look like
word’s hash value an inverted list again!

+ Start from the sparse slices

Inverted lists versus signatures

< Inverted lists are better for most purposes (T0DS,
1998)

< Problems of signature files

+ Saving grace of signature files

Ranking result pages

% A single search may return many pages
= A user will not look at all result pages
= Complete result may be unnecessary
@ Result pages need to be ranked

% Possible ranking criteria
® Based on content

* Number of occurrences of the search terms
* Similarity to the query text
= Based on link structure
* Backlink count
* PageRank

= And more...

Textual similarity

< Vocabulary: [w,, ..., w,}

+ IDF (Inverse Document Frequency): {f, ..., f,}
= f; = 1/ the number of times w; appears on the Web

+ Significance of words on page p: {p, f, ..., p, /.1
® , is the number of times w; appears on p

% Textual similarity between two pages p and g is
defined to be {p, £, ..., 0, /.Y {g.f1s - 4, 1,1 =
pl ql.flz ar oof +pn q!’lj(;'lz

= 4 could be the query text

Why weight significance by IDF?

15

Problems with content-based ranking

Backlink

< A page with more backlinks is ranked higher

% Intuition: Each backlink is a “vote” for the page’s
importance

Google’s PageRank

< Main idea: Pages pointed by high-ranking pages are
ranked higher
® Definition is recursive by design
= Based on global link structure; hard to spam
< Naive PageRank
= N(p): number of outgoing links from page p
= B(p): set of pages that point to p
= PageRank(p) = zquw (PageRank(g)/ N(g))
“Each page p gets a boost of its importance from each page that
points to p

Each page g evenly distributes its importance to all pages that g
points to

Calculating naive PageRank

+ Initially, set all PageRank’s to 1; then evaluate
PageRank(p) < ZqEB(p) (PageRank(g)/N(g))
repeatedly until the values converge (i.e. a fixed

05 0
=0 0
05 1

point is reached)

I Amazon M Microsoftl

—
N

n 11 1.25] |1.125] |1.25 1.2
m|=|(1],10.5(,10.75},]0.5 |,]0.68751, ..., 0.6
a yps)p 1.375] [1.0625 {23

Random surfer model

< A random surfer
= Starts with a random page
= Randomly selects a link on the page to visit next

= Never uses the “back” button

< PageRank(p) measures the probability that a random
surfer visits page p

Problems with the naive PageRank

< Dead end: a page with no []
outgoing links
® A dead end causes all
importance to “leak”
eventually out of the Web

I Amazon

< Spider trap: a group of

pages with no links out of [
the group
= A spider trap will eventually

accumulate all importance I Amazon

of the Web

Practical PageRank

% d: decay factor
< PageRank() =
d - 2, (PageRank(q)/N(g)) + (1=d)

% Intuition in the random surfer model
= A surfer occasionally gets bored and jump to a random
page on the Web instead of following a random link on
the current page

22

Google (1998)

< Inverted lists in practice contain a lot of context information

Hit: 2 bytes Relative
Capitalization_font size
plain:[cap:1 | imp:3 position: 12 ithin the page
In URL/ticle/meta tag fancy:[cap:1 [imp =7 [fype:4 | posifion: 8 Within the page
In anchor rextanchor: [cap:1 [Tmp =7 [type: 4 Thash:4 [pos: 4Within the anchor
URL
associated

% PageRank is not the final ranking with the anchor

= Type-weight: depends on the type of the occurrence
* For example, large font weights more than small font
= Count-weight: depends on the number of occurrences
* Increases linearly first but then tapers off
® For multiple search terms, nearby occurrences are matched
together and a proximity measure is computed

¢ Closer proximity weights more

Suffix arrays (SODA, 1990)

% Another index for searching text

< Conceptually, to construct a suffix array for string §
* Enumerate all |§| suffixes of §
= Sort these suffixes in lexicographical order

% To search for occurrences of a substring

® Do a binary search on the suffix array

Suffix array example

§ = mississippi q = sip

Suffixes: Sorted suffixes: Suffix array:
mississippi i 10
ississippi ippi 7
ssissippi issippi 4 No need to store
sissippi ississippi 1 the suffix strings;
issippi mississippi 0 just store where
ssippi D pi 9 they start
sippi ppi 8
ippi Esippi 6 0q| log |s
ppi Qsissippi 3
pi ssippi 5
i ssissippi 2

One improvement

< Remember how much of the query string has been
matched

g = sisterhood

low:) sissipi... Matched 3 characters
middle: 5 sisterhood. .. Start checking from the 4% character
high: D sistering... Matched 5 characters

26

Another improvement

% Pre-compute the longest common prefix
information between suffixes

® For all (Jow, middle) and (middle, high) pairs that can come
up in a binary search

g = sisterhood 0(|q| + log |S]
low: L sissipi... Matched 3 characters
middle: T ;i-s'terhood. .. Start checking from the 7% character

...) Matched 6 characters (pre-computed)
high: D sistering. .. Matched 6 characters

N
§

Suffix arrays versus inverted lists

Trie: a string index
< A tree with edges labeled by characters

< A node represents the string obtained by
concatenating all characters along the path from the
root

What'’s the max fan-out?

< Compact trie: replace a path without branches by a
single edge labeled by a string

29

Suffix tree

Index all suffixes of a large string in a compact trie
@ Can support the same queries as a suffix array
< Internal nodes have fan-out > 2 (except the root)

< No two edges out of the same node can share the
same first character

To get linear space

% Instead of inlining the string labels, store pointers to
them in the original string

Patricia trie, Pat tree, String B-tree

A Patricia trie is just like a compact trie, but

< Instead of labeling each edge by a string, only label by the
first character and the string length

< Leaves point to strings

@ Faster search (especially for external memory) because of
inlining of the first character

+ But

< A Pat tree indexes all suffixes of a large string in a Patricia
trie

< A String B-tree uses a Patricia trie to store and compare
strings in B-tree nodes

Summary

< General tree-based string indexing tricks
® Trie, Patricia trie, String B-tree
= Good exercise: put them in a GiST! ©
< Two general ways to index for substring queries
= Index words: inverted lists, signature files
® Index all suffixes: suffix array, suffix tree, Pat tree
< Web search and information retrieval go beyond
substring queries
= [DF, PageRank, ...

